“Crawling web sites & Extracting Structured data using Scrapy

framework”

A
Project Report
submitted in partial fulfillment of the

requirements for the award of the degree of

BACHELOR OF TECHNOLOGY
in
COMPUTER SCIENCE & ENGINEERING

With Specialization in
Cloud Computing and Virtualization Technology

by
Name Roll No.
Karan Veer Singh Udawat R110211019
Prakhar Agrawal R110211024
Prashant R110211026
Sarthak Saxena R110211036

under the guidance of

Mr. M.V. Kamal

UPES

THE NATION BUILDERS UNIVERSITY

Department of Computer Science & Engineering
Centre for Information Technology
University of Petroleum & Energy Studies
Bidholi, Via Prem Nagar, Dehradun, UK
April - 2015

The innovation driven

E-School

COLLEGE
orF ENGINEERING
STUDIES

CANDIDATE’S DECLARATION

We hereby certify that the project work entitled “Crawling web sites & Extracting
Structured data using Scrapy framework” in partial fulfilment of the requirements for the award
of the Degree of BACHELOR OF TECHNOLOGY in COMPUTER SCIENCE AND
ENGINEERING with specialization in Cloud Computing and Virtualization Technology and
submitted to the Department of Computer Science & Engineering at Center for Information
Technology, University of Petroleum & Energy Studies, Dehradun, is an authentic record of our
work carried out during a period from Jan 2015 — March 2015 under the supervision of Mr.

M.V. Kamal, Asst. Professor Selection Grade CIT(UPES).

The matter presented in this project has not been submitted by us for the award of any

other degree of this or any other University.

Karan Veer Singh Udawat R100211019
Prakhar Agrawal R100211024
Prashant R100211026
Sarthak Saxena R110211036

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

Date: 10/04/2015 Mr. M.V. Kamal
Project Guide

Dr. Amit Agarwal

Program Head — B.Tech -Computer Science-CCVT
Center for Information Technology

University of Petroleum & Energy Studies
Dehradun — 248 001 (Uttarakhand)

ACKNOWLEDGEMENT

We wish to express our deep gratitude to our guide Mr. M.V. Kamal, for all advice,

encouragement and constant support he has given us through out our project work. This work

would not have been possible without his support and valuable suggestions.

We sincerely thank to our respected Program Head of the Department, Dr. Amit Agarwal, for his

great support in doing our project in “Crawling web sites & Extracting Structured data using

Scrapy framework” at CIT.

We are also grateful to Dr. Manish Prateek, Associate Dean and Dr. Kamal BansalDeanCoES,

UPES for giving us the necessary facilities to carry out our project work successfully.

We would like to thank all our friends for their help and constructive criticism during our project

work. Finally we have no words to express our sincere gratitude to our parents who have shown

us this world and for every support they have given us.

Name Karan Veer Singh Prakhar Prashant

Udawat Agrawal

Roll No. R110211019 R110211024 R110211026

Sarthak Saxena

R110211036

ABSTRACT

“Web Crawling” refers to an application that processes a Web page or the HTML of a Web
page to extract data for manipulation as converting the Web page to another format for example
HTML to WML. Web Crawling scripts and applications will simulate a person viewing a Web
site with a browser by these scripts you can connect to a website and request a page, just like a
browser would. The web server will send back the page which you can then manipulate or

extract specific information.

A "Web crawler" is a Program that automated searching the World Wide Web and that usually
use for the purpose of Web indexing. A Web crawler also called as a spider, an ant an automatic

indexer or Web scutter.

The project objective is to design and build a Web Crawler tool that is able to track certain
attributes of different websites. In this project we are building a crawler for "imdb website " by

using "Scrapy Framework".

Scrapy is an open source and web crawling collaborative framework for the extraction of data
Doing so requires websites in a fast, simple but extensible way. It is an web crawling framework

for writing program that crawl websites and extract data from them.

S.No.

1.

TABLE OF CONTENTS

Contents Page No
Introduction 1-5
L L HISIO Y . o 1
1.2. Requirement ANalysiS........c.oouiiuietiitiatiitiiieieie e eieeeeaeenaens 2
1.3. Main ObJeCtIVE. .. uvntiiiit it 3
1.4, Sub ObJECtIVE. ..ueeeitit e 4
System Analysis 5-7
2.1, EXISHNG SYSTOML. ... utittiititit e 5
2.2. MOTIVALION. ... e 6
2.3. Proposed SYStem.......uiiuiitiii i 7
Technologies Used 8-12
3L PYINON. 8
B2 HT ML e 9
B3 XML 10
B MY SO .ot 11
B L IML . .t i e 12
3B, OPENSSLttt 12
Design 13-16
4.1. Scrapy ArchiteCture.coooiii 13
T O00) 111010) 1 1 L S 14
4.3.Data FIOW. ... 15-16

