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Chapter 1

Preliminaries and Some

Fundamental Results

1.1 Introduction and Literature Review

In the mid of twentieth century an independent branch of Mathematics was devel-
oped which was known as Nonlinear analysis. It was considered as combination of
functional and variational analysis by a famous mathematician of that time names
Andrew Browder. Its nonlinear results have wide range of application in subjects like
Physics, Chemistry, Biology and also in Economics which leads to nonlinear models.

The fixed point theory has been considered as important branch in nonlinear analysis



and developed in the process of advancement of the same.

Mathematicians and researchers have been considerably attracted by the fixed point

theory and through this theory many interesting results have been derived during this

period. Banach fixed point theorem has fascinated many researchers since 1922. It is

a continued active field of research in the present time as well. Let X be a nonempty

set and T': X — X then a point z € X is called a fixed point of T if Tz = z.

Theorems dealing with existence and construction of a solution to operator equation

Tz = z form a part of fixed point theory.

The existence of a fixed point is an intrinsic property of a map, which involves many

necessary and sufficient conditions in a mixture of algebraic, order theoretic or topo-

logical properties of the map or its domain.

The existence and properties of fixed points are used as very important tools to

analyze the existence and uniqueness of solution of various mathematical models

namely differential, integrals, partial differential equations and variational inequality

etc. (see, for instance [5], [6], [9], [20], [23], [32], [52], [58], [67], [69], [70], [75], [78],

[81], [82], [83], [84], [107], [148], [162], [179], [180], [183], [191], [193], [195], [198], [199],



[200] and references thereof).

Approximate or exact solutions of boundary value problems could be derived through
fixed point theorems of ordered Banach spaces for details one can refer to H.Amann
[4], Collatz [46], Franllin [66], Karamardian [93], Lions [110], Martin [115], Mercier
[116], Peitgen and Walther [129], Robinson [156], Smart [175], Swaminathan [179],
Tartar [182] and Waltman [192].

The origin of the Fixed point theory, an important branch of nonlinear functional
analysis, which dated back to the latter part of the nineteenth century, rests in use
of successive approximations to the existence and uniqueness of solutions, particular
to differential equations. This method is linked with the names of famous mathe-
maticians such as Cauchy [35], Lipschitz [113], Liouville [112], Peano [127, 128] and
especially, Picard [131].

Picard [131] was the pioneer in using the fixed point theoretic approach in his work.
Polish mathematician Stefan Banach [9, 10] is associated for taking the credit for plac-
ing the idea of fixed point theorems into an abstract framework suitable for broad

applications well beyond the scope of elementary differential and integral equations.



Banach also discovered the fundamental role of metric completeness. It is a specific
property of the metric which is shared by all the space commonly exploited in analysis.
For many years, activity in metric fixed point theory was limited to minor extensions
of Banach’s contraction principle and its manifold applications. The pioneering work
of Browder [30, 31] gave new impetus to the theory. Since 1965, a significant de-
velopment had started for existence theorem of Browder [29, 32|, Gohde [68], Kirk
[103, 104] and the early metric results of Edelstein [60, 61]. By the end of the decade,
a rich fixed point theory for non-expansive mappings was clearly emerging and it
was equally clear that such mappings played a fundamental role in many aspects of
nonlinear functional analysis. Investigation of fixed point theory in sense of quality
and amount in metric space has greatly increased in the 1970’s. The important de-
scription of development in this period proved the existence of fixed point theorems
by using more generalized contractive mappings. Idea of more generalized contractive
mappings were designed by Bianchini [22], Caristi [34], Sehgal [163], Chatterjea [36],
Hardy and Rogers [73], Ciri¢ [41-44] and Guseman [72].

Generalized contractive mappings, which are the perception of weak commutativity



and compatible mappings was introduced by Sessa [164, 165] and Jungck [85, 86] in
1980’s. This proved to be the turning point in the fixed point’s arena and brought
an elevation in the study of common fixed point theorems for mappings satisfying
some contractive conditions. Thereafter, a torrent of common fixed point theorems
were shaped by various authors for example Sessa [165], Park and Bae [123], Fisher
[65], Kang and Cho [89], Murthy [87] and Pathak [125] by using the enhanced no-
tion of compatibility of mappings. Since 1990’s, the study of fixed point theory is
focused more on the existence of fixed point in metric space, in generalized metric
space and D-metric space using contractive mappings by the then researchers namely
Kada-Suzuki-Takahashi [88], Stojakovic [176, 177], Dhage [54-57], Ume [187-189] and
Rhoades [142, 146, 153].

To study the more generalized contractive mapping and different application in anal-
ysis is the focused subject of the fixed point theory. Fixed point theorems gives those
conditions under which mappings (single or multivalued) have solutions.

The Dutch mathematician L.E.J. Brouwer in 1912 which stated that “A continuous

map on a closed unit ball in R has a fixed point”, which is a major classical result in



fixed point theory. This result points to an excellent development of fixed point the-
ory in normed spaces. For details, one may refer to Agarwal [2], Barnsley [11, 15, 16],
Berinde [20], Bonsal [23], Cai and Paige [33], Dugundji and Granas [58], Granas and
Dugundji [70], Istratescu [81], Kirk and Sims [105], Rhoades [143-154], Rus [158],
Singh [167-171], Smart [175], Yadav [196] and Zeidler [198].

In 1922, the great Polish mathematician Stefen Banach [9] proved a wonderful the-
orem properly known as “Banach’s contraction principle (BCP)” which stated that
every contraction mapping of a complete metric space to itself has a unique fixed
point. Symbolically a contraction mapping T" given by d(Tz,Ty) < k.d(z,y) for all
z,y € X and 0 < k < 1, defined on a complete metric space (X, d) has a unique fixed
point in X. Banach’s contraction principle and its modified applications were limited
to minor extensions for many years. Therefore, numerous generalizations of the BCP
either by weakening the contraction conditions of the mappings or by extending the
structure of the ambient spaces, have been obtained.

A continuous self mapping of a compact convex subset of a Banach space has at

least one fixed point was stated by Schauder [161] in 1927 which extended the above



result. Another approach of generalizing the BCP involves replacement of d(x,y) in
the condition d(Tz,Ty) < k.d(x,y) by a combination of distances between z, y and
their images. Rhoades [146] had given a fine survey and comparison of various gener-
alized contraction. In this survey the general fixed point theorems were either stated
or proved. Further, Meszaros [117] also studied various contractive type mappings.
The most general among contraction type condition for self map 7' of a metric space
(X, d) is due to Ciri¢ [43]. One can also refer to Hegedus [74], Park and Rhoades [124],
Collaco and Silva [45] and references therein for a deep understanding of the above
literature. Ekeland [62] gave an interesting generalization of the Banach contraction
principle.

In 1965, Chu and Diaz [39] generalized the Banach fixed point theorem by proving
that if 77, the n'" iterate of a self mapping 7" defined on a complete metric space X
is a contraction for some positive integer n. Then T has a unique fixed point in X.
The only draw back of Banach fixed point theorem despite of numerous advantages is
that it requires the continuity of mapping 7' throughout the space. In 1968, Kannan

[90] established result that does not require the continuity of mapping T by using



the contractive condition d(Tx,Ty) < k[d(xz,Tx) + d(y,Ty)] for all z,y € X where
0<k< %, then self-map 7" has a unique fixed point in complete metric space (X, d).
Gupta and Rangnathan [71] have proved a fixed point theorem for a mapping which
is not necessarily continuous.

The initiation of fixed point theory in computer science by Tarski [181] enhances its
applicability in different domains. Cai and Paige [33] found that fixed points are
involved in program derivation which influence dramatically the construction, relia-
bility, maintenance and extensibility of a software.

Fixed point theorems have fascinated many generalizations in various spaces such as
cone metric space, fuzzy metric space, b-metric spaces etc. Indeed, the investigations
relate mainly to the problem of presence and locating exact fixed points of maps
on various settings. The theory of approximate fixed point is more apt for actual

applications and approximating a fixed point solution in numerical practice.



1.2 Metric Spaces

Let X be a nonempty set and d : X x X — R a mapping. Then d is called a metric

on X if the following properties hold:

(d1) d(z,y) >0 for all z,y € X,

(d2) d(z,y) =0 if and only if x = y for some z,y € X,
(d3) d(z,y) =d(y,x) for all z,y € X,

(d4) d(z,y) < d(z,z) +d(z,y) for all z,y,z € X.

The value of metric d at (x,y) is called a distance between = and y, and the ordered

pair (X, d) is called Metric Space.

Definition 1.2.1. A sequence {z,,} C X converges to an element z € X if for all

e > 0 there exist N € N such that d(x,,z) < € whenever n > N.

Definition 1.2.2. A sequence in a metric space (X, d) is a Cauchy sequence if for all

e > 0 there exist ng € N such that d(z,, x,,) < € whenever m,n > ny.

Definition 1.2.3. A metric space (X, d) is called complete if every Cauchy sequence

converges in X.
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1.2.1 b-Metric Spaces

Czerwik [48] introduced the concept of b-metric spaces.

Definition 1.2.4. If M(# ¢) is a set having s (>= 1) € R then a self-map p on M

is called a b-metric if the following conditions are satisfied:

(i) p(z,y) =0if and only x = y;

(i) p(z,y) = p(y, );

(iii) p(z,2) < s.fp(z,y) + ply, 2)] for all z,y,z € M.

The pair (M, p) is called a b-metric space.

From the above definition it is evident that the b-metric space extended the metric

space. Here, for s = 1 it reduces into standard metric space.

1.2.2 Cone Metric Spaces

Huang and Zhang [77] considered cone metric spaces, defined convergence and Cauchy
sequence in term of interior points of the underlying cone. A subset P of real Banach

space F is called an order cone if and only if:

(1) P is closed, nonempty and P # {0},
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(2) a,beR,a,b>0,2,y € P implies ax + by € P,

(3) PN (=P) = {0}.

Given a cone P C FE, we define a partial ordering ‘<’ with respect to P by x < y if
and only if y —x € P. A cone P is called normal if there is a number L > 0 such

that for all z,y € FE.

0 <z <y implies ||z| < L]y||-

The least positive number satisfying the above inequality is called the normal constant

of P, while r < y stands for (y — z) € int P.

Definition 1.2.5. Let X be a nonempty set of /. Suppose that the mapd: X x X —

F satisfies:

(d1) 0 < d(z,y) for all z,y € X and d(z,y) = 0 if and only if z = y,

(d2) d(z,y) =d(y,z) for all z,y € X,

(d3) d(z,y) < d(x,z)+d(z,y) for all z,y,z € X.

Then d is called a cone metric on X and the pair (X, d) is called a cone metric space.
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1.2.3 G-Metric Spaces

A more appropriate generalization of metric spaces then that of G-metric spaces was
introduced by Mustafa and Sims [119]. Given below are some definitions and prop-

erties for G-metric spaces as specified by them.

Definition 1.2.6. Let X be a nonempty set, and let G : X x X x X — RT be a

function satisfying the following axioms:

(G1) G(z,y,2) =0if x =y = =z,

(G2) 0 < G(x,z,y) for all x,y € X with z # v,

(G3) G(x,x,y) < G(z,y,z) for all x,y,z € X with z #y

(G4) G(x,y,2) = G(z,2,y) = G(y, z,x) = ..., symmetry in all three variables and
(G5) G(z,y,2) < G(z,a,a) + G(a,y, z) for all x,y,z,a € X.

Then the function G is called a generalized metric or more specifically a G-metric on

X and the pair (X, G) is called a G-metric space.
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1.3 Contractions

A self map T" on a metric space (X, d) is Banach contraction if

d(Tz,Ty) < k.d(z,y) for all x,y € X (1.3.1)

where 0 < k < 1.

The map 7' is called nonexpansive if £k =1 in (1.3.1) and Lipshitz if £ > 0.

Notice that contraction = nonexpansive = Lipshitz, and the reverse implications are
not true.

