
DESIGN AND FPGA IMPLEMENTATION OF RING NOC

USING VHDL

By

Lopamudra Baruah R790211023

Amit Sabu R790211038

College of Engineering

University of Petroleum & Energy Studies

Dehradun

April, 2015

ii

DESIGN AND FPGA IMPLEMENTATION OF RING NOC USING VHDL

A project report submitted in partial fulfillment of the requirements for the Degree of

 Bachelor of Technology

(Electronics Engineering)

By

Lopamudra Baruah R790211023

Amit Sabu R790211038

Under the guidance of

Dr. Adesh Kumar `

Assistant Professor (Senior)

Department of Electronics, Instrumentation and Control Engineering

Approved

Dr. Kamal Bansal

Dean, College of Engineering Studies

College of Engineering

University of Petroleum & Energy Studies

Dehradun

April, 2015

iii

CERTIFICATE

This is to certify that the work contained in this report titled “Design and

FPGA Implementation of Ring NoC using VHDL” has been carried out by

Lopamudra Baruah (R790211023) and Amit Sabu (R790211038) under my

supervision and has not been submitted elsewhere for a degree.

Dr. Adesh Kumar

Assistant Professor (Senior)

Department of Electronics, Instrumentation and Control Engineering

Date

iv

ACKNOWLEDGEMENT

We would like to thank our mentor, Dr. Adesh Kumar for providing us the guidance

without which it would have been impossible to complete the project.

We extend our gratitude to the Dean of College of Engineering Studies, Dr. Kamal Bansal

and the whole department of Electronics Instrumentation and Control Engineering,

especially our Head of Department Mr. S. Choudhury for providing us the opportunity to

learn, explore, and work on such a good topic for our final year project in our

undergraduate study.

Many people have given us their help and support during the course of our Final year

project for completion of our Bachelor of Technology degree. We extend our gratitude to

all of them for helping us in their own individual ways in completing the project.

Lopamudra Baruah R790211023

Amit Sabu R790211038

B.Tech Electronics Engineering

v

TABLE OF CONTENTS

 PAGE NO.

LIST OF FIGURES vii-viii

LIST OF TABLES ix

NOMENCLATURE x-xi

ABSTRACT xii

1. INTRODUCTION 1-3

1.1. Problem Statement 2

1.2. Objectives 2-3

1.3. Scope of the research 3

2. LITERATURE REVIEW 4-7

2.1. General Survey 7

3. THEORETICAL DEVELOPMENT 8-19

3.1. Ring NoC Structure 8-10

3.2. Token Passing Local Area Network 10-18

3.2.1. Token Ring Local Area Network 10-11

3.2.1.1. Media Access Control in Local Area Network 11

3.2.1.2. IEEE 802.5 Frame Format 12-16

3.2.2. Token Bus LAN 16-17

3.3. Data Path Architecture 18-19

4. RESEARCH METHODOLOGY 20-22

4.1. FPGA and Project Design Flow 22-21

4.1.1. Project Design Flow 22

4.2. Software Development Tools 22-24

4.2.1. Project navigator Application Version 6.1i or 22

vi

ISE 14.2 of Xilinx Company

4.2.2. Model SimEE 10.1 B 23

4.2.3. ModelSim: Simulation and Debug 23

4.2.4. ModelSim EE Features 23

4.2.5. ModelSim EE Benefits 23

5. RESULTS AND DISCUSSION 25-27

6. SYNTHESIS AND EXPERIMENTAL ANALYSIS 28-33

6.1. Device Utilization and Timing summary 29-30

7. CONCLUSION 34

REFERENCES 35-36

APPENDIX 37-65

vii

LIST OF FIGURES

PAGE NO.

Fig. 1 Ring topological structure 9

Fig. 2 FIFO logic to address node 9

Fig. 3 Token ring LAN 11

Fig. 4 Media Access Control using Token 12

Fig. 5 Token Frame 13

Fig. 6 Data/Control Frame 13

Fig. 7 IEEE 802.4 Token ring bus structure 17

Fig. 8 IEEE 802.4 frame structure 17

Fig. 9 Data path architecture 18

Fig. 10 FPGA View 21

Fig. 11 FPGA Project Design Flow 22

Fig. 12 Chip Design Process Flow in ring NoC 24

Fig. 13 RTL view of RoC 26

Fig.14 Modelsim simulation for intercommunication 26

Fig. 15 FPGA synthesis block diagram 28

viii

Fig. 16 FPGA Results 29-31

ix

LIST OF TABLES

PAGE NO.