5. Implementation 17-20

5.1, InStalling SCrapy....c.ooviiniii e 17
5.2, Creating @ ProJeCt....c.vouitie it 18
5.3. Defining our Itemo 19
5.4, OUr first SPIder. .. .ot 19
0.5 Crawling. ...t 20

6. Output Screens 21-22

7. Limitations and Future Enhancements 23

8. References 24

LIST OF FIGURES

S.No. Figure Page No

1. Design
Fig.1 Scrapy Architecture..........ccovvviuiiiiiiii i, 13

2. Data Flow Diagram
Fig.2 Data FIoOw IN SCrapy.......ccoviiiiiiiiii e, 15

3. Data Flow Diagram
Fig.3IMDB Sample Crawl...........coooiiiii e, 21

4. Data Flow Diagram
Fig.4 Database CONtent..........c.ooviniiiiii e 22

Vi

1. INTRODUCTION

1.1. History

Web Crawling (web harvesting or web tracking) is a software technique for extracting
information from websites. Usually, this type of software programs simulate human exploration
of the World Wide Web, either implementing low-level Hypertext Transfer Protocol (HTTP), or

the addition of a full-fledged web browser, such as Internet Explorer or Mozilla Firefox.

Web crawling is related to the Web indexing that indexes information on the web using a web
crawler and it is a universal technique adopted by most search engines. web scraping is more
focused on the transformation of unstructured web data, generally in HTML format and
structured that can be analyzed and stored in a central database or spreadsheet data calculating
location data. Web scraping is also related to web automation that simulates human navigation
by using computer software. Some Applications include web scraping used to compare prices
online, contact scraping, weather monitoring site data change detection, mash up web,
investigation, and integration of web data.

Web scraping software: There are many software tools available on web that can be used for
web scraping solutions. This type of software attempts to automatically recognize the data
structure of a page or provide a recording interface that eliminates the need to manually write
code web scraping or some functions of scripts that can be used to extract and process the
content and database interfaces that can store the scraped data into local databases.

Scrapy is an open source and web crawling collaborative framework for the extraction of data.
Scrapy is written in Python. Scrapy is controlled using command line tools .1t is an web crawling

framework for writing program that crawl websites and extract data from them.

1.2. Requirement Analysis

Software Tools Used:

» Python 2.7
> Sublime Text
> MySql

Language Used:

> Python
» HTML
» XML

1.3.Main Objective

We use software known as "web crawlers" to discover publicly available websites. The crawler
best known is called "Googlebot." Trackers looking web pages and follow the links on these
pages, as you would if you were browsing web content. They go from link to link and bring data
on those pages back to Google servers

The crawling process begins with a list of web addresses traces of the past and site maps
provided by website owners. As our crawlers visit these websites, seeking links to other pages to
visit. This type of software give special attention to new sites that changes to existing sites and
dead links.

Computer programs that use for crawling the websites determine which sites to search, how
many pages and how often to fetch at each site. Google does not accept payment to crawl a web
site more frequently. What we think more about having the best possible crawling results,
because it's best for users and their business.

Our project objective is that to create a tool "Web Crawler"” to extract the necessary data from
websites and store it in a structured way so that the data can be used for various analytical
purposes.

1.4.Sub Objective

Our project objective is that to create a “Web Crawler” tool to extract the required data from
the websites and store that data in a structured way so that the data can be used for various
analytical purposes.

For our project we are using “Scrapy framework™ which is an application framework for
crawling web sites and extracting structured data which can be used for a wide range of useful
applications for data mining, information processing or historical archival.

As we know that each website has its own unique web crawler or Web spider and for our
project we are creating a Web Crawler For “Imdb website”. That crawler will be able to get
the different elements of the Imdb website and store it in the form of structured data in our
database.