A self-map T of a metric space is strictly contractive if

d(Txz,Ty) < d(z,y) for all distinct z,y € X. (1.3.2)

A map T satisfying (1.3.2) need not have a fixed point on a complete metric space.
Although Edelstein [60] showed that T" satisfying (1.3.2) has a unique fixed point on

a compact metric space.

1.3.1 Banach Contraction Principle

The Banach contraction principle (BCP) states that “A contraction map of a complete

metric space has a unique fixed point.”
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Theorem 1.3.1. [9] Let (X,d) be a complete metric space and T : X — X be a
contraction. Then T has a unique fized point in X and for each xo € X the sequence

of iterates {T"xy} converges to the fixed point.

Proof. We select xy € X and define the iterative sequence {x,} by
Tpi1 =Tx, forn=20,1,2,3,....

observe that for any indices n,p € N,

AT, Tpip) = d(T"zo, T" o) = d(T" o, T"TPx0)

IN

]{?nd(l'o, Tpflfo)

IN

k"[d(xo, TI()) + d(TIo, TZZL'()) + ...+ d(Tp_IZEQ, TpCL’())]

IA

E'14k+ ... + kP~ d (o, Txo)

11—k
1—k

IN

k

d(ﬂ?o, T.To)

Which shows that {z,} is a Cauchy sequence and since X is complete there exist

x € X such that lim z, = x. To see that x is a the unique fixed point of T" observe
n—oo

that

r=lim z, = lim 2,4, = lim Tz, =T ( lim xn) =Tx.
n—oo n—oo n— o0 n— o0

However, x = Trx and y = Ty imply d(z,y) = d(Tz,Ty) < kd(x,y), yielding d(x,y) =

0iff z =y. O



15

The versatility of the applications of the BCP can be judged by the following quote
as given by Peitgen et al. [130].

“If the works and achievements of mathematicians could be patented then the con-
traction mapping principle would probably be among those with the highest earnings

up to now and the future.”

1.3.2 Kannan Contraction

Let (X, d) be a metric space and T a self map on X. Then 7' is Kannan contraction

if the following condition is satisfied

d(Tz,Ty) < kld(z, Tx) 4+ d(y, Ty)] for all z,y € X, (1.3.3)

where 0 < k < %

Kannan [91] proved that:

Theorem 1.3.2. A map satisfying (1.5.3) has a unique fived point in a complete

metric space.

A fixed point theorem for discontinuous maps was projected for the first time by
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Kannan. Kannan theorem inspired copious extensions and generalizations of the

BCP and his own fixed point theorems on various settings [146].

1.4 An outline of the work

The basic intent of this thesis is to study the fixed points in different metric spaces.
As a result in Chapter 2, fixed point theorems on b-metric spaces have been derived.
In Chapter 3, the elements of cone metric spaces and its properties have been dis-
cussed. In this chapter, fixed point theorems on cone metric spaces have been ob-
tained.

Some fixed point theorems on G-metric spaces has been extended in Chapter 4 as
well.

The theory of iteration process for computing fixed points for cubic polynomial, and a
function in two and three dimensions is developed and placed in Chapter 5. Here the
main intent is to offer a comparative study of a few prominent iterative procedures
in numerical praxis. The experimental analysis in this chapter seems to be useful to

computer programmers and numerical analysts.
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There are plenty of problems in applied mathematics which can be solved by means

of fixed point theory. Still, practice proves that in many real situations an approxi-

mate solution is more than sufficient, so the existence of fixed points is not strictly

required. In Chapter 6 we establish some approximate fixed point results in metric

spaces under various contraction conditions.



Chapter 2

Fixed Point Theorems in b-Metric

Space

In this chapter we have obtained some fixed point theorems on b-metric space which
are the extension of fixed point theorems given by Hardy [73] and Reich [140].
2.1 Introduction

In the development of non-linear analysis, fixed point theory plays a very important
role. Also, it has been widely used in different branches of engineering and sciences.

Metric fixed point theory is an essential part of mathematical analysis because of its

18



19

applications in different areas like variational and linear inequalities, improvement,
and approximation theory. The fixed point theorem in metric spaces plays a signifi-
cant role to construct methods to solve the problems in mathematics and sciences.
Although metric fixed point theory is a vast field of study and is capable of solving
many equations. To overcome the problem of measurable functions w.r.t. a measure
and their convergence, Czerwik [48-51] needs an extension of metric space. Using
this idea, he presented a generalization of the renowned Banach fixed point theorem
in the b-metric spaces. Many researchers studied the b-metric space such as Aydi [7],
Boriceanu [24-26], Bota [27], Chug [40], Du [194], Kir [102], Olaru [121], Olatinwo
[122], Pacurar [133, 134], Rao [138], Roshan [157], Shi [166].

In this chapter, our aim is to show the validity of some important fixed point results

into b-metric spaces.

2.2 Preliminaries

We recall some definitions and properties for b-metric spaces given by Czerwik [48].

Definition 2.2.1. If M(# ¢) is a set having s (>= 1) € R then a self-map p on M

is called a b-metric if the following conditions are satisfied:
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(i) p(x,y) =0if and only x = y;

(ii) p(z,y) = ply, z);
(iii) p(z,2) < s.[p(z,y) + ply, z)] for all z,y,z € M.

The pair (M, p) is called a b-metric space.

From the above definition it is evident that the b-metric space extended the metric
space. Here, for s = 1 it reduces into standard metric space.
Let us have a look on some example [19] of b-metric space:

Example 2.2.1. The space [, (0 <p < 1),

l, = {(Jcn) CR:Z|xn|p<oo},

n=1

together with the function p : [, x [, = R where

1
00 P
p(x,y) = (Z |0 — ynlp)
n=1
for all x = x,,, y = y, € [, is a b-metric space.

Example 2.2.2. The space [,, (0 < p < 1), of all real functions (), t € [0,1] such

that
1
/ = () dt < oo,
0

is b-metric space if we take

o = ([ 1o -viorar)

=
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for each z,y € .

Now we present the definition of Cauchy sequence, convergent sequence and com-

pleteness in b-metric space.
Definition 2.2.2. [48] Let (M, p) be a b-metric space then {z,} in M is called

(a) a Cauchy sequence iff Ve > 0 there exists n(e) € N, such that for each n,m > n(e)

we have p(z,, T,,) < €.

(b) a convergent sequence if and only if there exist € M such that for all € > 0

there exists n(e) € N, such that for every n > n(e) we have p(z,,x) < e.
Definition 2.2.3. [48] 1. If (M, p) is a b-metric space then a subset L C M is called

(i) compact iff for every sequence of elements of L there exists a subsequence that

converges to an element of L.

(ii) closed iff for each sequence {z,} in L which converges to an element z, we have

x € L.

2. The b-metric space is complete if every Cauchy sequence converges.

To prove the theorem 2.3.2 and 2.3.4 we will use the following lemma 2.2.1 [173].

Lemma 2.2.1. Suppose (M, p) be a b-metric space and {y,} be a sequence in M

such that

p(yn—‘rh yn—l—Q) < /\p<yna yn-l—l)a n= Oa ]-7 (22]—)
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where 0 < A < 1, Then the sequence {y,} is a Cauchy sequence in M provided that

s < 1.

2.3 Main Result

The following theorem is given by Reich [140]:

Theorem 2.3.1. Let M be a complete metric space with metric p and let'T' : M — M

be a function with the following property

p(Tx, Ty) < ap(x, Tx) + bp(y, Ty) + cp(z,y)

for all x,y € M, where a,b, c are non-negative and satisfy a +b+c < 1. Then T has

a unique fized point.

We have extended the above theorem (2.3.1) to the b-metric space as follows:

Theorem 2.3.2. Let M be a complete b-metric space with metric p and let T : M —

M be a function with the following

p(Tz, Ty) < ap(z, Tx) + bp(y, Ty) + cp(z, y) (2.3.1)

Va,y € M, where a,b,c are non-negative real numbers and satisfy a + s(b+c¢) < 1

for s > 1 then T has a unique fized point.
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Proof. Let xy € M and {z,} be a sequence in M, such that

T, =Tx,—1 =T x

Now
P(xm-la xn) - P(Tffm Txn—l)
S Clp(ﬂfm Txn) + bp(q;nfl) Txnfl) + Cp(l’m $n71>
= ap(Tp, Tpi1) + 0p(Tn_1,20n) + cp(Tn, Tn_1)
= (1 —a)p(zny1,7n) < (b+c)p(Tn, Tn1)
b+c
= Pl 0n) S (s 0-t) = ol )
where p = ((ffz)) < %

continuing this process we can easily say that p(z,41,2,) < p™p(zo, x1)
This implies that T" is a contraction mapping.
Now,it is to show that {x,} is a Cauchy sequence in M.

Let m,n > 0, with m > n

P(Tp, Tm) < 8[p(Tn, Tpi1) + P(Tng1, T)]
S Sp(SCn, xn+1> + 52p($n+17 xn+2)

+ *p(Tnt2, Tnig) + -

n-+1 n—+2

< sp"p(wo, 1) + 820" p(xo, 1) + °p" 2 p(wo, 1) + ..

n sp”
= sp"p(wo, 1) [1+sp+ (sp)” + (sp)° + .| = 7= pCIEY
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Now using lemma 2.2.1 and taking limit n — oo we get

lim p(x,, Tm) =0
n—oo

— {x,} is a Cauchy sequence in M.
Since M is complete, we consider that {x,} converges to z*.
Now, we show that x* is fixed point of T'.

We have

p(x*, Tx*) < slp(z*, z,) + p(x,, Tx*)]

< s [p(.l’*, In) + p(Tmn—lv T:L‘*)]
< s [p(x*, l‘n) + ap(:(:*, TI*) + bp(l’n_l, Txn—l) + Cp(l’n_l, l’*>]
(1 —as)p(z*, Tz*) < slp(z*, z,) + bp(xn_1,2,) + cp(xp_1,2")]
Pl Ta*) < = oes Ioa” ) () -pl1,2°)
s
<

T a9 [p(z", 2n) + bp" p(x0, 71) + cp(Tp—1,27)]

Taking limn — oo, we get

lim p(z*, Tx*) =0

n—o0

= " =Tz"

—> x* is the fixed point of 7. Now, for the uniqueness of fixed point. Let x and y

be two fixed points of T’
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r=Tx, y=Ty
p(x,y) = p(Tx, Ty) < ap(x, Tx) + bp(y, Ty) + cp(x,y)
p(r,y) < cp(x,y)

which is a contradiction. Hence the proof is complete. O

Now we will discuss the extension of the following theorem given by Hardy and Rogers
[73] to the b-metric space as our second result in theorem 2.3.4.

Theorem 2.3.3. Let (M, p) be a metric space and T : M — M a mapping satisfies

the following condition
(i) p(Tx, Ty) < a.p(x, Tx) + b.p(y, Ty) + c.p(x, Ty) + e.ply, Tx) + f.p(x,y),
where a,b, c,e, f are nonnegative and we set « =a+b+c+e+ f. Then
(a) If M is complete metric space and o < 1 then T has a unique fized point.
(b) If (i) is modified to the condition x # y
for all x,y € M then this implies
p(Tx,Ty) < a.p(x,Tx) +b.p(y, Ty) + c.p(x, Ty) + e.p(y, Tx) + f.p(x,y)

and in this case we assume M is compact. T 1s continuous and o = 1, then T has a

unique fived point.
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Theorem 2.3.4. Let (M, p) be a complete b-metric space and a mapping T : M — M

satisfying the following condition for all x,y € M
p(Tx,Ty) < ap(z, Tx) + bp(y, Ty) + cp(z, Ty) + ep(y, Tx) + fp(z,y)  (2.3.2)

where a, b, c, e, f are nonnegative and we set « = a+b+c+e+ f, such that o € (0, 21—5),

for s > 1 then T has a unique fized point.

Before going to prove this theorem we require following lemma 2.3.1 [73].