Table 1 Node selection scheme in ring NoC 9

Table 2 Pin details of ring NoC for (N=65536) 27

Table 3 Device utilization in ring NoC, for N = 65536 32

Table 4 Timing parameters for ring NoC, for N = 65536 32

x

NOMENCLATURE

AC Access Control

ASIC Application Specific Integrated circuits

DA Destination Address

DDR Double Data Rate

ED End of Delimiter

FPGA Field Programmable Gate Array

FSM Finite State Machine

FIFO First input First output

FC Frame Control

FCS Frame Check Sequence

IEEE Institute of Electrical and Electronics Engineering

IP Intellectual Property

LUT Look Up Table

LAN Local Area Network

MPSoC Multiprocessor system on chip

NoC Network on Chip

PE Processing Elements

RTL Register Transfer Level

RoC Rotator on Chip

SA Source Address

SD Staring Delimiter

SoC System on Chip

SDRAM Synchronous Dynamic Random Access Memory

xi

THT Token Holding Time

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale of Integration

xii

ABSTRACT

The project is based on the ring based Network on Chip (NoC) structure design and

modeling in Hardware Description Language (HDL). The network configuration is chosen

for 65536 nodes, which is synchronized with same clock pulse. The functionality of each

node is checked in Modelsim 10.1b software. The inter-process communication among

nodes in verified using Virtex-5 FPGA. The priority of the nodes is assigned using FIFO

logic, which is integrated with the NoC chip. The NoC architecture is based on token ring

based network concept, called Rotator-on Chip (RoC). The design and modeling is done in

Xilinx 14.2 ISE using VHDL programming language and synthesized on Digilent

manufactured FPGA, with the target device, xc5vlx20t-2-ff323, Virtex-5. Hardware and

timing parameters are extracted from the synthesized results and maximum frequency is

found 535.733MHz and memory utilization is 263208 Kb.

1

CHAPTER 1

INTRODUCTION

This chapter gives a brief idea about Network-on-Chip and ring based NoC, and further

illustrating the problem statement and objectives of the project.

1.1.Introduction to NoC

Network on Chip (NoC) is the latest approach to overcome the limitations of bus based

communication network [1]. NoC is a set of routers employed in a network, in which

different nodes are interconnected with their cores and can communicate with each other.

In a network data comes in packets and sent to the destination with IP via routers and links

[4]. When a packet reaches its destination address, it means packet is switched [5] to the IP

attached to the router. On-chip communications among different networks is possible using

interconnection network topology [5], switching, routing, queuing, flow control [11] and

scheduling. Research is going on for three dimensional topological structures network on

chip design. The idea of NoC is derived from distributed computing and large scale

computer networks. There are different routing techniques used in NoC design

considerations to meet high throughput. The routing methods for NoC should be very

simple,due to constraints on hardware and memory resources utilization can have 2D and

3D network configurations.

NoCs support efficient on-chip communication [6] [7] potentially leads to NoC based

multiprocessor systems characterized by high structural complexity and functional

diversity. Multiprocessor System On-Chip (MPSoCs) [8] consists of complex integrated

components, which communicates with each other at very high speed rates. A single

shared bus or hierarchy of buses is not feasible so much for intercommunication.

Intercommunication requirements of MPSoCs made of hundreds of cores having poor

scalability with their shared bandwidth between all the attached cores, system size and the

energy efficient requirements of final products. Networks-on-Chip (NoCs) is a promising

solution to the scalability problem of forthcoming MPSoCs [5] [10]. NoC is an approach

for designing the telecommunication subsystem between IP cores in a System-on-a-Chip

(SoC) [7] [10]. The software and application layer is a very critical aspect on the NoC

communication stack [11]. Secured transmission among nodes is possible if it follows the

2

NoC layer protocol [11] [12], mostly physical and network layers. All networked layers

follow the pipeline and parallel processing that validate the optimized hardware parameters

on chip development.

Rotator on chip (RoC) architecture [3] is based on token ring concept, which guarantees of

packet arrival in sequence. It is based on scalable network and control mechanism that is

helpful in the implementation of low latency on chip communication NoC. The

performance of the ring NoC depends on the time slots and addressing schemes for the

intercommunication among nodes in ring topological network. The NoC is applicable in

telecommunication systems and is a great solution for rotator switches used in

telecommunications systems. The topologies used for NoCs are tree, ring, crossbars, bus

and meshes [3] [12]. Crossbar networks are larger in size and have low latency, poor

scalability and greater cost. Tree topology structures [8] have good performance in terms

of good latency but the networks based on tree topology have high wiring costs and router

designing is also costly. There are also the chances of blocking several links in tree

topology and messages delivery may fail. Mesh topological structures offers good latency

and higher bandwidth but the latency can vary with the traffic intensity.

Ring topological structures achieved very good energy efficiency at low to medium core

counts [3]. For a single ring system router, the routing logic needs to handle only two

processes, injecting traffic into a ring structure, when there is space, and ejecting traffic

when it is addressed to the current router [3]. In the simple structure of routers, most of the

energy consumed in the interconnects is due to link traversal in ring NoC.

1.1. Problem Statement

Design and FPGA implementation of ring Network-on-Chip (NoC) using VHDL

programming.

1.2. Objectives

 Design of Ring Network-on-Chip using VHDL Programming on Xilinx 14.2 software.

 Modeling and simulation of same Network-on-Chip (NoC) on Modelsim 10.1B

software.