2. System Analysis

2.1 Existing System

There are lot of existing crawlers whose list is displayed below:

Crawler User-agents HTTP(S) requests user-agent
Googlebot Googlebot Mozilla/5.8 (compatible; Googlebot/2.1;
(Google Web +http://wew. google. com/bot. html)
search) or
(rarely used). Googlebot/2.1 (+http://www.google.com/bot.html)
Googlebot Googlebot-HNews Googlebot-News
MNews (Googlebot)
Googlebot Googlebot- Googlebot-Image/1.8
Images Image
(Googlebot)
Googlebot Googlebot- Googlebot-Video/1.8
Video Video
(Googlebot)
Google Googlehot- [various maobile device types] (compatible; Googlebot/2.1;
Mobile Mobile +http://www. google. com/bot. html)
Google Googlebot Mozilla/5.@ (iPhone; CPU iPhone 0S 6_@ like Mac OS5 X)
Smartphone AppleMebKit/536.26 (KHTML, like Gecko) Version/6.@
Mobile/18A5376e SafarifB536.25 (compatible; Googlebot/2.1;
+http://www.google. com/bot.html)
Google Mediapartners- [various mobile device types] (compatible; Mediapartners-Google/2.1;
Mobile Google +http://wew. google. com/bot. html)
AdSense
or
Mediapartners
(Googlebot)
Google Mediapartners- Mediapartners-Google
AdSense Google
Mediapartners
(Googlebot)
Google AdsBot-Google AdsBot-Google (+http://www.google.com/adsbot. html)
AdsBot
landing page

guality check

2.2Motivation

The main motivation that drew us to make a crawler is because there is no such crawler that
crawls IMDB to list down all the data that could be further used for analysis.

IMDB is the largest website containing the highest ranked data related to each and every film out
there. There are many companies and analyst who need these details to get used to your own
personal or commercial purpose. Similarly, a startup based in Delhi on behalf INC42 gave this
project for us to build a tracker and get the data stored in the database for more anaylis as no
such system.

There are system that exist, for example. Googlebot but not extract data from the website IMDB
well in order to make this work we need a separate crawler to extract data.

The reason we chose scrapy because it provides the best support for writing spider and to load
the elements to be extracted. They can be easily defined and then extraction could be easily
processed.

Scrapy being open source platform for building crawlers to crawl python based website that is
highly preferred and used today.

Again there is a huge market for analysis and data starts making it the best projects that could
held to a successful outcome.

2.3Proposed System

The proposed system is based on Scrapy framework that works on spider and item loader which
further help the system to extract data from the website.

Scrapy is a collaborative framework for crawling websites and extraction of structured data that
can be used for a wide range of useful applications such as data mining, processing information
or archive.
Scrapy Although originally designed for screen scraping (more precisely, web scraping), also
can be used to extract data using API (like Amazon Associates Web Services) or as a general
purpose web crawler.
Steps on how the system will work are:

1 Pick a website

2 Define the data you want to scrape

3 Write a Spider to extract the data

4 Run the spider to extract the data

5 Review scraped data

6 Storing the scraped data

3. Technologies Used

3.1Python pgthon

Python is an easy to learn, powerful programming language. It features high data structures
efficient level and a simple but effective approach to object-oriented programming(such as Java).
Python syntax and dynamic typing, together and with its interpreted feature make it good for
scripting and rapid application development in many areas on most platforms language.

The Python interpreter and the extensive standard library are freely available in source or binary
form for all platforms from the Python web site that is “https: //www.python.org/” and it also
freely distributed. This same web site also contains distributions of and pointers to many third
party Python modules, programs and free tools and additional documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or
C ++ (or other languages). Python is also suitable as an extension language for customizable
applications.

3.2HTML

Hyper Text Markup Language commonly known as HTML, is the standard markup language
used to create web pages is written in the form of HTML elements consisting of tags enclosed
in angle brackets (like <html>). HTML tags most commonly come like this in pair <hl> and
</h1>, although some labels represent empty elements and so also unpaired for eg . The
first tag in a pair is the start tag, the second tag is the end (also called opening tags and closing
tags).

Web browsers read HTML files and then compose them into visible or audible web pages.
Browsers do not display HTML tags and scripts, but used to interpret the content of the page.
HTML semantic structure of a web site together with the signals for presentation described
which is a markup language not a programming language.

HTML elements form the building blocks of all websites. HTML allows images and objects that
are embedded and can be used to create interactive forms Provides a means to create structured
by denoting structural semantics for text such as heading, lists, links , paragraphs, quotes and
other items documents. You can embed scripts written in languages such as JavaScript which
affect the behavior of HTML web pages.

Web browsers can also refer to Cascading Style Sheets (CSS) to define the appearance and
layout of text and other material. The World Wide Web Consortium (W3C), maintainer of both
HTML and CSS standards. CSS defines how HTML elements are to be displayed.

3.3XML

Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents in format which is both readable and machine readable. XML is defined by
the W3C XML 1.0 specification and by other several specifications, all are free and open
standards.

The design goals of XML generality, simplicity and usability over the Internet. It is in a text data
format with strong support via Unicode for human languages. the design of XML focuses on
documents which are widely used for the representation of arbitrary data structures such as those
used in web services.