Lemma 2.3.1. Let the condition 2.3.2 hold on (M, p) for a self map T" on it. Then

if a € (0, ) there exist 3 < 5= such that
p(Tz, T?z) < Bp(z, Tx). (2.3.3)

Proof. Let y = Tz in (2.3.2) and simplify to get

a+ f

p(Tw, TPx) < T

plx, Tx) + (z, T?x) (2.3.4)

c
1—p"
Now using triangular inequality p(x, T?x) < s[p(x, Tx) + p(Tx, T?x)] so from (2.3.4)

we obtain

1
L (T2, 2) — (T, 2) < 5L oo, Ty + —pla, T2)
s 1-0 1—-0
on simplifying
1 —b
p(T?z, x) < (ltatf )Sp(x,Tw) (2.3.5)
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Now substituting inequality (2.3.5) into (2.3.4), we get

a+ f+ecs

- c.s) p(x, Tx) (2.3.6)

p(Ta, T?x) < (

using symmetry, we can exchange a with b and ¢ with e in (2.3.6) to obtain

b+ f+es
Tx,T%z) < | ———— T 2.3.7
(72,7%) < (T2 o (237)
and then
. (a+f+cs b+ f+es
= 2.3.8
P mm(l—b—c.s’l—b—e.s) ( )
satisfies the conclusion of this lemma. m
Proof of Theorem 2.3.4.
Let xy € M and {z,} be a sequence in M, such that
T, =Tx,—1 =T"xg
Using lemma 2.3.1 we can show that
P($n+17 xn) < ﬁnp('r()a xl) (239)

Now, we show that {z,} is a Cauchy sequence in M.



Let m,n >0, with m > n

P(Tn, Tm) < S[p(Tn, Tni1) + p(Tnt1, T
< 59 i) + 5p(Ens1, Tnro)
+ 83 p(Tpy2, Tngs) + ...
< sB"p(wo, 1) + $° B p(wo, 21)

+ 838" 2 p(wg, 1) + ...

On taking limn — oo we get lim p(z,, z,,) = 0.
n—oo
This implies {x,} is a Cauchy sequence in M.

Since M is complete, we consider that {x,} converges to z*.

Now, to show that x* is fixed point of T

28



29

we have

p(2*, Ta*) < 5 [p(a", 2) + plam, T2")]
< s[p(a", 20) + (T, Ta)]
< s[p(a® 1) + ap(n_s, Ttnr)
+ bp(a*, Tx*) + cp(@n_1,T2")

+ €p($*, Tmn—l) + fp(xn—lv JI*>]

= p(z*,Tz") < slap(x,—1,x,) + bp(z”, Tx™)

+cp(xn_1, Tx*) + (e + V)p(a*, x,) + fo(zp_1,27)]

Taking limn — oo, we get, p(z*, Tx*) < s(b+ c)p(x*, Tx*)
which is contradiction unless z* = Tx*.

Now to show the uniqueness of fixed point. Let us consider x and y be two fixed

points of T, sothat x =Tx , y = TYy.
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Again

p(x,y) = p(Tx, Ty) < ap(x, Tx) + bp(y, Ty) + cp(x, Ty)

+eply, Tx) + fp(z,y)

< (ct+e+ folz,y)

which is a contradiction.

Hence the proof is complete.

2.4 Conclusions

In this chapter we have attained some fixed point results in complete b-metric space
which are the extension of the theorems given by Reich and Hardy-Rogers for complete

metric space.



Chapter 3

Fixed Point Theorems in Cone

Metric Space

Some fixed point theorems on cone metric spaces have been derived in this chapter.
We have studied the T-contraction and obtained the extension of the fixed point
theorems on compatible maps given by Gerald Jungck [86] in cone metric spaces.

3.1 Introduction

Ordered spaces and cones have applications in mathematical and other sciences. K-

metric and K-normed spaces were first studied by Kantorovitch [92], Vandergraft

31
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[190], Zaberejko [197] and Aliprantis [3] using an ordered Banach space instead of the
set of real numbers. Further, Lin [109] considered the notion of K-metric spaces by
replacing real numbers with cone P in the metric function, d : X x X — K.

Huang and Zhang [77] considered such spaces under the name of cone metric spaces,
defined convergence and Cauchy sequence in terms of interior points of the underly-
ing cone. Huang, Zhang and other researchers derived some fixed point and common
fixed point theorems for contractive-type mappings in cone metric spaces (See for an
instance [1], [13], [14], [38], [77], [79], [94], [95], [100], [108], [135], [141], [159], [174],

[185] and [186]).

3.2 Preliminaries

Throughout this section R*, denotes the set of all nonnegative real numbers, E, a
real Banach space and N, the set of natural numbers.
The following definitions and lemmas are due to Huang and Zhang [77].

A subset P of FE is called an order cone if and only if:
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(1) P is closed, nonempty and P # {0};

(2) a,beR,a,b>0,2,y € P implies ax + by € P;

(3) Pn(—P)={0}.

Given a cone P C FE, we define a partial ordering ‘<’ with respect to P by z < y if
and only if y —x € P. A cone P is called normal if there is a number L > 0 such

that for all z,y € FE.

0 <z <y implies ||z| < L]y||-

The least positive number L satisfying the above inequality is called the normal

constant of P, while z < y stands for (y — x) € int P.

Definition 3.2.1. Let X be a nonempty set of /. Suppose that the mapd: X x X —

FE satisfies:

(d1) 0 < d(z,y) for all z,y € X and d(z,y) = 0 if and only if z = y,

(d2) d(z,y) =d(y,z) for all z,y € X,

(d3) d(z,y) < d(x,z)+d(z,y) for all z,y,z € X.

Then d is called a cone metric on X and the pair (X, d) is called a cone metric space.
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Definition 3.2.2. Let (X, d) be a cone metric space. We say that {x,} is

(a) a Cauchy sequence if for every ¢ € E with 0 < ¢, there is an N such that

d(xp, xm) < c for all n,m > N.

(b) a convergent sequence if for every ¢ € E with 0 < ¢, there is an N such that

d(x,,x) < ¢ for all n,m > N and for some fixed z € X.

Definition 3.2.3. A cone metric space X is said to be complete if for every Cauchy
sequence in X is convergent in X. It is known that {z,} converges to z € X if and
only if d(z,,z) — 0 as n — oo. The limit of a convergent sequence is unique provided

that P is a normal cone with normal constant L.

Lemma 3.2.1. Let (X, d) be a cone metric space, P be a normal cone with normal
constant L. Let {x,} be a sequence in X. Then {z,} converges to z if and only if

d(xp,x) =0 (as n— 00).

Definition 3.2.4. Let (X, d) be a cone metric space. If for any sequence {z,} in X,
there exist a convergent subsequence {z,. } of {z,} then (X, d) is called a sequentially

compact cone metric space.

Now we are extending the definition of asymptotic regularity [160] to the cone metric

space.
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Definition 3.2.5. Let f, g and h be self maps on a cone metric space (X, d). The
pair (f,g) is asymptotically regular with respect to h at xg € X if there exists a

sequence {z,} in X such that

hx2n+1 = f$2n7 h$2n+2 = gTop+y1, N = 07 17 27 LS

and lim,, o, d(hx,,hx, 1) =0.

Definition 3.2.6. Let (X, d) be a cone metric space and 7,5 : X — X be two
functions. A mapping S is said to be a T-contraction if there exists k& € (0,1) such
that for

d(TSz, TSy) < kd(Txz,Ty) Vz,y € X. (3.2.1)

Asymptotically T-regular maps was introduced in [17], we are extending this definition

to the cone metric space.

Definition 3.2.7. Let S and T be two self-maps on cone metric space (X, d) and
{z,} a sequence in X. Then {z,} is said to be asymptotically T-regular with respect

to S if d(Szp, Tx,) — 0 as n — oo.

Definition 3.2.8. Let (X, d) be a cone metric space. A mapping 7' : X — X is said
sequentially convergent if we have, for every sequence {y,}, if {T'y,} is convergent

then {y,} is also convergent.

Definition 3.2.9. Let (X, d) be a cone metric space. A mapping 7': X — X is said



36

subsequentially convergent if we have, for every sequence {y,}, if {T'y,} is convergent

then {y,} has a convergent subsequence.

Proposition 3.2.1. If (X,d) be a compact cone metric space, then every function
T : X — X is subsequentially convergent and every continuous function T : X — X

15 sequentially convergent.

3.3 Fixed Point Theorems in Cone Metric Space

Theorem 3.3.1. Let T, S be a one-to-one, continuous and subsequentially conver-
gent self map on a complete cone metric space (X,d). Then for every T-contractive
continuous map S has a unique fived point. Also if T is sequentially convergent, then

for each xy € X, the sequence of iterates {S™xo} converges to this fized point.

Proof. Let x1,29 € X,

d(Tzy,Txs) < d(Txy,TSx1) + d(TSx1, TS25) + d(T So, T'5)

< d(Txy,TSxy) + kd(Txy, Txs) + d(TSwa, Tas)

SO

1
d(T[Eh TIQ) S m[d(T[Eh TSJ]l) + d(TSJ]Q, TZEQ)] (331)
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On selecting xg € X and defining the iterative sequence {x,} by z,.1 = Sz, (equiv-

alently, z,, = S"x¢), n =1,2,3,.... By (3.3.1) for any indices m,n € N,

d(Txy,, Txy) = d(TS"xy, TS™x0)

< (TS 0, TS" o) + d(TS™ g, TS™20)]

1
S m[lﬂnd(TiCo, TS(E()) + kmd(TS.’L'o, Tﬂ?o)]

hence
k™ + k™

d(TS"xy, TS™ <
(Sl’o,Sl’o)_ 1—k’

Above inequality (3.3.2) and condition 0 < k < 1 show that {T'S"z¢} is a Cauchy

sequence and since X is complete there exists a € X such that

lim TS"xy = a (3.3.3)

n—0o0

Since T is subsequentially convergent {S™zo} has a convergent subsequence. So, there

exist b € X and {ny}>, such that

lim S™xq =05
n—oo

hence

lim T'S™xy =Tb

n—o0

and by (3.3.3), we conclude that

Th=a (3.3.4)

Since S is continuous and lim S™ x5 = b then lim S™+1xy, = Sb and so
0 0
n—oo n—oo
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lim TS™+1xq = TSb.

n—oo
Again by (3.3.3), lim T'S™+'zy = a and therefore T'Sb = a. Since T' is one-to-one
n—oQ
and by (3.3.4), Sb = b. Therefore b is a fixed point of S.

Since T is one-to-one and S is T-contraction, S has a unique fixed point. O

Corollary 3.3.1. Let (X,d) be a complete cone metric space and S : X — X be a
contractive mapping. Then S has a unique fixed point in X, and for each xy € X the

sequence of iterates {S™xo} converges to this fixed point.

Proof. In the above theorem (3.3.1) on taking Tx = x (T as identity function), we

can conclude the proof of corollary. O]

Theorem 3.3.2. Let (X, d) be a compact cone metric space and T : X — X be a one-
to-one and continuous mapping. Then for every T-contractive mapping S : X — X,
S has a unique fized point. Also for any xy € X the sequence of iterates {S"xq}

converges to this fixed point.

Proof. To prove above theorem first we will show that S is continuous.

Let lim z, = x.
n—oo

Since S is T-contractive
d(TSxz,, TSz) < d(Tx,, Tx)

and due to continuity of T" this shows that
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lim T'Sx,, =TSz

n—oo
Let {Sz,, } be an arbitrary convergent subsequence of {Sz,}.

There exists a y € X such that

lim Sz, =v.
n—oo

Again by the continuity of T,

lim T'Sx,, =Ty.

n—o0

lim TSz, =TSz,

n—oo
we conclude that T'Sz = T'y. Since T' is one-to-one so Sx = y.

Hence, every convergent subsequence of {Sx,} converges to Sz.

Now since X is a compact cone metric space and S, T and continuous map. The the

map
0 : X —[0,400)
defined by
ply) = d(T'Sy, Ty)

is continuous on X and hence by compactness of X it attains its minimum, say at

r e X. If Sz # x then

©(Sz) = d(TS?z,TSx) < d(TSx, Tx)
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which is a contradiction, so St = .