 FPGA Synthesis of NoC for the same using Spartan-3E FPGA or Virtex 5 FPGA.

3

 Analysis of the NoC with different test cases.

1.3.Scope of the research

Speed and size are two important factors while designing the electronic system. It‟s Speed

of operation and flexibility to modify, measures the performance of the system operation.

Traffic handling capacity is an important element of service quality and will therefore play

a basic role in this choice Microprocessor/microcontroller (MPMC) system can handle

sequential operations with high flexibility and use of Field Programmable Gate Array

(FPGA) can handle concurrent operations with high speed in small size area. So combined

features of both these systems can enhance the performance of the system. High

Performance Hybrid Network System (HTSS) is designed using combination of stored

program control (SPC) and VLSI technology.

4

CHAPTER 2

LITERATURE REVIEW

This chapter gives a description of the work that is related to the project and its current

research status. A number of research papers have been studied which are described in the

section.

2.1. General Survey

Technology in present world is always striving to be at par with the demands of the people

and even surpass their expectations. In each and every field, for example automobiles,

robotics, electronics etc., the contest to make the technology better always continues.

Speed is considered as a priority in every aspect. In the field of electronics attaining great

speed along with the increased complexity in the physical connections is always

challenging.

Nowadays in the nanometer technology, the concept of multiple processors integrated in a

single chip is thriving. This is known as MPSoC, Multi-processor System on Chip. It really

is an achievement how a small chip can do such complex works. Since the MPSoC

comprises of complex integrated components which need to communicate with each other

at high speed. So to achieve this high speed communication, a single shared bus is not

feasible for intercommunication. Network on Chip (NoC) is a promising solution. Noc

consists of point-to-point links between routers that are arranged in a planar grid

technology.

The major challenge in NoC is to achieve high speed using parameters such as latency,

bandwidth etc. The concept of Network on Chip is a recent topic on which still

experiments are going on. The aim is to achieve good performance. Both topology and

scheduling algorithm of the NoC plays a role to achieve the desired performance with

respect to latency and average bandwidth.

Various research papers were studied to get a clearer concept about the topic. The

following papers give an idea of the research status on the topological NoCs.

5

1. A Fast, Source-synchronous Ring-based Network-on-Chip Design Ayan Mandal,

Sunil P. Khatri , Rabi N. Mahapatra, EDAA,2012 PP(1-7).

Mandal et. al.[8] presented a fast source synchronous ring-based Network-on-Chip design.

It is the first paper to demonstrate this concept using a resonant clock. Globally

Asynchronous Locally Synchronous (GALS) communication approach was studied which

is very in large multi-processor chip. As we know that as the size of the MPSoC increases

there arises more difficulty to share a single synchronous clock over the entire chip. This

led to the use of asynchronous communication between the different regions in the chip,

while each region is clocked in a synchronous manner.

The most common and simple topology of a NoC is the 2D Mesh topology, which was first

proposed by Dally and Towles as a network-on-chip architecture. The desirable features in

a network-on-chip are:

 Minimal power consumption

 Low interconnect latency

 Scalability

 High link data-rates

The main disadvantage of mesh and torus topology, which is inherent, is the large

communication radius they require, which results in large number of interconnects leadind

to a large power consumption. The paper by Mandal et.al. provides some important

conclusions. The ring based NoC is better in the following areas than a mesh topology

NoC:

 POWER: Achieved 35% gain in total power.

 AREA: Achieved 11% gain in total area.

 LATENCY: Improved the average contention free latency by 7.4X

 BANDWIDTH: Available bandwidth is 4.5X more than a regular mesh.

These above results were achieved because the rings are unidirectional, which reduces the

number of ports per intersection of horizontal and vertical links.

2. An FPGA implementation of a scalable network on chip based on token ring

concept Hadjiat K, St-Pierre F, Bois G, Svariya Y, Langevin M, Paulin P , 14th

IEEE International Conference on Electronics, Circuits and Systems, (ICECS)

2007,pp(995 – 998)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4456901
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4456901

6

Karim et.al. presented a paper on an FPGA implementation of a scalable Network-on-Chip

based on token ring concept. This paper helped us learn an insight about the token ring

concept and FPGA implementation of ring Network-on-Chip. The trend of SoC requires us

a need to integrate the complex components to attain efficient communication between the

multiple blocks. An FPGA prototype implementation of a ring network-on-chip is shown

which is based on token ring concept. They have calculated area complexity with respect

to the number of nodes.

Multiple routers are required in a network-on-chip between the source and the destination,

thus resulting in multiple queuing points. This affects the overall traffic performance.

Recently, high performance products emerged in ring topologies using only one queuing

point between the source and destination.

The following results were attained by Karim et.al:

 For about 64 nodes or less, hardware complexity is lower than mesh

implementation.

 Ring network-on-chip latency is about 5 times smaller than mesh implementation.

 A traffic load of 70% and above can be supported with 32 node version of ring

based network-on-chip using 12 channels.

The implementation has been validated by simulation on ISE tool and implemented on a

Xilinx Virtex-II Pro FPGA.