There are some schema systems exist to aid in the definition of XML-based languages, while
many other application programming interfaces(APIs) have been developed to aid the processing
of XML data.

10

AR

NMy
3.4MYSOL

MySQL is one of the most popular and Open Source SQL database management system that is
developed distributed and supported by Oracle Corporation.

The MySQL Web site is “http://www.mysql.com/”that provides the latest information about
MySQL software.

MySQL is a database management system.

A database is a structured collection of data. It can be anything from a simple shopping list to a
picture gallery or the big amounts of information in an organization. To add, delete,access and
process data stored in a database management system then MySQL database server is needed.
Since computers are very good at handling large amounts of data management systems databases
play a central role in computing, as standalone programs, or as part of other applications.

MySQL databases are relational.

A relational database is like Stores data into separate tables rather than putting all the data in a
one room. The databases structures are organized into physical files that is optimized for speed.
some logical model, with objects like databases, views, tables, rows and columns, gives a
flexible programming environment. We establish rules governing relations between different
data fields like one to one, one-to-many, unique, mandatory or optional. The database provide
these rules so that a data base, application never sees inconsistent, out of date or missing data
problems.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is a Query language
not a database and used to access databases.

11

3.4LXML

The Ixml XML toolkit is a Pythonic binding for the C libraries libxml2 and libxslt. It is
unique because it combines the speed and XML feature integrity of these libraries with the
simplicity of a Python API, that is mostly compatible and superior to the well-known
ElementTree API. The latest version of Lxml works with all C Python versions from 2.6 to
3.4.

Ixml.etree follows the ElementTree API as much as possible building it on top of native
libxml2 tree and If you wanna learn to elementtree, start with the tutorial Ixmletree and also
look for the ElementTree and its compatibility overview and the ElementTree performance
page comparing Ixml to the original ElementTree and cElementTree implementations.

OpenSSL

OpenSSL is an open-source implementation of the SSL and TLS protocols in computer
networking.its core library,written in the C programming language and it implements
basic cryptographic functions and its provides various utility functions. the OpenSSL library
use in a variety of computer languages .

Versions are available for most Unix-like operating systems such as
including Solaris, Linux, Mac OS X and the other open-source BSD, and operating systems,
and Microsoft Windows. IBM provides a port for the System i (OS/400).

OpenSSL is basically based on SSLeay that is by Eric Andrew Young and Tim Hudson, that
development of which unofficially ended on December 17, 1998, when Young and Hudson
both started to work for RSA Security.

12

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Computer_networking
http://en.wikipedia.org/wiki/Library_(computer_science)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Solaris_(operating_system)
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/BSD
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/IBM_i
http://en.wikipedia.org/wiki/SSLeay
http://en.wikipedia.org/wiki/RSA_Security

4.Design

4.1. Scrapy Architecture:

sy
. Schedul
ceuer/

Internet
Scheduler l
Middlewares \
Requests
A
ltem < Scrapy £
Pipeline , \Downloader
Downloader
Micldlewares
*__\\Request-s
~
Spider /
Items Middlewares / Responses
|
|
Y

Fig. 1- Architecture of Scrapy

13

4.2. Components:

Scrapy Engine

Scrapy engine is responsible for controlling the data flow between all components of the scrapy
system, and triggering events when certain actions occur.

Scheduler

Scrapy Scheduler receives requests from the engine and enqueues them for feeding them later
(also to the engine) when the engine requests them.

Downloader

Scrapy Downloader is responsible for fetching web pages data and feeding them to the engine
which, in turn, feeds them to the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and extract scrapted items
from them or additional URLs (requests) to follow. Each spider is able to handle a specific
domain (or group of domains).

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been extracted or
scraped by the spiders . now tasks include cleansing, validation and persistence such as storing
the item in a database.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the Downloader and
process requests when they pass from the Engine to the Downloader, and responses that pass
from Downloader to the Engine. They provide a convenient mechanism for extending Scrapy
functionality by plugging custom code.

Spider middlewares

Spider middlewares are specific hooks that sit between the Engine and the Spiders and that are

able to process spider input (responses) and output (items and requests). They provide a
convenient mechanism for extending Scrapy functionality by plugging custom code.

14

4.3. Data Flow:

The data flow in Scrapy is controlled by the execution engine, and goes like this:

C o

I""'ll-—_—--l""'I

Sqlite3

‘."-—-'-'-I

FPostStorePipeline

FPostParsePipeline

Fig. 2- Data Flow In Scrapy

15

 Ranast |

DuplicatesFilterii

 Reariigst |

Downloader

STEPS:

1.