Now let xy € X and set a,, = d(T'S™zy, T'z). Since
Uni1 = d(TS"ay, Ta) = d(TSS"xg, TSx) < d(TS w0, T2) = ay
then {a,} is a non-increasing sequence of nonnegative real numbers and so has a

limit, say a.

By compactness, {T'S"x¢} has a convergent subsequence {T'S™x}, say

lim TS™xy = z, for z € X. (3.3.5)

n—o0

Since T is sequentially convergent then for w € X we have

lim TS™xy = w (3.3.6)

n—oQ

By (3.3.5) and (3.3.6), Tw = z. So d(Tw,Tz) = a.

Now we show that Sw = z. If Sw # z, then

a= lim d(TS"zy, Tx) = lim d(T'S™zo, Tx)
n—oo n—ro0
= d(TSw,Tx)
= d(TSw,TSx)

<d(Tw,Tx) =a

that is contradiction. So Sw = z and hence,

lim d(TS™+1xy, Tx) = d(T'Sw, Tx) =0

n—oo



41

Therefore, lim d(T'S™xy, Tx) = Tx.

n—oo

Since T' is sequentially convergent (by Proposition 3.2.1), then lim d(S"xq, Tx) =

n—oo

x. O

Corollary 3.3.2. Let (X,d) be a compact cone metric space and S : X — X be a
contractive mapping. Then S has a unique fixed point in X, and for any xo € X the

sequence of iterates {S™xo} converges to this fixed point.

Proof. Proofis obvious from the above if we take T as identity functioni.e Tx = z. [

In 1986, Gerald Jungck [86] have introduced definition of compatible maps on metric

space (X,d). Now to introduce our next result, we are extending the concept of

compatible maps to cone metric space.

Definition 3.3.1. Let (X, d) be a cone metric space, the self maps S and T on X,

is said to be compatible iff

lim d(T'Sz,, STx,) =0,

n—oo

whenever {z,} is a sequence in X such that

lim Sz, = lim Tz, =t,
n—oo n—oo

for some t € X.
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Now to derive our next result (3.3.3), we need to extend the proposition [86] to the

cone metric space.

Proposition 3.3.1. Let S and T be compatible self maps on a cone metric space

(X,d).

(1) If St = Tt, then STt = TSt.

(2) Suppose that lim Tx, = lim Sz, =t, for somet € X and z, € X.
n—o0 n—oo

(a) If S is continuous at t, lim TSz, = St.

n—o0

(b) If S and T are continuous at t, then St =Tt and STt = T'St.

Theorem 3.3.3. Let S, T,U be three self maps on a cone metric space (X,d) satis-

fying following conditions:

(1) d(Tx,Uy) < ad(Tx, Sx)+axd(Uy, Sy)+asd(Tz, Sy)+asd(Uy, Sx)+asd(Sz, Sy),

for x,y € X, where each a; > 0 and max{ay + a4, a3 + ay +as} < 1,
(2) S is continuous
(3) (S,T) and (S,U) are compatible pairs, and

(4) There exist a sequence {x,} in X which is asymptotically T-reqular as well as

U -regular with respect to S.

Then S, T, and U have a unique common fixed point.
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Proof.

d(Szp, Szp) < d(Sx,, Tx,) + d(Tx,, Uxy,) + d(Uxy,, St,y,)
< d(Sz,, Tr,) + ad(Txy,, Sx,) + asd(Uzy,, Sty) + asd(Tx,, Sx,y,)

+ ayd(Uzp, Sy,) + asd(Sxy, Sxp) + AUy, Stpy)

Therefore

1+&1+CL3
1—&3—&4—@5

(S, Sam) < ( ) d(Sz,, Tx,)

1
( ot ) AUz, Sxp,)
1—as— a4 — as
This shows that {Sz,} is a Cauchy sequence.
Put lim Sz, =z, z € X.

n—0o0

Then it follows from (3) that lim Tz, = z and lim Uz, = z.

n—o0 n—oo

Also by (2), we find that Sz, — 2, Tx,, — 2, S?z,, — Sz, ST, — Sz and SUx, — z.
Now by proposition (3.3.1) T'Sx,, — Sz, since {S, T} is a compatible pair. Similarly,

we conclude that SUx,, — Sz and USx, — Sz.

d(Sz,Uz) <d(Sz,TSx,) +d(TSz,,Uz)
< d(Sz,TSx,) + aid(TSz,, S*z,) + axd(Uz, Sz)

+ a3d(T Sz, Sz) + ayd(Uz, S?x,) + asd(S*z,, Sz)
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We know that S?z,, — Sz and T'Sz,, — Sz as n — oo,

d(Sz,Uz) <d(Sz,Sz) + a1d(Sz,Sz) + a2d(Uz, Sz)
+ a3d(Sz,S2) + ayd(Uz, Sz) + asd(Sz, Sz)
< (ag+ a4)d(Uz, Sz)
So Sz =Uxz.

Similarly we can show that Sz = Tz. Hence Sz =Tz = Uz.

Now consider

d(Tx,,Uz) < a1d(Szxp, Txy,) + ad(Sz,Uz) + azd(Sz, Tz,,)

+ a4d(Sxy,, Uz) + asd(Sz,, Sz)

On letting n — oo, we get
d(z,Uz) < (ag + a4 + as)d(z,Uz)

giving there by z = Uz. Thus z is a common fixed point of U and Sz =Tz = Uz
implies that z is common fixed point for S and 7.

In order to prove the uniqueness of common fixed point, let z; and z; be any two
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distinct common fixed point of S, 7" and U.

d(zl, 22) = d(TZl, UZQ)
S ald(Tzl, 521> + a2d(UZQ7 SZQ) + CL3d<TZl, SZQ)
+ Cl4d(UZQ, SZl) + CL5d<SZl, SZQ)

= (ag -+ Qy + a5)d(21, 22)

Which implies z; = z5. This completes the proof. n

3.4 Conclusions

In this chapter some fixed point theorems in cone metric spaces have been derived

for:

e T-contraction

e Compatible maps

e Asymptotically regular maps



Chapter 4

Some Fixed Point Theorems in

G-Metric Space

In this chapter the well known notion of a cyclic contraction for a finite family of

non-empty subsets has been extended for G-metric space X.

4.1 Introduction

Throughout this chapter N denotes the set of natural numbers and ® the class of the

functions ¢ : [0,1) — [0, 1) satisfying:
(a) ¢ is continuous and monotone nondecreasing,

46
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(b) @(t) =0, t = 0.

The function ¢ € ® is also known as altering distance function (c.f. [101]).
Herein this chapter derived results are the generalization of recent fixed point theo-

rems of [97], [106], [118].

4.2 Cyclic Contraction

Kirk et al. [106] introduced the following notion of cyclic mappings and obtained a

fixed point theorem (see Theorem 4.2.1 below).

Definition 4.2.1. Let Ay, Ay, ..., A, be nonempty subsets of a metric space (X, d).

p P
A mapping T : |J A; — |J A4, is called a cyclic mapping (or p-cyclic mapping) if
i=1 i=1

T(A;) C Ay, where Apy = Ay for 1=1,2,...,p.

Theorem 4.2.1. Let Ay, As, ..., A, be nonempty closed subsets of a complete metric

p P
space and T : |J A; — U A; cyclic mapping. Assume that there exists k € (0,1) such
i=1 =1

1=

that
d(Tz,Ty) < kd(z,y) for all x € A; and y € A;41.

Then T has a unique fixed point.
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We refer to [12, 53, 63, 96-99, 106, 120, 178] and references thereof for a detailed
study of cyclic mappings.

Recently, Karapinar et.al. [97] (see also [96]) combined the ideas of (¢, ¢)- weakly
contractions, and cyclic contractions and introduced the notion of cyclic weak (1, ¢)-
contraction as follows:

Definition 4.2.2. Let Ay, As, ... A, be nonempty subsets of a metric space (X, d) such
that X = '01 {A;}. Amapping T : X — X issaid to be cyclic weak (1), p)-contraction
if
p
1. X = z'L=J1 {4;} is a cyclic representation of X with respect to T,

2. Y(d(Tx, Ty)) < Y(d(z,y)) — ¢(d(x,y)) for all z € A; and y € A;1q,

where 1, o € ® and A, C A;.

Following theorem is the main result in [97].

Theorem 4.2.2. Let (X,d) be a metric space and Ay, As, ..., A, nonempty closed
P

subsets of X such that X = |J{A;}. Let T : X — X be a cyclic weak (¢, )-
i=1

p
contraction. Then T has a unique fized point z € [ A;.
i=1

Before spreading the above theorems in a G-metric space, Let us recall some defi-

nitions, propositions and properties of G-metric spaces given by Mustafa and Sims
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119).

4.3 (G-metric space

Definition 4.3.1. Let X be a nonempty set, and let G : X x X x X — R* be a

function satisfying the following axioms:

(G1) G(x,y,2) =0if x =y =z,

(G2) 0 < G(z,x,y) for all x,y € X with x # y,

(G3) G(x,z,y) < G(z,y,2) for all z,y,z € X with z # y,

(G4) G(z,y,2) =G(z,2,y) = G(y,z,x) = ..., symmetry in all three variables and
(G5) G(z,y,2) < G(z,a,a) + G(a,y,z2) for all x,y,2,a € X.

Then the function G is called a generalized metric, or, more specifically, a G-metric

on X, and the pair (X, G) is called a G-metric space.

Definition 4.3.2. Let (X, G) be a G-metric space, and let {x,} a sequence of points

in X, a point z in X is said to be the limit of the sequence {z,} if

lim G(z,xpn,z,) =0.
m,n—0

Then we can says that sequence {z,} is G-convergent to x.
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Proposition 4.3.1. Let (X, G) be a G-metric space. Then the following are equiva-

lent:

(1) {zn} is G-convergent to x,

(il) G(zp,zp, ) — 0 as n — oo,

(iii) G(zp,x,2) =0 as n — oo,

(iv) G(zm,zn, ) =0 as m,n — oo.

Definition 4.3.3. Let (X,G) be a G-metric space. A sequence {x,} is called

G-Cauchy if, for each € > 0, there exist a positive integer N such that

G(Tpm, Tn, 1)) < €,

for all n,m,l > N.

Proposition 4.3.2. Let (X, G) be a G-metric space. Then the function G(z,y, z) is

jointly continuous in all three of its variables.

Definition 4.3.4. A G-metric space (X, () is said to be G-complete if every G-Cauchy

Sequence in (X, G) is G-convergent in X.

Proposition 4.3.3. Let (X,G) be a G-metric space. Then for x,y,z € X it follows

that:

(1) IfG(z,y,2z) =0 thenx =y = z,
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(i) G(z,y,2) < G(z,z,y) + G(z,x, 2),

(iii) G(z,y,y) <2G(y, =, x),

(iv) G(z,y,2) < G(z,a,z) + G(a,y, 2),

(v) G(z,y,2) < 2(G(z,y,a) + G(z,a,2) + G(a,y, 2)),

(vi) G(z,y,2) < (G(z,a,a) + G(y,a,a) + G(z,a,a)).

4.4 Fixed Point Results

First we extend the Definition 4.2.1 to G-metric space.

Definition 4.4.1. Let A;, Ay, ..., A, be nonempty subsets of a G-metric space (X, G).

p p
A mapping T : | J A; — |J A; is called a cyclic mapping on G-metric space, if
i=1 i=1

T(A;) C Aipq, where Apy = Ay for 1=1,2,...,p.

Now we extend the Theorem 4.2.1 on G-metric space.

Theorem 4.4.1. Let A, Ay, ..., A, be nonempty closed subsets of a G-complete G-
P P

metric space (X, G), at least one of which is compact and suppose T : |J A; — | A;
i=1 i=1

18 a cyclic mapping, such that

G(Tx, Tz, Ty) < kG(x,x,y) for all z € A;, y € Aj11 and k € (0,1).
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Then T has a unique fixed point.