3. A Tree-Based Topology Synthesis for On-Chip Network Jason Cong, Yuhui

Huang, and Bo Yuan Computer Science Department University of California, Los

Angeles Los Angeles, USA (page 9)

The Network-on-Chip (NOC) interconnect network of future multi-processor system-on-a-

chip (MPSOC) needs to be efficient in terms of energy and delay. The custom on-chip

network, which targets a given application, has proved to be more efficient than the regular

structure on-chip network design in. The reason is that the communication requirement for

each data flow is available in the design time, so the power consumption and packet

latency are predictable once the links of networks are determined. The problem of topology

synthesis is to determine the number of routers, the location of newly added routers, and

the connectivity between them. Power consumption and packet latency are two trades off

factors for any ASIC design which are met in the research.

7

4. International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-

2307, Volume-1, Issue-6, January 2012 Bursty Communication Performance

Analysis of Network-on-Chip with Diverse Traffic Permutations, Naveen

Choudhary (page 1)

Network on Chip proposes to establish a communication infrastructure for the complex

VLSI circuit in such a way that communication between any nodes in the circuit is possible

even if the circuit blocks are not directly connected by a direct channel. Each circuit block

of the whole circuit can be assumed as an Intellectual Property (IP) which may be a

microprocessor, memory or ASIC, etc. In this paper the performance of standard 2D mesh

NOC is analyzed for bursty communication traffic for various traffic or topology mapping

patterns such as butterfly, transpose etc over a NOC simulation framework. The routing for

the NoC is assumed to be XY and OE.

8

CHAPTER 3

THEORETICAL DEVELOPMENT

This chapter shows the topics studied under this project and the detailed description of

each topic. This gives a brief idea about the theoretical development related to the project.

3.1. Ring NoC Structure

The designing block diagram of ring topological NoC is shown in fig. 1. It has 65536

nodes, arranged in a ring. Each node has its Processing Elements (PEs) and addressed by

their node addresses. Each Processing Element (PE) [5] operates in a synchronous manner,

and is assumed to operate at same frequency. The operation of the ring NoC can be

understood with the help of table 1. All 65536 nodes are counted from N0 to N65535 having

a node address of 16 bit starting from “0000000000000000” to “1111111111111111” Let

node N0 is assigned a source_address “0000000000000000”, Node N1 has address

“00000000000000001”. Similarly all the nodes can be assigned their 16 bit of address and

node N65535 is assigned source_address “1111111111111111”. In the full duplex mode, any

pair can communicate to each other and vice versa. Let N0 want to communicate in ring

network. It has the probability to be routed via any link targeting any node N1 to N65535 as

shown in fig. 2. Each PE can process intercommunication to any other PE. Table 1 list the

possibility to access other nodes. The node_address can be configured as source_address

and destination_address for the source and destination nodes respectively. Similarly all the

nodes can process intercommunication to each other. There is also the first input first

output (FIFO) logic in case of multiple nodes try to communicate to the single node. It

decides the priority of communicating nodes, based on the token structures. The data is

transferred in the form of packets to each node. A data packet is carrying the information

of source_address, destination_address and data.

9

Fig.1 Ring topological structure

Fig. 2 FIFO logic to address node

Table 1 Node selection scheme in ring NoC

Source Address (16 bit) Destination Address (16

bit)

Node Selection

0000000000000000 0000000000000000

:

1111111111111111

Node 0

:

Node 65535

0000000000000001 0000000000000000

:

1111111111111111

Node 0

:

Node 65535

0000000000000010

0000000000000000

:

1111111111111111

Node 0

:

Node 65535

10

0000000000000011

0000000000000000

:

1111111111111111

Node 0

:

Node 65535

0000000000000100

0000000000000000

:

1111111111111111

Node 0

:

Node 65535

0000000000000101

0000000000000000

:

1111111111111111

Node 0

:

Node 65535

0000000000000110

0000000000000000

:

1111111111111111

Node 0

:

Node 65535

:

:

:

:

:

:

1111111111111111

0000000000000000

:

1111111111111111

Node 0

:

Node 65535

3.2. Token Passing Local Area Networks

In these LANs the access to media is controlled by circulating a token among the stations

connected to a LAN. A station that has the token has got the authority to use the media and

transmit its frame. Token passing local area networks (LANs) can have two kinds of

topologies: ring and bus. The following are the token passing LANs:

 IEEE 802.5 token ring LAN

 IEEE 802.4 token bus LAN

3.2.1. Token Ring Local Area Network

A token passing ring consists of many stations connected in the form of a ring through

point-to-point links as shown in Fig 3. Each station acts as a repeater and regenerates the

signals it receives on one link and sends them onto the next link after a delay of atleast one

bit. The ring is unidirectional.

11

Fig 3 Token ring LAN

Suppose station A in Fig 3 wants to send a frame to station D. It breaks the ring and inserts

its frame with the destination (D) and source (A) addresses. The frame passes through the

stations B and C which act as repeaters and forward the frame to next link, while not

copying the frame as it is not addressed for them. Station D copies the frame as it finds its

address on the frame. The frame then returns back to station A continuing anticlockwise.