First the Engine opens a domain and locates the Spider that handles the domain, and
then asks the spider for the first URLSs to crawl.

. Now the Engine gets the first URLs to crawl from the Spider and schedules .
. Now the Engine will asks the Scheduler for the next URLSs to crawl.

. The Scheduler will returns the next URLs to crawl to the Engine and then the Engine

sends them to the Downloader, passing through the Downloader Middleware (request
direction).

. Once the page finishes downloading the data Downloader generates a Response with that

page and sends response to the Engine, passing through the Downloader Middleware
(response direction).

. The Engine get the Response from the Downloader and then sends it to the Spider for

processing, now passing through the Spider Middleware (input direction).

. The Spider processes the Response and returns scraped Items and give new Requests (to

follow) to the Engine.

. The Engine sends scraped Items or data (returned by the Spider) to the Item Pipeline that

store data and Requests (returned by spider) to the Scheduler.

. That process repeats (from step 2) until there are no more requests from the Scheduler,

and the Engine closes the domain.

16

5. IMPLEMENTATION

5.1. Installing Scrapy:

First we have to Install python

After installing Python in our systems, follow these steps before installing Scrapy:

» add the C:\python27\Scripts and C:\python27 folders to the system path by adding those
directories to the PATH environment variable

» now Install OpenSSL by following these steps:
1. gotoOpenSSL page
2. download theVisual C++ 2008 redistributables

3. now download OpenSSL

4. and add the c:\openssl\bin (or similar) directory to your PATH, the same way you added
python27 in the first step.

» some binary packages that Scrapy depends on (like Ixml and pyOpenSSL) sometime require a

compiler available to install, and it will fail if you don’t have Visual Studio installed. You can
find installers for those in the given links. Make sure your Python version should be supported

— pywin32: http://sourceforge.net/projects/pywin32/files/
— Twisted: http:/twistedmatrix.com/trac/wiki/Downloads

— zope.interface: download the egg from zope.interfacepypi page and install it by running
easy installfile.egg

— Ixml: http://pypi.python.org/pypi/lxml/

— pyOpenSSL: https:/launchpad.net/pyopenssl

17

5.2. Creating a project:

Before we start scraping, we will have set up a new Scrapy project. Enter a directory where
you’d like to store your code and then run:

scrapystartprojectimdb

This will create a tutorial directory with the following contents:

imdb/
scrapy.cfg
imdb/

__init_.py
items.py

pipelines.py
settings.py
spiders/
__init__.py

These are basically:

scrapy.cfg: the project configuration file

imdb/: the project’s python module, you’ll later import your code from here.
imdb/items.py: the project’s items file.

Imdb/pipelines.py: the project’s pipelines file.

imdb/settings.py: the project’s settings file.

imdb/spiders/: a directory where you’ll later put your spiders.

18

5.3.

5.4,

Defining Our Item:

Items work like containers that will be loaded with the scraped data, they work like simple
python dints but they provide additional protection against populating undeclared fields to
prevent typos.

Item are declared by creating a scrapy.ltem class and then defining its attributes as scrapy.Field
objects, like we will do in an ORM.

Now We begin by the item that we will use to hold the sites scrapted data obtained from
dmoz.org, now we want to scrape the name, url and description of the sites, now we define fields
for these attributes. we edit items.py, found in the tutorial directory. now Our Item class looks
like this:

importscrapy
classIMDBlitem|scrapy.ltem):

movie = scrapy.Field()
rating = scrapy.Field()
desc = scrapy. Field|)
cast = scrapy.Field|)
budget = scrapy.Field()
location= scrapy. Field()
vear = scrapy. Field()

This process may seem complicated at first, but defining the item allows us to use other
components of Scrapy that need to know how your item looks.

Our Spider:

Spiders in our project are user-written classes that is used to scrape data from a domain or group
of domains.

Spiders define a list of URLs to download and how to follow links, and how to parse the
contents of those pages to extract items.

For creating a Spider, we must subclass scrapy.Spider and then define the three main
mandatory attributes:

name: that identifies the Spider. that must be unique, we can’t set the same name for different
Spiders.

19

5.5.

start_urls: is a list of URLs where the Spider will begin to crawl from. So, the first pages
downloaded will be those listed here. The subsequent URLSs will be generated successively from
data contained in the start URLSs.

Where parse() is a method for the spider,that will be called when the downloaded Response
object of each start URL. That response is passed to the method such as the first and only
argument.

This type of method is responsible for parsing the response data and extracting data (as scraped
items) and more URLSs to follow.