Proof. Let A is compact and
d=dist(A1, A,) = inf{G(z,z,y) x € A1,y € A,}.
Now by compactness of A; there exists xy € A; and a sequence {u, } € A, such that

lim G (g, g, u,) = d.
n—oo

Since d > 0, then
G(Tp“xO,Tpon,TpHun) < ... < G(Txo, T, Tu,) < G(0, 0, Up). (4.4.1)

Since the sequence {T{p“}(un)}zo: C A; and A; is compact, this sequence has a

1
subsequence that converges to some z € A;.

Now by (4.4.1) and continuity of the distance function it must be the case that

G(z, 2, TP ay) < d

However this implies

G(TP 2, TP 2, T?x) < d.

Since 7?12 € A, and T?x, € A; we have a contradiction. We conclude therefore
that d = 0 and A; N A, # ¢. Thus A; N Ay # ¢.
We now consider the sets A} = Ay N Ay, Ay = Ao N A;, A = ApN Ay In view of

theorem these sets are all nonempty (and closed) and A} is compact. Thus conditions
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of the theorem hold for 7" and the family {A;}’_,, and by repeating the argument

just given we conclude

ATNA# ¢

This in turn implies A; N Ay N A3 # ¢. Continuing step-by-step we conclude

p

A=(4=¢

i=1
Since A is compact and the restriction of T' to A is contractive, we conclude that T’
has a unique fixed point in A. Uniqueness follows from the fact that any fixed point
of T necessarily lies in A. O

To present our next result we need the extension of the definition 4.2.2 to G-metric

space.
Definition 4.4.2. Let Ay, Ay, ...A, be nonempty subsets of a G-metric space (X, G)

p
such that X = |J {A;}. A mapping T': X — X is said to be cyclic weak (v, p)-

=1

contraction if
P
1. X = | {A4;} is a cyclic representation of X with respect to T,
i=1
2. Y(G(Tx, Tx,Ty)) < Y(Gr,z,y) — o(Gx,z,y) for all z € A; and y € A;41.

where 9, € ® and A, C A;.

Following theorem is an extension of Theorem 4.2.2 to G-metric space.
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Theorem 4.4.2. Let (X, G) be a complete G-metric space and Ay, As, ..., A, nonempty
P
closed subsets of X such that X = |J {A;}. Let T : X — X be a cyclic weak (¢, p)-
i=1
p
contraction. Then T' has a unique fized point z € [ A;.

i=1

Proof. Take xq € X and consider the sequence given by
Tpo1=Tx,, n=20,1,2, ..

If there exists nyg € N such that z,,41 = x,, then, since z,,4+1 = Ty, = Tn,,

the part of existence of the fixed point is proved. Suppose that x,.1 # z, for any
p

n =0,1,2,.... Then, since X = |J A;, for any n > 0 there exists i, € {1,2,...,m}
=1

]

such that x,_; € A;, and x,, € A Since T is a cyclic (¢, p)-contraction, we have

In41°

V(G (T, Tpy Tpt1)) = V(G(Txy—1, Tap_ 1, Txy)).

S Q/J(G(fn—l, Tn—1, xn)) - @(G(xn—b Tp-1, xn)) S @D(G(Z’n_l, Tn-1, :En)) (442)
From (4.4.2) and on taking into account that ¢ is nondecreasing we obtain
G(Tp, Tn,Tpi1) < G(Tp_1,Tn_1,2,) for anyn =12 ...

Thus {G(xy,Zn, Tni1)} is a nondecreasing sequence of nonnegative real numbers.
Consequently, there exists A > 0 such that lim G(x,,2,,z,+1) = \. Taking n — oo

n—oo

in (4.4.2) and using the continuity of ¢ and ¢, we have

P(A) S PA) — (),
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and, therefore, ¢)(\) = 0. Since ¢y € F'; A = 0, that is,

lim G(zp, Tn, Tpy1) = 0. (4.4.3)

n—o0

In the sequel, we will prove that {z,} is a G-Cauchy sequence.

Let
G(zp, Tp, ) < % (4.4.4)
Since lim G(zp, 2, Tpe1) = 0 we also find n; € N such that
n—o0
G(Tn, Tny Tng1) < % (4.4.5)

for any n > n;.
Suppose that a,b > max{ng,n;} and s > r. Then there exists j € {1,2,...,m} such

that b — a = j. Therefore, b —a+k =1 for k =m — j 4+ 1. So, we have,
G(xq, Tq, 1) < G(Ta, Ta, Toik) + G (Tashs Taths Tork—1)+ oo+ G (Tpp1, Top1, Tp). (4.4.6)

Now By (4.4.4), (4.4.5) and (4.4.6), we get

€ € € €
< -4 k— <= — = €. 4.4.
G(xg, e, 1p) < 5 + 5 = 3 +m2m € (4.4.7)

This proves that {z,} is a G-Cauchy sequence. Since X is a complete metric space,
there exists ¢ € X such that lim z, = z.
n—oo

No we will show that x is a fixed point of T'. Since X is a cyclic representation with

respect to T, then the sequence {x,} has infinite terms in each A; for i € {1,2,...,m}.
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Let x € A;, Tx € A;41 and we take a subsequence {z,, } of {z,} with z,, € A1,
then by the use of contractive condition, we can obtain,

w(G($nk+1’ Tnggrs T:L’)) = w<G(T‘Tﬂk ) Txnk’ Tl‘)),

< (G (T Ty, 7)) = PG, T 1)) S V(G T 7))e (448)
and since x,, — x and ¢ and ¥ belong to T', letting kK — oo in the (4.4.8), we have

¢(G($,I,T$)) < @/)(G(J},ZE,I)) = 1/}<0) =0,

or, equivalently, ¥(G(x,z,Tx)) = 0. Therefore x is a fixed point of T.
Finally, to prove the uniqueness of the fixed point, we have y,z € X with y and z
as fixed points of T'. The cyclic character of T and the fact that y,z € X are fixed

m
points of T, imply that y, 2 € (] A;. Using the contractive condition we obtain
i=1

WGy, y,2)) <U(G(Ty, Ty, Tx)),

<Y(Gy,y,2) —e(Gy,y,2) <U(G(Y,y,2)), (4.4.9)

hence ¥(G(y,y,z)) = 0 thus G(y,y, z) = 0 and consequently y = z. This prove the

uniqueness of the fixed point. ]

Now to extend the theorem Theorem 2.3 [118] as our next result we need the following

definition in G-metric space.

Definition 4.4.3. Let A;, A, ..., A, be nonempty subsets of a G-metric space (X, G).
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P P
A cyclic mapping T : | A; — |J A; will be called a generalized cyclic weak (1, ¢)-
i=1 i=1

contraction if
V(G(T2, Te, Ty)) < p(M(z,2,y)) — p(M(z,2,y)) (4.4.10)

for all z € A; and y € A4y, where ¢, 9o € &, A,\y = A and M(x,z,y) =

max {G(z,z,y),G(z,z,Tx), G(y,y, Ty), G(x’x’Ty);G(y’y’Tx) }.

Theorem 4.4.3. Let Ay, As, ..., A, be nonempty closed subsets of a complete G-metric
P p
space (X, G) and T : |J A; — |J A; be a generalized cyclic weak mapping on X. Then
i=1 i=1
P
T has a unique fized point z € (] A;.
i=1

Proof. Suppose for some i € {1,2,...,p} there exists an x € A; satisfying (4.4.10).

Since for any n € N, either n or n + 1 is even, we have

V(G(T" "z, T"x, T" ) < (M(T" 1o, T" o, T"z)) —
O(M(T™ o, T" 1o, T"x)). (4.4.11)

< (M(T" o, T" 'z, T ).
Since 1 is nondecreasing, we have

G(T"z, Tz, T"'z) < max{G(T" 'z, T" ‘o, T"x), G(T" 'z, T" 'z, T"z),

G(T" e, T e, T r) + G(T" i, T, T”Ha:)}
2

<GT" o, T 2, T"x),

G(T"x, Tz, T" '),
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for n € N. Thus G(T"x, "z, T""'z) is a decreasing sequence of nonnegative real

numbers. If lim G(T"x, T"z, T""'z) = r for some r > 0. Making n — oo in (4.4.11)

n—o0

and using the continuity of ¢ and ¢, we have

Y(r) <P(r) —p(r) < P(r),
which is a contradiction. Hence

lim G(T"x, T"z, T"x) = 0

n—oo

Now we show that {T"z} is a G-Cauchy sequence.
Suppose {T"x} is not G-Cauchy, then there exists 1 > 0 and increasing sequences

{my} and {n;} of positive integers such that for all n < my < ny,

G(T™ x, T™x, T™x) > 1

and

G(T™x, T, T 1x) < p.
By the triangle inequality,
G(T™x, Tz, T ) < G(T™x, T™x, T tx) + G(T™ 'z, T™ 1oz, T ).

It follows that

G(T™*x, T™x, T™x) = p.
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Now by (4.4.10), we have
G(G(T™ o, T, T ) = (G(TT ™, TT™ a, TT 1))
< YUM(T™ 2, T, T ) — (M(T™* 2, T 2, T )
< G((M(T™ a, Tz, T™))).
making k — o0,

Y(p) < P(p) — p(p) < P(p),

is a contradiction unless p = 0.
But if 4 = 0 then it contradicts our assumption that p > 0, therefore {T"x} is

p
G-Cauchy. Since X is G-complete there exists a point z € (| A; such that {T"x}
i=1

converges to z. Now for some i € {1,2,...,p} there exists sequences {T?"z} and
{T* 'z} in A; and A, respectively, with A,.; = A;, both converging to z.
Using (4.4.10), we get
V(G(T* 2, T*"2,Tz2)) = Y(G(TT* to, TT*" 2, Tz)) =
< p(M(T* o, T* g, 2)) — o(M(T*" 1o, T*" 12, 2)).
< p(M(T* o, T* 'z, 2)).

Making n — oo, we get

W(G(z,2,T2)) < Y(G(2,2,2)) = 9(0) =0,
and ¢¥(G(z,2,Tz)) = 0. This implies G(z,2,Tz) =0 and z = T'z.

Uniqueness of the fixed point is oblivious. n
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4.5 Conclusion

In this chapter we have extended the existing fixed point theorems of complete metric
space to complete G-metric space for the maps satisfying the following contractive

conditions:

e Cyclic Contraction

e Weak (9, p)-Contraction



Chapter 5

Application of Fixed Point Theory

in solving Nonlinear Equations

The intent of this chapter is to study some renowned iterative methods and to do a
comparative study for their convergence in 1D, 2D and 3D.

5.1 Introduction

Various generalizations of fixed point theorems in several other spaces such as prob-
abilistic metric spaces, fuzzy metric spaces, uniform spaces, b-metric spaces etc have

been studied. However in numerical praxis, the theory of approximate fixed points

61
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is more appropriate for actual applications and approximating a fixed-point solution
(see [5], [37], [80], [126], [136] and [137]). Several researchers ([8], [21], [52], [155],
[201], [202] etc.) have studied the convergence of the well known Ishikawa iteration,
Jungck iteration, Mann iteration, Picard iteration etc. and drawn numerous results
in their comparative analysis. Our work presents a stimulating result that is entirely
different from the results which were declared previously in this field. We have un-
dergone a comparative analysis among Picard, Mann, and Ishikawa iteration by using

Matlab programming.

5.2 Method and Tools

When we use the same formula repeatedly to achieve and aim and that too using
the result of the previous step in the following step that method is called an iterative
method. Joseph Liouville [111] was the first to introduce the method of successive
approximation in 1837 in connection with the study of linear differential equations of
second order. It was later extended by J. Caque in 1864, L. Fuchs in 1870 and G.

Peano in 1888 to the study of linear equations of order n.
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To encompass nonlinear differential equations as well Charles Emile Picard [131]
extended this method. This process is referred by mathematicians as the Picard
iterations or function iterations. In linear and nonlinear analysis, computational
analysis and several other areas of applied mathematics this method play an important
role. Several extensions and generalizations of this method have been witnessed by
the previous century.