The frame does not circulate again as the ring is broken at station A and then Station A

removes the frame from the ring.

Thus an active station on the ring is always in one of the three modes: repeater mode, insert

mode, or copy mode.

 REPEATER MODE: The received signals are regenerated and transmitted on the

outgoing link. There is atleast one bit delay in the shift register.

 INSERT MODE: The ring is broken and the station sends its own frame on the

outgoing link. The incoming signals are received but are not sent on the ring again.

 COPY MODE: The station regenerates the received signals and sends them on the

outgoing link. It also copies the received signals for its use.

3.2.1.1.Media Access Control in Token Ring LAN

Access to the ring for passing a frame is controlled by the use of a token. The token is

passed from station to station. The physical locations of the stations of the stations on the

12

ring determine the sequence of passing the token. When a station has frames to transmit, it

seizes the token. It holds the token and sends one or more frames and then releases the

token for the next station on the ring. Fig 4 shows in detail the sequence of events when

station A sends a frame to station C and releases the token which is then picked by station

D.

 Fig 4 Media Access Control using Token

3.2.1.2.IEEE 802.5 Frame Format

IEEE 802.5 specifies two basic MAC frame format types:

 Token frame

 Data/Control frame

Token frame is three byte long and consists of start delimiter byte, access control byte, and

end delimiter byte. Data Frames vary in size depending on the size of data field. Control

frames do not have data field.

13

Fig 5 Token Frame

Fig 6 Data/Control Frame

Preamble is not required in these frames because a station receives regenerated signals

from the neighbor and its internal clock is locked to a master clock of the ring. The frame

format is described as follows:

 START DELIMITER (SD)

It is one octet long unique symbol pattern that marks the start of the frame. J and K

are special signals that enable identification of the start delimiter. Code violation

property of J and K bits is used for their detection.

 ACCESS CONTROL (AC)

It is one octet long field containing priority bits (P), token bit (T), monitoring bit

(M), and reservation bits (R) as shown below:

14

Priority bits (P) indicate the current priority level of the data or token frame.

Reservation bits (R) are used for reserving the next priority. The token bit (T)

distinguishes a token frame from a data/control frame. A station in repeater mode

which wants to send a frame waits for the token. If it finds that the token bit is 1, it

seizes the token by changing over to insert mode and breaking the ring. Minimum

one bit delay ensures that the token bit is not passed to the output port before the

ring is broken. The station then inserts 1 in place of 0 in the token bit position, and

then continues transmission of the rest of its data/control frame. Thus a token frame

is converted into data/control frame. The priority bits (P) remain unchanged in this

process.

 FRAME CONTROL (FC)

It is one octet long and differentiates between data and control frames. If FF bits are

01, then it is a data frame that contains LLC in the data field. If the FF bits are 00,

then it is a control frame. The six Z bits indicate the control function.

 Some of the control functions are as follows:

Z BITS CONTROL FUNCTION

000011 Claim Token (CT)

000010 Beacon

000100 Purge

000101 Active Monitor Present (AMP)

000000 Standby Monitor Present (SMP)

 DESTINATION ADDRESS

F F Z Z Z Z Z Z

15

It is 2 octets (local address) or 6 octets (global address) long and contains the

address of the destination station to which the source station wants to transmit the

frame.

 SOURCE ADDRESS

The source address field is 2 bytes or 6 bytes long address structure. It contains the

address of the source station which wants to transmit the frame that to the specified

destination.

 DATA FIELD

It can have 0 or more bytes. There is no maximum size, but the station can hold the

token for a limited time. The maximum size of data frame (and therefore maximum

size of data field) is determined by bit rate and the Token Holding Time (THT).

Typical maximum length of field is:

o 4500 bytes for 4 Mbps LAN

o 18000 bytes for 16 Mbps LAN

 FRAME CHECK SEQUENCE (FCS)

It is 4 bytes long and contains CRC code. It checks on DA, SA, FC, and data fields.

The source computes and sets this value and then destination too calculates this

value. If the two are different, it indicates an error, otherwise the data may be

correct.

 END DELIMITER (ED)

It is one byte long and contains an unique symbol pattern as below that marks the

end of a token or data frame. J and K are special symbols that violate the

differential Manchester code and identify the end delimiter. E bit is for error bit.

When a frame passes by a station, the station carries out FCS check on fly and if

error is detected, it sets E-bit to 1. I-bit is set to 1 by the sending station if there are

more frames to follow. It is set to 0 in the last frame.

16

 FRAME STATUS (FS)

This field is 1 byte long. It contains two address recognized bits (A-bits) and two

frame copied bits (C-bits). Every frame is sent with AC=00. When a frame passes

by a station having address same as in the DA field, the station sets A-bit to 1

indicating to the frame originating station that the destination station is alive in the

ring. If the destination station is also able to copy the frame, it sets C-bit also to 1.