Now The parse() method is in charge of processing and the response and returning scraped data
and more URLs to follow as Request objects.

This is the code for our first Spider; save it in a file named dmoz_spider.py under the
tutorial/spidersdirectory:

importscrapy

classDmozSpider{scrapy.Spider):

name = "imdbh"

allowed _domains = ["wikipeida.com"]

start_urls =]
"http://www.wikipedia.com/TOP25MOVIES",
"hitp://www.wikipedia.com/Resources/"

def parse(self, response):

filename = response.url.split("/")[-2]
with open(filename, 'wh’) as f:
f.write(response.body)

Crawling:
for our spider to work we have to go to the project’s top level directory and run:

scrapy crawl imdb

The crawl imdb command runs the spider for the dmoz.org domain. You will get an output
similar to this:

2014-01-23 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)

2014-01-23 18:13:07-0400 [scrapy] INFO: Optional features available: ...

2014-01-23 18:13:07-0400 [scrapy] INFO: Overridden settings: {}

2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...

2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...

2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...

2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...

2014-01-23 18:13:07-0400 [dmoz] INFO: Spider opened

2014-01-23 18:13:08-0400 [dmoz] DEBUG: Crawled (200) <GET
http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2014-01-23 18:13:09-0400 [dmoz] DEBUG: Crawled (200) <GET
http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
2014-01-23 18:13:09-0400 [dmoz] INFO: Closing spider (finished)

20

6.0utput Screens

2015-04-12 13:49:02+0530 [tutorial] DEBUG: Retrying <GET http://www.indb.com/title/tt2802144/7ref_=chttp_tt_245> (failed 1 times): User timeout caused connection failure: Getting http://wsw.indb.com/title
/t£2602144/7ref_=chttp_tt_245 took longer than 188 seconds..
2015-94-12 13:49:02+0530 [tutorial] DEBUG: Retrying <GET http://www.indb.com/title/tt0878511/7ref_=chitp_tt_24d> (failed 1 times): User timeout caused connection failure: Getting http://www.indb.com/title
/tt0070511/7ref_=chttp_tt_244 took longer than 180 seconds..
2015-04-12 13:49:03+0530 [tutorial] DEBUG: Crawled (280) <GET http://www.indb. con/title/tt280214d/?ref _=chttp_tt_245> (referer: http://wwm. indb.con/chart/top?ref_=nv_ch_250_4)
2015-94-12 13:49:03+0530 [tutorial] DEBUG: Scraped from <208 http:/fwww.indb,con/title/tt2802144/ Tref_=chitp_tt_245»
{'AspectRatio’s u' 235 : 0 ',
'Budget': u'\n Budget: 481,000,000 \n\n (estimated)\n '
'CastMembers': [{'ActorName': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema,org/Persan”s\n <span class="1itempro
p" itemprop="name"=Adrian Quinton</span=\n</as </tds",
"CharacterName': u'«dive\n Terroriste/a> \n \n <fdiv>',
'Rankina's 1},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person"s\nea href="/nane/nn@A08147/7ref =tt_cl_t2" itemprop="url"s <span class="itempro
p" itemprop="name">Colin Firthe/spans\ne/a» <ftds',
'CharacterName': u'<divs\n <a href="/character/ch580163/7ref_=tt_c1_t2"=Harry Hart</a= / \n Galahad \n \n <fdivs',
'Ranking': 2},
{'ActorName': u'etd class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person'=\n <span class="1itempro
p" itemprop="name"sMark Stronge/span=\n </tds",