An important role in fixed point theory to solve equations is played by iterative
procedures. Speed plays a vital role in computations, it is of interest to know which
iterative procedures converge faster to the desired solution.

The most prominent iterations that have maintained their magnificent presence in

nonlinear analysis are as follows:

(a) Picard Iterations

(b) Mann Iterations

(c) Ishikawa iterations and

This chapter offers an experimental analysis of (a), (b) and (c¢) to find the roots of

cubic equation.
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5.2.1 Picard iterative procedure

Let X be a space and T a self-map of X. Then the Picard iteration can applied on

Tx = x with an initial choice xg, and a sequence {x,} is generated by
Tpi1 =Txn, n=0,1,2, ... (5.2.1)

If the sequence {z,} converges to some point z (say), then in many cases it turns out

to be a solution.

5.2.2 Mann iterative procedure

It was first considered by W. R. Mann [114].

Let A be a lower triangular matrix with nonnegative entries. Define

Zni1 = T(v,), where v, = g ke 2k -

Let {a,} be a sequence of nonnegative numbers such that
(M1) o =1,

(M2) 0 <, <1forn >0, and

(M3) > ay, = o0.

Then the entries of A become ay,, = oy, an, = ;. [[(1 —a;), k < n.
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The above representation for A leads to the following form:

Zni1 = (1 — ap)zn + a,, Tz, (5.2.2)

Notice that for a,, = 1, this reduces to the Picard iterative process. Mann in [114]
showed that, if T is a continuous self-map of a closed interval [a, b] with at most one
fixed point, then his iteration scheme with a,, = —— converges to the fixed point of

(n+1)

T.

5.2.3 Ishikawa iterative procedure

If E is a convex compact subset of a Hilbert space H, T is a Lipschitzian pseudo-
contractive map from E into itself and x; is any point in F, then the sequence {z,}
converges strongly to a fixed point of T, where z,, is defined iteratively for each

positive integer n by

T = (1 — ap)xn, + @, T8, Tx, + (1 — Bn)x,] (5.2.3)

Where {a,} and {3,} are sequences of positive numbers that satisfy the following

three conditions:
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(I1) 0<a, <3, <1
(I2) limn — ocof, =0
(I3) 2 anfy = .
Let o, = s and 3, = s’ then the Ishikawa iteration can be written as

v = (1—8)x,+Tx,

z, = (1=38)x,+ sTy,,n>0

Iteration is the repetition of a process integrally over and over again. We begin with
a seed for the iteration to iterate a function. This is a (real or complex) number z.
Applying the function to xg yields the new number, ¢, say. Usually the iteration
proceeds using the result of the previous computation as the input for the next. A

sequence of numbers xg, T, X2, is then generated.

5.3 Comparative study of iteration methods

Here for our comparative analysis we have taken s, s’ € (0,1) and have derived fixed

points iteration for the solution of cubic polynomial. In this section we have studied
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the comparisons on various iterative methods to find out the roots of following cubic
equation

az® + 02> +cz+d=0 (5.3.1)

ol

which can be represented as a functions f(z) = [—1(bz? 4 cz +d)]®.

Let the initial values are 2 =0,a=9,b=4, c= —7 and d = —3.

Table 5.1: Picard iteration for cubic polynomial

f(2)
0.70000
0.87066
0.87660
0.87660
0.87660
0.87660
0.87660
0.87660
0.87660
0.87660
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Here we observe that the value of f(z) converges to a fixed point after 3" iterations.



Table 5.2: Mann Iteration for cubic polynomial

f(2)

s=10.3

s=04

s=20.5

s=10.6

s=0.7

s=0.8

s=09

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.20801

0.27734

0.34668

0.41602

0.48535

0.55469

0.62403

0.37983

0.48700

0.58289

0.66677

0.73801

0.79603

0.84026

0.51383

0.63083

0.72136

0.78761

0.83248

0.85952

0.87276

0.61489

0.72448

0.79670

0.84012

0.86312

0.87315

0.87622

0.68943

0.78357

0.83606

0.86187

0.87254

0.87591

0.87656

0.74358

0.82014

0.85618

0.87069

0.87538

0.87646

0.87660

0.78248

0.84249

0.86636

0.87424

0.87624

0.87658

0.87660

OO0 [ N[ [ W (N |~

0.81022

0.85606

0.87147

0.87566

0.87649

0.87660

0.87660

—_
ja=)

0.82989

0.86425

0.87404

0.87622

0.87657

0.87660

0.87660

—_
—

0.84379

0.86918

0.87532

0.87645

0.87659

0.87660

0.87660

—_
[\

0.85358

0.87215

0.87596

0.87654

0.87660

0.87660

0.87660

—_
w

0.86046

0.87393

0.87628

0.87658

0.87660

0.87660

0.87660

—_
=~

0.86529

0.87500

0.87644

0.87659

0.87660

0.87660

0.87660

—_
ot

0.86868

0.87564

0.87652

0.87660

0.87660

0.87660

0.87660

—_
D

0.87105

0.87603

0.87656

0.87660

0.87660

0.87660

0.87660

—_
BN |

0.87272

0.87626

0.87658

0.87660

0.87660

0.87660

0.87660

—_
0¢)

0.87388

0.87640

0.87659

0.87660

0.87660

0.87660

0.87660

—_
Ne}

0.87470

0.87648

0.87660

0.87660

0.87660

0.87660

0.87660

DO
]

0.87527

0.87653

0.87660

0.87660

0.87660

0.87660

0.87660

[\
—

0.87567

0.87656

0.87660

0.87660

0.87660

0.87660

0.87660

[\
[\

0.87595

0.87658

0.87660

0.87660

0.87660

0.87660

0.87660

[\
w

0.87615

0.87659

0.87660

0.87660

0.87660

0.87660

0.87660

[\)
I

0.87628

0.87659

0.87660

0.87660

0.87660

0.87660

0.87660

Continued on next page
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Table 5.2 — Mann Iteration for Cubic polynomial

f(2)

s=0.3

s=04

s=0.5

s=0.6

s=0.7

s=0.8

s=0.9

25

0.87638

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

26

0.87645

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

27

0.87649

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

28

0.87653

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

29

0.87655

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

30

0.87657

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

31

0.87658

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

32

0.87658

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

33

0.87659

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

34

0.87659

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

35

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

36

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

37

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

38

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

39

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

40

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660

0.87660
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Here we observe that the value of f(z) converges to the fixed point after very few

iterations if the value of s is near to 1.



Table 5.3: Ishikawa iteration for cubic polynomial

f(z)at s=0.6 and s <1

s =0.3

s =04

s=051]s=06

s'=0.7

s =0.8

s'=0.9

0.00000

0.00000

0.00000 | 0.00000

0.00000

0.00000

0.00000

0.55164

0.59183

0.63013 | 0.66677

0.70192

0.73569

0.76818

0.77683

0.80215

0.82308 | 0.84012

0.85366

0.86403

0.87146

0.84790

0.85835

0.86572 | 0.87069

0.87382

0.87559

0.87640

0.86851

0.87220

0.87442 | 0.87566

0.87627

0.87652

0.87659

0.87433

0.87555

0.87617 | 0.87645

0.87656

0.87660

0.87660

0.87597

0.87635

0.87652 | 0.87658

0.87660

0.87660

0.87660

0.87643

0.87654

0.87659 | 0.87660

0.87660

0.87660

0.87660

O |0 | | (O |W | N |+

0.87655

0.87659

0.87660 | 0.87660

0.87660

0.87660

0.87660

—
e}

0.87659

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—_
—_

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—_
[\

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—_
w

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—_
=~

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—_
ot

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—
D

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—
J

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—
oo

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

—_
Ne}

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660

DO
=)

0.87660

0.87660

0.87660 | 0.87660

0.87660

0.87660

0.87660
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Here we observe that the value of f(z) converges to a fixed point after 10" iterations,

also it takes less number of iteration for s’ near to 1 at s = 0.6.
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5.4 Fixed Point Iteration in 2D and 3D

Iterative techniques will now be introduced that extend the fixed point for finding a
root of the system of nonlinear equations. We desire to have a method for finding a

solution for the system of nonlinear equations.

fl(xay) =0
(5.4.1)
f2(£>y) =0
and
fl(ZL’,y,Z> =0
folz,y,2) =0 (5.4.2)
f?,(l’,y,2> =0

Each equation in (5.4.1) and (5.4.2) implicitly defines a curve in the plane and we

want to find their points of intersection as fixed point.

Definition 5.4.1. [59] A fixed point in 2D for the system of two equations

Tr = fl ([L’, y)
(5.4.3)

Yy = fg(l’,y)

is a point (a,b) such that a = fi(a,b) and b = fy(a,b).
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Definition 5.4.2. [59] A fixed point in 3D for the system of equations

T = fl(xa:%z)
y = fa(z,y,2) (5.4.4)
z = f3(x,y, 2)

is a point (a,b,c) such that a = fi(a,b,c), b = fa(a,b,c). and ¢ = f3(a,b,c).

Definition 5.4.3. [59] A fixed point iteration in 2D for the system of two equations

can be defined as

Tey1 = J1(Tk, Yi)
(5.4.5)

Yk+1 = fQ(:L‘ka yk)7 for k = O) 17 2.
Such that (xg,y) will be the fixed point for the (5.4.1), similarly (zg, y, 2x) will be

the fixed point in 3D for (5.4.2), if

Tr+1 = fl(mkayka Zk)
Yir1 = fo(Tr, Yrs 2k) (5.4.6)

2kv1 = f3(Tk, Yk, 2x), for k=0,1,2...
Theorem 5.4.1. [59] Assume that all the functions and their first partial derivatives
are continuous on a region that contains the fized point (a,b) or (a,b, c) respectively.
If the starting point for iteration is chosen sufficiently close to the fixed point, then

one of the following cases apply.
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Case 1:  If (xg,yo) is sufficiently close to (a,b) and if

0fi ’3f1

A =1 <m,
T |qpy | 9 l(ap)

0T |(qpy 1 9Y l(ap)

for 0 < m < 1, then fized point iteration will converge to the fized point (a,b).

Case 2:  If (xo, Yo, 20) is sufficiently close to (a,b,c) and if

0 0 0
Ca i
Z (a,b,c) Y (a,b,c) Z (a,b,c)

0 0 0

e ons 3o |5
z (a,b,c) Y (a,b,c) z (a,b,c)

8f3 af3 af?)

Ox (a,b,c) ay (a,b,c) Oz

<m

<m

<m
(a7b7c)

for 0 < m < 1, then fixed point iteration will converge to the fized point (a,b,c).

If these conditions are not met, the iteration might diverge, which is usually the case.

5.4.1 Algorithm for Nonlinear Systems in 2D

In two dimensions we solve the nonlinear equation (5.4.1) for fixed point system as
(5.4.3) and provide one initial approximation zy = (x¢,%s) and generate a sequence

{#r} = {(zx, yx)} Which converges to the solution (a,b).
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5.4.2 Algorithm for Nonlinear Systems in 3D

In three dimensions, we solve the nonlinear equation (5.4.2) for fixed point system as
(5.4.4) and provide one initial approximation Ty = (o, %o, 20) and generate a sequence
{%r} = {(zk, yk, 1)} which converges to the solution (a, b, ).

Example 5.4.1. Solve following system of nonlinear equations

it + byt ez +diy+e =0

(5.4.7)
CLQI’2 + b2y2 + Ccox + dgy + €9 = 0
by using fixed point iteration method.
To solve (5.4.7) we’ll consider following two cases:
Case 1: As a first case we choose the constants a1 = —5, by = =2, ¢; =0, d; = 0,

e1=9,a3=1,by = —1,co = —4,dy =0 and ey = 5 in (5.4.7). After replacing the

constants,

—52% =22 +9=0
(5.4.8)
22—y —4r4+5=0

we have converted the above equation as (5.4.5) and found

9z — bz — 2yf + 9
9

Tpy1 = f1(xk7yk) =

—day, +af + Uy, — yp +5
11

Yk+1 = fQ(xkayk) =
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Now to generate the sequence of iterates we use above algorithm 5.5.1 and to initiate

the iteration let us chose o = 1 and yo = 1.5. The sequence of iterates and the values

of x4 and yiy1 are available in the following table.