Thus possible combinations of AC bits are as follows:

AC = 00, Addressed station is not on the ring.

AC = 01, Frame has been copied by the addressed station.

AC = 10, Addressed station is on the ring but the frame is not copied.

AC = 11, Invalid value of the AC field

3.2.2. Token Bus LAN

In the ring based NoC system, all the nodes are physically connected as a bus trough a

coaxial cable as shown in Fig.7, but logically form a ring. The node (station), which is

outside the ring, is considered as outer node. According to IEEE 802.4 token bus network

frame has the following fields. The frame structure of IEEE 802.4 is shown in Fig.8.

A A C C X X X X

17

Fig. 7 IEEE 802.4 Token ring bus structure

Preamble: It is used to synchronize the receiver's clock.

Starting Delimiter (SD) and End Delimiter (ED): The Starting Delimiter and Ending

Delimiter fields contain analog encoding of symbols other than 1 or 0 and are used to mark

frame boundaries. The representation of symbols is because both cannot occur accidentally

in the user data. Therefore, no length field is needed.

Frame Control (FC): The field is used to distinguish data frames from control frames. The

field carries the frame's priority for data frames and a bit which the destination can set as

an acknowledgement. Similarly, the Frame Control field is used to specify the frame type,

for control frames. The data frame and control frame include token passing and various

ring maintenance frames.

Fig. 8 IEEE 802.4 frame structure

18

Destination and source address: The field is used to provide the Destination node and

source node address fields. The field may be l and global address. It is of bytes for a local

address and 6 bytes for a global address.

Data: The Data field is always variable carries the actual data. It may be 8182 bytes when

2 byte addresses are used and 8174 bytes for 6 byte addresses.

Checksum: Checksum field is used in error detection. A 4-byte checksum can be used in

the calculations of data.

3.3. Data Path Architecture

The data path architecture of the ring NoC is shown in fig. 9. It consists of (16 x 65536)

decoder and (65536 x 1) demultiplexer. The source address and destination address are

configured with the help of 16 address lines (A0–A15).

Fig. 9 Data path architecture

The 16 bit input decoder can have 65536 output lines, which are be assigned as number of

nodes. Each node has control signals read_enable and write_enable to perform read and

19

write operations. The nodes are carrying data of 8182 bytes. The data transfer is possible to

one node only at a time, based on the priority logic and FIFO selection. The logic to select

the same functionality is demultiplexer. Demultiplexer (1 x 65536) has 65536 inputs with

16 bit address bus (A0 – A15) and one output. The memory control unit performs write and

read operations.

20

CHAPTER 4

RESEARCH METHODOLOGY

FPGA design methodology supports both top-down and bottom-up design methodology.

FPGA design flows support modular design approaches for bottom-up methodology and

hierarchical design partitioning for top-down design methodology, similar to the process

used for traditional standard cell ASIC devices. Xilinx design software also supports newer

standards such as VHDL/ Verilog HDL that are becoming a part of traditional standard cell

ASIC design methodology. For team-based designs that are typical of ASIC-size designs,

the ISE Design Suit software supports incremental compilation methodology. For designs

using hard copy ASICs to achieve higher performance than the companion FPGA, it is

recommended that you use the hard copy first flow. Flight information controller design

development includes the following steps for both FPGAs and traditional standard cell

ASICs.

 Top-down or bottom-up methodology selection

 RTL coding in Xilinx tool

 Hardware optimization using in Xilinx tool

 Simulation and functional verification in Modelsim

 Specification of the external and internal memory Synthesis

 View synthesis report

4.1. FPGA and Project Design Flow

FPGA stand for Field-Programmable Gate Array and is an integrated circuit that can be

programmed after it is manufactured, hence its name “Field Programmable”. There are two

different types of FPGAs, one that only can be programmed once called One-Time

Programmable, OTP, and one that is reprogrammable. OTP technology is much more

common in space qualified designs because it is in general more robust than the

reprogrammable one. But as Bonacini et al. (2006) writes, the in-system reprogram ability

of FPGAs is of great importance giving extreme flexibility to the application, which can be

updated in case of changing requirements or failure recovery.

To be programmable a FPGA contains numerous configuration switches that after

programming routes the different Logic Blocks, LB, together. Described by Pellerin and

21

Thibault (2005), a typical FPGA contains Logic Blocks that make up the bulk of the device

and they are based on Lookup Tables, LUT, (of perhaps four or five binary inputs)

combined with one or two single-bit registers and additional logic elements such as clock

enables and multiplexers. These Logic Blocks and LUTs look differently depending on the

technology used, different companies use different technologies, but it usually also differ

between product series within a company. These Logic Blocks are then connected through

a grid surrounding them, which also connect with the I/O pins at the edges of the chip.

Fig. 10 FPGA View

Many FPGAs provide internal SRAMs located between the Logic Blocks to greatly

improve functionality. This feature opens up to new possibilities although it also brings

about another trait that is usually sensitive to radiation. But despite that the use of SRAM-

based FPGA is growing in space based applications because of low application

development cost, short time to market, and the reprogramming flexibility that they offer,

the need is recognized and today there are FPGAs with radiation tolerant SRAM designs.