'CharacterName': u'edivs\n Merline/a> \n \n <fdiv>',
'Rankina's 3},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person"s\nea href="/nane/nn5956650/7ref_=tt_cl_t4" itemprop="url"s <span class="itempro
p" itemprop="name"=Jonno Davies</span=\ne/a> </tgs',
'CharacterName': u'<divs\n Lee \n \n <dive',
'Ranking': 4},
{'ActorNane's u'<td class="itemprop" itemprop="actor" itemscope itemtype="httpi//schema,org/Person'>\nea href="/nane/nn@202603/7ref_=tt_cl_t5" itemprop="url"s> <span class="itempro
p" itemprop="name"=Jack Davenporte/span\ne/as </tds',
'CharacterName': u'edivs\n Lancelot \n \n <fdiv>',
'Rankina's 5},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person"s\nea href="/nane/nn7814019/7ref =tt_cl_t6" itemprop="url"s <span class="itempro
p" itemprop="name"=Alex Nikolove/span=\ne/a> <ftds',
'CharacterName': u'<divs\n <a href="/character/ch580162/7ref_=tt_cl_tE"=Little Eqgsy</a= \n \n <fdive',
'Ranking': 6},
{'ActorNane's u'<td class="itemprop" itemprop="actor" itemscope itemtype="httpi//schema,org/Person’>\nea href="/nane/nn@418379/7ref_=tt_cl_t7" itemprop="url"s> <span class="itempro
p" itemprop="name">Samantha Womack</span=\n </td=",
'CharacterName': u'edivs\n Michelle Unwine/a> \n \n <fdiv>',
'Ranking's 7},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person"s\nea href="/nane/nn@R00434/7ref =tt_cl_t8" itemprop="url"s <span class="itempro
p" itemprop="name">Mark Hamille/span=\ne <ftds',
'CharacterName': u'<divs\n Professor Arnold \n \n <fdive',
'Ranking': 8},
{'ActorNane's u'<td class="itemprop" itemprop="actor" itemscope itemtype="httpi//schema,org/Person'=\nea href="/nane/nn@867677/7ref _=tt_cl_t9" itemprop="url"s> <span class="itempro
p" itemprop="name"=Velibor Topice/spans\n </td=",
'CharacterName': u'edivs\n Big Goon \n \n <fdiv>',
'Ranking's 9},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person"s\nea href="/nane/nn1154749/7ref =tt_cl_t18" itemprop="url"> <span class="itenpr
op" itemprop="name">Sofia Boutella\ne/a> </td>",
'CharacterName': u'<divs\n Gazelle \n \n </dive',
'Ranking': 10},
{'ActorNane's u'<td class="itemprop" itemprop="actor" itemscope itemtype="httpi//schema,org/Person'>\nea href="/nane/nn@eoe1ee,/Tref_=tt_cl_t11" itemprop="url"> <span class="itenpr
op" itemprop="name"=Sanuel L. Jackson</span=\n </tds',
'CharacterName': u'edivs\n <a href="/character/chd580185/7ref_=tt_cl_t11"sValentine \n \n <fdiv>',
'Ranking's 11},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtypes"http://schema.org/Person"s\n<a href="/nane/nn@B0A323/7ref_=tt_cl_t12" itemprop="url"s <span class="itempr
op" itemprop="name">Michael Caine\ne/a> </td>',
'CharacterName': u'<divs\n <a href="/character/ch502806/7ref_=tt_cl_t12"=Arthur</a= \n \n </dive',
'Ranking': 12},
{'ActorNane': u'«td lass="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person"\n <span class="itempr
op" itemprop="name"=Taron Egerton</span=\ne/as </td',
'Characterlame': u'<divs\n 6ary \'Egosy\' Unwine/a> \n \n </div>',
'Ranking's 13},
{'ActorNane': u'<td class="itemprop" itemprop="actor" itemscope itemtype="http://schema.org/Person">\n <span class="itempr
op" itemprop="name">Geoff Belle/span>ine/a> <ftd>',
'CharacterName's u'<div=\n Dean \n \n <fdivs',