Table 5.4: Fixed point iteration in 2D for Case 1

n Lk Yk

0 1 1.5

1 1 0.94444 1.47727
2 | 0.96394 1.47108
3 | 0.96682 1.46284
4 1097199 1.45625
5 | 0.97586 1.45045
6 | 0.97929 1.44545
7 10.98221 1.44114
8 | 0.98472 1.43741
9 | 0.98687 1.43420
10 | 0.98871 1.43143
11 { 0.99030 1.42904
12 | 0.99166 1.42698
13 | 0.99283 1.42520
14 | 0.99383 1.42367
15| 0.99470 1.42236
16 | 0.99544 1.42122
17 | 0.99608 1.42025
18 | 0.99663 1.41941
19 1 0.99710 1.41868

Continued on next page




Table 5.4 — Fixed point iteration in 2D

n Ty Yk

20 | 0.99750 1.41806
21 | 0.99785 1.41753
22 1 0.99815 1.41706
23 1 0.99841 1.41667
24 1 0.99863 1.41632
25 | 0.99882 1.41603
26 | 0.99899 1.41578
271 0.99913 1.41556
28 |1 0.99925 1.41537
29 | 0.99936 1.41521
30 | 0.99945 1.41507
31 | 0.99952 1.41495
32 | 0.99959 1.41485
33 | 0.99965 1.41476
34 1 0.99970 1.41468
35 | 0.99974 1.41462
36 | 0.99977 1.41456
37 | 0.99981 1.41451
38 | 0.99983 1.41447
39 | 0.99986 1.41444
40 | 0.99988 1.41440
41 | 0.99989 1.41438
42 1 0.99991 1.41435
43 1 0.99992 1.41434
44 1 0.99993 1.41432

Continued on next page
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Table 5.4 — Fixed point iteration in 2D

n Tk, Yk
45 1 0.99994 1.41430
46 | 0.99995 1.41429
47 1 0.99996 1.41428
48 1 0.99996 1.41427
49 | 0.99997 1.41426
20 | 0.99997 1.41426
51 | 0.99998 1.41425
52 | 0.99998 1.41425
93 | 0.99998 1.41424
54 | 0.99998 1.41424
95 | 0.99999 1.41423
26 | 0.99999 1.41423
27 1 0.99999 1.41423
58 | 0.99999 1.41423
29 | 0.99999 1.41422
60 | 0.99999 1.41422
61 | 0.99999 1.41422
62 | 1.00000 1.41422
63 | 1.00000 1.41422
64 | 1.00000 1.41422
65 | 1.00000 1.41422

Here we observe that the value of (zy,yx) converges to a fixed point after 60
iterations.

Case 2: To consider second case on system of nonlinear equation (5.4.7), we are
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now choosing the constants a; = —4, by = 1, ¢, = 0,d; =0, e; = 1, as = —1,

by = —1, cg =2, dy = 0 and ey, = 3. After replacing the constants,

—Ad?+y*+1=0
(5.4.9)
—2? =+ 20 +3=0

we have converted the above equation as (5.4.5) and found

8ry — 4da? + yi + 1
8

Tpr1 = fr(xg, yk) =

ka—xi—i-élyk—y,%—i-?)
4

Y1 = fa(Tr, y) =

Now to generate the sequence of iterates we use above algorithm 5.5.1 and to start

the iteration let us chose o = 1 and yy = 2. The sequence of iterates and the values

of z;1 and y,; are available in the following table.

Table 5.5: Fixed point iteration in 2D for Case 2

n T Yk
0 1 2
1 1.125 2
2 | 1.117188 1.996094
3 | 1.116182 1.996563
4 | 1.116534 1.996622
5 | 1.116523 1.996602
6 | 1.116514 1.996603
Continued on next page
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Table 5.5 — Fixed point iteration in 2D

n T Yk

7 | 1.116515 1.996603
8 | 1.116515 1.996603
9 | 1.116515 1.996603
10 | 1.116515 1.996603
11 | 1.116515 1.996603
12 1 1.116515 1.996603
13 | 1.116515 1.996603
14 | 1.116515 1.996603
15 ] 1.116515 1.996603
16 | 1.116515 1.996603
17 | 1.116515 1.996603
18 1 1.116515 1.996603
19 | 1.116515 1.996603
20 | 1.116515 1.996603

Here we observe that the value of (2, yx) converges to a fixed point after 6 iterations

only.

Example 5.4.2. Solve the following simultaneous equations
a11‘+bly+012+d1 =0
asx + by + coz +dy =0 (5.4.10)

azx + b3y + c3z +dz3 =0

by using fixed point iteration method.
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To solve (5.4.10) we will consider following two cases:
Case 1: Let us choose a1 =6, b1 =1,¢1 =1, dy = —105, ay = 4, by = 8, ¢5 = 3,
dy = —155, a3 = 5, by = 4, c3 = —10, and d3 = —65 in equation (5.4.10). After

replacing the constants, we have

6z +y+2—105=0
dr + 8y + 32— 155 =10 (5.4.11)

5 + 4y — 10z —65 =10

now to iterate with fixed point method convert the equation as following:

105 — Oﬂi’k — Y — 2k
Tr+1 = 6

155 — 4xy, — Oy — 32
Yk+1 = 3

65 — 5l‘k — 4yk — Ozk
—10

Rk4+1 =

Now to generate the sequence of iterates we use above algorithm 5.5.1 and to start

the iteration let us chose x¢o = 11, yg = 12 and yy = 13. The sequence of iterates and

the values of zj,1, yrs1 and 2,1, are available in the following table.



Table 5.6: Fixed point iteration in 3D for Case 1

n Tk Yk 2k

0 11 12 13

1 | 13.33333 | 9.00000 3.80000
2 | 15.36667 | 11.28333 3.76667
3 | 14.99167 | 10.27917 5.69667
4 | 14.83736 | 9.74292 5.10750
5 | 15.02493 | 10.04101 4.81585
6 | 15.02386 | 10.05659 5.02887
7 | 14.98576 | 9.97725 5.03457
8 | 14.99803 | 9.99416 4.98378
9 | 15.00368 | 10.00707 4.99668
10 | 14.99938 | 9.99941 5.00467
11 | 14.99932 | 9.99856 4.99945
12 | 15.00033 | 10.00055 4.99909
13 | 15.00006 | 10.00018 5.00038
14 1 14.99991 | 9.99983 5.00010
15 | 15.00001 | 10.00001 4.99988
16 | 15.00002 | 10.00004 5.00001
17 1 14.99999 | 9.99999 5.00002
18 | 15.00000 | 9.99999 4.99999
19 | 15.00000 | 10.00000 5.00000
20 | 15.00000 | 10.00000 5.00000
21 | 15.00000 | 10.00000 5.00000
22 | 15.00000 | 10.00000 5.00000
23 | 15.00000 | 10.00000 5.00000
24 | 15.00000 | 10.00000 5.00000

Continued on next page
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Table 5.6 — Fixed point iteration in 3D

n Tk Yk 2k

25 | 15.00000 | 10.00000 5.00000

Here we observe that the value of (zy, yx, z) converges to a fixed point after 17"
iterations only.
Case 2: Now taking a; = 10, by = =2, ¢; = =3, di = =205, ay = 2, by = —10,
o = 2,dy =154, a3 = 2, b3 = 1, ¢ = —10, and d3 = 120 in equation (5.4.10) as

second case. After replacing the constants, we have

10z — 2y — 32 —205=0
20 — 10y + 224154 =0 (5.4.12)

22 +y — 10z + 120 = 0

now to iterate with fixed point method converting the equation as following:

Te+1 = 10

2z + Oy + 22, + 154
Yk+1 = 10

Zk+1 = 10

Now to generate the sequence of iterates we use above algorithm 5.5.1 and to start

the iteration let us chose o = 1, yo = 2 and yo = 3. The sequence of iterates and the



values of xp11, yrr1 and 2z, are available in the following table.

Table 5.7: Fixed point iteration in 3D for Case 2

n Tk Yk 2k

0 1 2 3

1 | 21.80000 | 16.20000 12.40000
2 | 27.46000 | 22.24000 17.98000
3 | 30.34200 | 24.48800 19.71600
4 | 31.31240 | 25.41160 20.51720
5 | 31.73748 | 25.76592 20.80364
6 | 31.89428 | 25.90822 20.92409
7 | 31.95887 | 25.96367 20.96968
8 | 31.98364 | 25.98571 20.98814
9 | 31.99358 | 25.99436 20.99530
10 | 31.99746 | 25.99778 20.99815
11 | 31.99900 | 25.99912 20.99927
12 | 31.99961 | 25.99965 20.99971
13 | 31.99984 | 25.99986 20.99989
14 | 31.99994 | 25.99995 20.99996
15 | 31.99998 | 25.99998 20.99998
16 | 31.99999 | 25.99999 20.99999
17 | 32.00000 | 26.00000 21.00000
18 | 32.00000 | 26.00000 21.00000
19 | 32.00000 | 26.00000 21.00000
20 | 32.00000 | 26.00000 21.00000
21 | 32.00000 | 26.00000 21.00000
22 | 32.00000 | 26.00000 21.00000

Continued on next page
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Table 5.7 — Fixed point iteration in 3D

n Tk Yk 2k
23 | 32.00000 | 26.00000 21.00000
24 | 32.00000 | 26.00000 21.00000
25 | 32.00000 | 26.00000 21.00000

Here we observe that the value of (zy, yx, z) converges to a fixed point after 16"

iterations only.

5.5 Conclusions

A comparative analysis among Picard, Mann and Ishikawa iterations has been done.
It was found by using Matlab programming, that Picard’s iteration converges faster
than the rest, followed by Ishikawa’s iteration while Mann iteration converges slowly.
Besides this, it was also observed that as if the value of s and ¢ increases, the
convergence goes on faster for all Maan and Ishikawa iteration. The fixed point
iteration method for solution of system of nonlinear equations in 2D and solution of
simultaneous linear equations in 3D has also been studied. It was proved that the

convergence is faster near to fixed point of the system of equations.



Chapter 6

Approximate Fixed Point Theorem

Fixed point theory has solutions to various problems in applied mathematics. Still,
it has been proved by practice that in many real situations an approximate solution
is more than enough. So there is no strict requirement of the existence of fixed point,
but that of nearly fixed points. Another type of practical situations that lead to this
approximation is when the conditions that have to be imposed in order to guarantee
the existence of fixed points are far too strong for the real problem one has to solve.
Let T be a self map of a metric space (X, d). Let us look for an approximate solution
of the equation Tz = x. If there exists a point z € X such that d(T'z, z) < e, where €

is a positive number, then z is called an approximate solution of the equation Tz = x,

85
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or equivalently, z € X is an approximate fixed point (or e-fixed point) of T'.

6.1 Approximate Fixed Point

The theory of fixed point and consequently of approximate fixed point finds appli-
cation in mathematical economics, noncooperative game theory, dynamic program-
ming, nonlinear analysis, variational calculus, theory of integro-differential equations
and several other areas of applicable analysis (see, for instance, [28], [58], [64], [172],
[184] and several references thereof).

Approximate fixed points by generalizing Brouwer fixed point theorem to a discon-
tinuous map have been found by Cromme and Diener [47]. Hou and Chen [76] have
extended their results to set valued maps. Interesting results in product spaces have
been achieved by Espinola and Kirk [64]. Approximate fixed point theorems for con-
tractive and non-expansive maps by weakening the conditions on the spaces have been
discussed by Tijs et. al. [184]. R. Branzei et al [28] further extended these results

to multifunctions in Banach spaces. Recently M. Berinde [18] obtained approximate
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fixed point theorems for operators satisfying Kannan, Chatterjea and Zamfirescu type
of conditions on metric spaces.