Other FPGAs also include additional internal blocks to increase the performance in

different applications: like internal DLLs/PLLs; multipliers or even more advanced DSP

block (DSP Slices,); hard-macro processors (Power PCs,); high speed serial links; etc. But

these bring about even more radiation issues to overcome.

22

4.1.1. Project design flow: Fig. 14 shows a flow chart over the design process when a

design is implemented into an FPGA. This flow was followed with all designs in this

project and so became an important structure in the project plan. For those that is not

familiar with these concepts a short description will follow. For more case specific see all

the steps listed below at front end design.

Fig. 11 FPGA Design project flow

4.2. Software Development Tools

FPGA implementation includes the following software development tools

4.2.1. Project navigator Application Version 6.1i or ISE 14.2 of Xilinx Company

Xilinx has been a semiconductor industry leader at the forefront of technology, market and

business achievement. It is a tool to design the IC and to view their RTL (Register

Transfer Logic) schematic .It is a tool to test the code on FPGA environment and we can

get the all parameters details required to implement the chip.

23

4.2.2. Model SimEE 10.1 B

The combination of industry-leading, native SKS performance with the best integrated

debug and analysis environment make ModelSim the simulator of choice for both ASIC

and FPGA design. The best standards and platform support in the industry make it easy to

adopt in the majority of process and tool flows.

4.2.3. ModelSim: Simulation and Debug

ModelSim EE is the industry-leading, Windows-based simulator for VHDL, Verilog, or

mixed-language simulation environments.

4.2.4. ModelSim EE Features:

 - Partial VHDL 2008 support

- Transaction wlf logging support in all languages including VHDL

- Windows7 a 32 Support

- SecureIP support

- SystemC option

- RTL and Gate-Level Simulation

- Integrated Debug

- Verilog, VHDL and SystemVerilog Design

- Mixed-HDL Simulation option

- Code Coverage option

4.2.5. ModelSim EE Benefits:

- Cost-effective HDL simulation solution,

- Intuitive GUI for efficient interactive debug,

- Integrated project management simplifies managing project data,

- Easy to use with outstanding technical support,

- Sign-off support for popular ASIC libraries,

- Hardware debugging

- Functional simulation

The following diagram shows the basic steps for simulating a design in ModelSim.

24

Fig. 12 Chip Design Process Flow

• Creating the Working Library: In ModelSim, all designs are compiled into a library.

Typically start a new simulation in ModelSim by creating a working library called "work,"

which is the default library name used by the compiler as the default destination for

compiled design units.

• Compiling Design: After creating the working library, design is being compiled into it.

The ModelSim library format is compatible across all supported platforms.

• Loading and Running the Simulator with the Design: With the design compiled, we load

the simulator with design by invoking the simulator on a top-level module (Verilog) or a

configuration or entity/architecture pair (VHDL). Assuming the design loads successfully,

the simulation time is set to zero, and you enter a run command to begin simulation.

 Debugging: ModelSim‟s robust debugging environment is used to track down the

cause of the problem.

25

CHAPTER 5

RESULTS AND DISCUSSIONS

The modeling and design of the RoC is done in Xilinx 14.2 ISE and function simulation is

carried out in Modelsim 10.1. The data transfer is carried out for the different test cases

and it has shown 100 % successful data transmission form source to destination node. The

RTL view of developed chip is shown in the Fig. 11 and the functional details of RTL pins

is discussed in table 2.The functional simulation of NoC is shown in Fig.12, shows the data

transfer scheme from node N4 to node N32. The source_address = “000100” and

destination_address = “100000”. The input data is transferred from node

N4input_data_packet = 1‟h 12345678ABCDABCD……AD (hex data) and same data is

received at node N32 = 1‟h 12345678ABCDABCD….AD (hex data). The data is received

at the positive edge of the clock pulse. The clock signal is synchronized with the reset.

FIFO_EMPTY and FIFO_FULL show the status of, FIFO logic or the priority of the

source node. The destination node is free for intercommunication, then FIFO_EMPTY=

„1‟ and FIFO_FULL = „0‟.

The functional simulation depends on the following steps input:

Step input 1: Reset = „1‟ and run, output_data_packet will contains zero output.

Step input 2: Reset = „0‟, Apply rising edge clock pulse, source_address and

destination_address value and 64 bit data of destination node with input_data_packet, then

run.

Step input 3: Apply the source address and destination address of another nodes and data

on input_data_packet.to run

Step input 4: check the output_data_packet of destination node and status of FIFO logic

using FIFO_FULL and FIFO_EMPTY inputs.