Fig. 3- Sample IMDB Crawl

21

& DB Browser for SQLite Fie

Edit View Help

]) B B0 Sint2Ar 2030 Q =

000 | DB Browser for SQLite - /Users/sarthaksaxena/tutorialftest. db
Iy New Database ¢0pen Database lWr‘ne Changes ., Revert Changes
Database Stuciure Edit Pragmas Execute SOL 00 0B Schema
Name Type

Tatle: | || Fims B g NewRecord | Delete Record v [Tebes 2

b Actors

id file rating fanking release dafe page_url diracior wiiters runfime sinopsis ' IJd‘F“m?O]

ndces
Fillr Filier Fiter Filir Filier Fille Filier Filler Filir Filier 1 Views [0
)) Akira Akira ' Aveteran .

11 Seven Samurai | 8,665 | 1056049 Mplimdbe.. [Kiosaa g, | 2070 cmrd uh L./ Triggers (0)
One Flew Qver) . Lawrence ' McMurphy
202 tre Cuao's,. 8701 15 1075-41-21 htplimdb.c... | Milos Forman Hauoen, Bo .. | 13m0 acriminarpz
! Goodlelzs 8688 17 10000021 ipindbe. @&”&m F,’l‘feg‘ﬁmch 145 min Lﬁgmg
i ForestGump 875 f3 T tiplinbe., | AL g mﬁ;gg’;
The Lord of the) JRR Tolkien, ' An ancient
55 Rigs TheF... 8.781 1l @0t219 Mplfmdbe.. | Peterlackson g™ (780 Ringhough
The Good, the) ' Luciana ' Blondie (The
[Bad andthe.. 0887 § 1068-01-24 hifpimdb.c... | Serglo Leone Vincenzon,.. 161 min Good) s af
77 TheMatie 8662 1 1009453 | g mm m’hmki 1% mi mzﬂr:ms
B8 FghiClo | 88t 10 10804045 hipsimdbe... | David Fncher g;““a"hkmuk i [1mn ’Qé'rﬁﬁ'?é’sﬁ.‘ﬁ
The Lord of the) JRR Tolkien, ' While Frodo
99 Rigs TheR.. B84 9 03217 plimdbe.. | PelerJackson | pooue” (200 S confnt
The) Frank Stephen King, ‘ Andy Dufres
o Shawsnank .. 2! ! 19941014 ipimdbe...| o Frenk Darab,. | 142 is & young a
Star Wars:) . Leigh Brackeft, ' After the Re
ol Enode V- .. 8747 12 19800620 ip/fmdbc.. | IninKershner | |24 min hase on the
2 12 12Angry Men 8,892 7 10570401 | hitpimdb.c... | Sidney Lumet | Reginald Rose | 96 min mgﬁ:gﬁ
B 1 PubFicion 809 5 10944044 hipindbe.. %”éﬂﬂ% %“";:E:O o | fsémi ﬂ;ﬁ,}m‘

‘ ,) Steven Thomas ' Qskar
1 14 Schindler's List | 8.892] 1964-02-04 htlp.if\mdb‘c..‘ Sp‘\elberg Kenea"y‘ .. 195 min Schindleris
15 The Godater 8171 2 1072032 hipilmdhe.. Eg‘p“;ja“”d WP | gy g?:g”:gead
Star Wars: ‘ Ayoung b
1 18 Epa‘\godzrlsvnu 8677 19 10770525 | htpimdb.c... | GeorgeLucas | George Lucas | 121 min "g'ngu-gmﬁg
Daman Dnnald A hilliant
ke 1-170f249 5 Golor | A1
SQLlog Plot RUERIELES

UTF8

Fig. 4- Database Content

22

7. Limitations and Future Enhancements

There are a lot of limitations:

1.

2.

3.

4.

5.

Xpath to be individually mentioned
Standalone spider for each items
Isolated spiders for each website

Can’t be combined to a universal spider

Each set of different website data has different spider to extract the data

In the future the spiders could be enhanced with:

1. Writing a universal spider

2. Xpath should work on aggregator items instead of the particular item

23

YV V VYV V¥V

8. References

https://pypi.python.org/pypi/Scrapy
https://github.com/scrapy/scrapy
http://doc.scrapy.org/en/latest/

Burner, M. (1977), “Crawling Towards Eternity: Building an Archive of the World Wide
Web,” Web Techniques Magazine 2, 5.

Cho, J., H. Garcia-Molina, and L. Page (1998), “Efficient Crawling Through URL

Ordering,” In Proceedings of the Seventh International World Wide Web Conference, pp.
161-172.

Gray, M., “Internet Growth and Statistics: Credits and Background,”
www.mit.edu/people/mkgray/net/background.html.

Miller, R.C. and K. Bharat (1998), “SPHINX: A Framework for Creating Personal, Site-
Specific Web Crawlers,” In Proceedings of the Seventh International World Wide Web
Conference, pp. 119-130.

Miller, R.C. and K. Bharat (1998), “SCRAPY: A Framework for Creating Personal, Site-
Specific Web Crawlers,” In Proceedings of the Seventh International World Wide Web
Conference, pp. 119-130.

Pinkerton, B. (1994), “Finding What People Want: Experiences with the WebCrawler,”
In Proceedings of the Second International World Wide Web Conference

Smith, Z. (1997), “The Truth About the Web: Crawling Towards Eternity,” Web
Techniques Magazine 2, 5.

Scrappy Project Management: The 12 Predictable and Avoidable Pitfalls That Every
Project Faces By Kimberly Wiefling

C. Castillo, “Effective web crawling,” in ACM SIGIR Forum, vol. 39, no. 1. ACM, 2005,
pp. 55-56

http://aperture.sourceforge.net/tutorial/crawlers.html

http://www.imdb.com/chart/top

24

https://pypi.python.org/pypi/Scrapy
https://github.com/scrapy/scrapy
http://doc.scrapy.org/en/latest/
http://www.mit.edu/people/mkgray/net/background.html
http://www.facebook.com/l.php?u=http%3A%2F%2Faperture.sourceforge.net%2Ftutorial%2Fcrawlers.html&h=jAQEIgo85