The main intent of this chapter is to establish some approximate fixed point results
in metric spaces under various contractive conditions.

Following definition are essentially due to Tijs et. al. [184].

Definition 6.1.1. Let (X, d) be a metric space and T : X — X. Let € be a positive
number. Then a point z € X is an e-fixed point of T if d(Tz,z) < e. A map
T : X — X is said to have approximate fixed point property if, for each € > 0 , the

map T’ possesses at least one e-fixed point.

Definition 6.1.2. The set of all e-fixed points of T" for a given ¢, is defined as below

F.(T)={z€ X : zisan e — fixed point of T}.

Definition 6.1.3. Let 7' : X — X, then T has the approximate fixed point
property if

Ve > 0,F.(T) # ¢

Definition 6.1.4. Let (X, d) be a metric space, T, S : X — X then S is said to be

T-asymptotic regular if,

d(TS™(2), TS"(2)) =0 as n— o0, Vz€X
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Definition 6.1.5. A self map 7' : X — X on metric space (X,d) is said to be
subsequentially convergent if we have, for every sequence {y,} € X, if {Ty,} is

convergent then {y,} has a convergent subsequence.

In order to prove our results we need following lemma [139].

Lemma 6.1.1. Let (X,d) be a metric space and 7,5 : X — X be two commut-

ing maps. If S is T-asymptotically regular, then S has an approximate fixed point

property.

6.2 Approximate Fixed Point Theorem

In this chapter we have obtained following approximate fixed point theorem:

Theorem 6.2.1. Let (X,d) be a complete metric space and T,S : X — X be
mappings such that T is continuous, one-to-one and subsequentially convergent. If

A€ 0,2) and

2

d(TSx,TSy) < Md(Tz,TSx) + d(Ty,TSy),Vx,y € X, (6.2.1)

then for e > 0 F.(S) # ¢,

i.e. S has approximate fized point property.

Proof. Let xy be any arbitrary point in X. We define the iterative sequence {z,} by

Tpt1 = Sz, (equivalently, z, = S"xg), n = 1,2, .... Now using the inequality (6.2.1),
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we have
d(Txy, Txpi) = d(TSTp—1,TSxy)
< ANd(Tzp-1,TSzn — 1) + d(Tx,, TSz,,)] (6.2.2)
So
A
d(Tl’n, T$n+1) < md(T(’ﬂn,l, Tl’n) (623)

By using the argument repeatedly,

d(Tl‘na Txn—i—l) S %d(Txn—h Tl‘n)

A\ 2
< (m) d(Txn—Qa Tl’n—l)

IN

. < <%)nd(Tx0,Tx1) (6.2.4)

i.e.

d(TSn[E07TSn+IZE0) S (%) d(TC(](),TZL'l) (625)

Since A € |0, %), from the above inequality we get that d(TS"zq, TS"zy) — 0 as
n — oo, for all x € X, which implies that S is T-asymptotically regular. Now by

applying lemma (6.1.1) we obtain that for every € > 0,

F(S) # ¢

which means that S has approximate fixed point property. n
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Theorem 6.2.2. Let X be a complete b-metric space with metricd and letT : X — X

be a function with the following property
d(Tz,Ty) < ad(x,Tx)+ bd(y, Ty) + cd(x,y) (6.2.6)
Va,y € X, where a,b, c are non-negative real numbers and satisfy a+ s(b+c) < 1 for
s > 1 then T has an approximate fixed point property.
Proof. Let g € X and {x,} be a sequence in X, such that
Ty =Tx,_1 =T 10 (6.2.7)
Now
d(Tpi1,xn) = d(Txy, Ta, 1)
< ad(xy, Tx,) 4+ bd(xy_1,Trn_1) + cd(xy, Tp_1)
= ad(xp, Tpi1) + bd(zn_1,2,) + cd(Tp, Tp1)
= (1 —a)d(zps1,7,) < (b+ c)d(xp, xn 1)

— d(zpi1,2,) < ((fj:?)

d(xna xnfl) = pd(xnv xnfl)

Now using (6.2.7)

— d(Tn—&-le’Tan) < (b—l—C)

S a)d(xn, Tp_1) = pd(Tp, Tp_1)

Continuing this process we can easily see that d(T" " xq, T"x) < p"d(zo,x1).

On taking n — oo we get that d(T" 'zg, T"xy) — 0, for all z € X. Using the
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definition 2.3 [132] we can see T is an asymptotically regular map. Now by applying

Lemma (3.1) [132] on T" we obtain that for every ¢ > 0,
F(T) # ¢
which means that T has an approximate fixed point property. O

Theorem 6.2.3. Let (X,d) be a complete b-metric space with constant s > 1. Let

T:X — X be a mapping such that
d(Tz,Ty) < k.d(z,y)
with k € [0,1) and ks < 1. Then T has a approximate fized point property.
Proof. Let xy € X and there exist a sequence {z,} € X such that
Ty =Tx, 1 =T"29, n=17273.. (6.2.8)
Since T' is a contraction with constant k € [0, 1), then we obtain
d(xpi1, ) = d(Txy, Try 1)

< kd(zp, v, 1) =kd(Tx, 1,Tx, 2)

S k2.d($n,1,l’n,2) S S kn.d(lﬂl,xo)

This implies d(Tz,, Txn—1) = d(T™ 2o, T"x0) < =d(x1, 20)
Again if we take n — oo we get that d(T"xy, T"x) — 0, for all z € X. Using the
definition 2.3 [132] we can see T' is an asymptotically regular map. Now by applying

Lemma (3.1) [132] on T" we obtain that for every ¢ > 0,



F(T) # ¢

which means that T" has an approximate fixed point property.
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O

Theorem 6.2.4. Let (X,d) be a complete b-metric space with constant s > 1 and

T:X — X be a mapping such that

d(Tx, Ty) < p.ld(x, Tz) + d(y, Ty)]

(6.2.9)

forall x,y € X and p € [0, l] then T has an approximate fized point property.

2

Proof. Let zp € X and there exist a sequence {z,} € X such that
Tp=Tx, 1=T"x9, n=123..
Now by using (6.2.10) and (6.2.9) we obtain,
d(zp, tpy1) = d(Txp_1,Txy)

< pld(@p—1, Txp_1) + d(x,, Txy,)]

< pd(Tn—1,Ty) + d(xp, Tni1)]

On simplifying we obtain

(2, Tns1) < (L) (1, 2,) = (ﬁ)nd(azo,xl)

I—p
Now,

d(xn, Tngr) = d(T"2o, T ay) < (%) d(zo, 1)
—p

(6.2.10)

(6.2.11)

(6.2.12)
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Since p € [0, 3), from the above inequality (6.2.12) we get that d(T™xo, T"x¢) — 0
as n — 0o, for all z € X, which implies that 7" is asymptotically regular (as per the

definition 2.3 [132]) Now by Lemma (3.1) [132] on T" we obtain that for every & > 0,

Fo(T) # ¢

which conclude that T" has approximate fixed point property. O

6.3 Conclusions

In this chapter we have gone through some existing approximate fixed point theorems
and established some new fixed point theorems for complete metric space and for b-

metric space for the maps satisfying following contractive conditions:

T-Contraction

Banach Contraction

Kannan Contraction

Reich Contraction



Chapter 7

Conclusions and Recommendations

7.1 Main Conclusion from the Present Study

“Fixed Point Theory” is a striking mixture of analysis as well as Topology. Vigorous
research activities have been attracted by the study of fixed point theory. Fixed point
theory is one of the most influential and rewarding tools of modern mathematics and
may be deliberated as a core subject of nonlinear analysis. Excellent monographs
and surveys by eminent authors about fixed point theory have appeared in the recent
years.

An intrinsic property of a map is the presence or absence of a fixed point. However,
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many essential or ample conditions for the existence of such points involve a mixture
of algebraic, order theoretic or topological properties of the mapping or its domain.
Fixed point theorems give the conditions under which mapping have solutions. The
theory of fixed points has been exposed as a very significant tools in the study of
nonlinear phenomena over the last half century or so. Although basic ideas of fixed
point theorems are found in the work of Augustin-Louis Cauchy (1789-1857) (see also
Kirk and Sims [118]).

In 1906, M. Frechet introduced the concept of an abstract metric space. It furnishes
the common idealization of a large number of mathematical, physical and other sci-
entific constructs in which the notion of a ‘distance’ appears. The aim of this work
is to offer an integrated and comprehensive exposition of a metric fixed point theory
and its various beneficial interactions with topological structures.

Metric fixed point theory is an indispensable part of mathematical analysis because
of its applications in different areas like variational and linear inequalities, improve-
ment and approximation theory. In developing the methods to solve the problems in

mathematics and sciences the theory of fixed point in metric spaces plays a vital role.
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The capability of solving numerous equations through metric fixed point is very high.
To overcome the problem of measurable functions w.r.t. a measure and their conver-
gence, Czerwik needs an extension of metric space. Using this idea, he presented a
generalization of the renowned Banachs fixed point theorem in the b-metric spaces.
Our aim is to demonstrate the validity of some important fixed point results into
b-metric spaces. In this regard we have obtained received fixed point results in com-
plete b-metric space which are the extensions of the theorems given by Reich and
Hardy-Rogers.

Huang and Zhang [77] considered such spaces under the name of cone metric spaces,
defined convergence and Cauchy sequence in term of interior points of the underlying
cone. Huang, Zhang and other researchers proved some fixed point and common fixed
point theorems for contractive-type mappings in cone metric spaces and cone uniform

spaces. Some fixed point theorems in cone metric spaces have been derived for:

e ['-contraction

e Compatible maps

e Asymptotically regular maps
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Mustafa and Sims introduced a more appropriate generalization of metric spaces, that
of G-metric spaces this was done to overcome fundamental flaws in Dhage’s theory
[54] of generalized metric spaces . Afterwards, Mustafa et. al. obtained several fixed
point theorems for mappings satisfying different contractive conditions in G-metric

spaces.

e Cyclic Contraction

e Weak (¢, p) Contraction

The applicability of fixed point theorems in computer science has been enhanced by
Tarski [181]. Fixed points are involved in program derivation which influence exten-
sively the construction, reliability, maintenance and extensibility of a software this
was found by Cai and Paige [33]. As an application of fixed point theory in solving
nonlinear equations a comparative analysis among Picard, Mann and Ishikawa iter-
ations has been done. It was found that Picard’s iteration converges faster than the
rest by using Matlab programming followed by Ishikawa’s iteration while Mann iter-
ation converges slowly. Besides this, it was also revealed that as if the value of s and

s’ increases, the convergence goes on faster for all Maan and Ishikawa iteration. We
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have also studied the fixed point iteration method for solution of system of nonlinear

equations in 2D and solution of simultaneous linear equations in 3D. We found that

convergence is faster near to fixed point of the system of equations. The conclusion

was that the fixed point iteration is the most convenient way to have the root of any

equation in 1D, 2D and 3D.

Fixed point theory can solved multiple problems in applied mathematics. Still, prac-

tice proves that in many real situations an approximate solution is more than suffi-

cient, so the existence of fixed points is not strictly required, but that of nearly fixed

points. Another type of practical situations that lead to this approximation is when

the conditions that have to be imposed in order to guarantee the existence of fixed

points are far too strong for the real problem one has to solve. We have studied

some existing approximate fixed point theorems and developed some new fixed point

theorems for complete metric space and for b-metric space for the maps satisfying

following contractive conditions:

e T-Contraction

e Banach Contraction
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e Kannan Contraction

e Reich Contraction

7.2 Recommendations based on present study

In the present study while deriving the fixed point theorems under various contrac-
tive conditions for b-metric space, cone metric space and G-metric space It was found
that the several possibilities of study are there to establish some new fixed point re-
sults concerning approximate fixed points, coincidence point, endpoints, approximate
endpoints and approximate best proximity points of the maps satisfying different con-

tractive conditions.
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