26

Fig. 13 RTL view of RoC

Fig.14 Modelsim simulation for intercommunication in ring NoC

27

Table 2 Pin details of ring NoC for (N=65536)

Pins Description

Reset Used to reset the memory contents zero for synchronization of the

components by using clk of std_logic (1 bit)

Clk Default input for sequential logic to work on rising edge of clock

pulse of std_logic.(1 bit)

source_address [15:0] Address of source node of std_logic_vector (16 bit)

destination_address

[15:0]

Address of destination node of std_logic_vector (16 bit)

input_data_packet

[8182x 8:0]

Input data of the source node of std_logic_vector (8182bytes)

output_data_packet

[8182x 8:0]

Output data of the source node of std_logic_vector (8182bytes)

FIFO_EMPTY Status of FIFO priority logic, signifies that node is free to

communicate of std_logic (1 bit)

FIFO_Full Status of FIFO priority logic, signifies that commutating node is

not free, source subscriber is in assigned priority based on FIFO

logic of std_logic (1 bit)

write_en Control signal to perform memory write operation with respect to

individual node of std_logic(1 bit)

read_en Control signal to perform memory read operation with respect to

individual node of std_logic(1 bit)

28

CHAPTER 6

SYNTHESIS AND EXPERIMENTAL ANALYSIS

The node data transfer is also verified with the experimental set up carried with the help of

Digilent manufactured Virtex FPGA. The parameters supports to FPGA synthesis are

discussed as device utilization and timing parameters. The block diagram of an

experimental set up is shown in fig. 8. The experiment is carried out to validate the data

transfer among inlets/outlets using Virtex -5 FPGA. Two 9-pin RS-232 ports assist in the

transmission of serial data to and fro from the FPGA board. 50 MHz clock oscillator is the

system clock provides the clock signal to the various events taking place within the FPGA

and the various programs that require clock for their working. The input switches are given

the source_address [5:0] and destination_address [5:0], reset and clock input to the FPGA

board, the logged data can be shown on the motherboard of the PC. The

onboard Xilinx Virtex-5 user FPGA is directly coupled to multiple independent banks of

DDR2 SDRAM and QDR-II SRAM memory providing up to 13GBytes/sec of sustained

memory bandwidth to the FPGA. Optimized memory controller IP cores and reference

designs are included as part of the product deliverables along with VHDL source code and

API for Windows operating systems. The DATA-V5 is tightly integrated to the Host

computer via an 8-lane PCI Express connection supporting sustained bandwidths of up to

2.38GBytes/sec.

Fig. 15 FPGA synthesis block diagram

29

Fig.16 (A)

Fig. 16(B)

30

Fig. 16(C)

Fig. 16(D)

31

Fig. 16(E)

Fig. 16(F)

Fig 16 FPGA Results

32

6.1.Device Utilization And Timing Summary

Device utilization report gives the percentage utilization of device hardware for the chip

implementation. Device hardware includes no. of slices, no. of flip flops, no. of input

LUTs, no. of bounded IoBs, and no of gated clocks (GCLKs) used in the implementation

of design. Timing details provides the information of delay, minimum period, maximum

frequency, minimum input arrival time before clock and maximum output required time

after clock. Table 3 and table 4 show the synthesis results as device utilization and timing

parameters for ring NoC. Total memory utilization required to complete the design is also

listed for individual stage. The target device is: xc5vlx20t-2-ff323 synthesized with Virtex-

5 FPGA.

Table 3 Device utilization in ring NoC, for N = 65536

Device Utilization

Number of Slices 128 out of 12480, 1%

Number of Slice Flip

Flops

493 out of 12480, 3%

Number of 4 input LUTs 128 out of 493, 25%

Number of bonded IOBs 156 out of 172, 90%

Number of GCLKs 1 out of 32, 3%

Table 4 Timing parameters for ring NoC, for N = 65536

Timing parameter Utilization

Minimum period 1.867ns

Maximum frequency 535.733MHz

Minimum input arrival time before

clock

4.090ns

Number of bonded IOBs 2.830ns

Total memory usage 263208 kB

The results are compared with ref [3], and ref [7]. In the ref. paper [3] the ring NoC was

designed for 16 nodes, support to 2 GHz clock frequency. The ref [7], the ring NoC

configuration was designed for 32 nodes on a Xilinx VP100, supports an aggregate

bandwidth of about 12 GB/s. The design developed by us supports ring NoC structure for

33

65536 with the integration of FIFO priority logic, 535.733MHz frequency and synthesized

on Virtex-5 FPGA. Moreover, Virtex -5 support the developed design for 50 MHz clock

frequency and 13GBytes/sec bandwidth. Hence the developed design is an optimal solution

in comparison to the existing solutions, support larger no. of nodes.

34

CHAPTER 7

CONCLUSION

The RoC or ring NoC chip design and modeling is done in Xilinx 14.2 and functionally

simulated in Modelsim 10.1 b software. The NoC chip is designed to communicate 65536

nodes and intercommunication is checked with the data packet arrival on the destination

node. There is an integration of token ring concept designed as FIFO logic, to assign the

priority of communicating nodes at same instance. The nodes are identified with their node

addresses and hardware parameters such as no. of logic gates, no of LUTs, memory

utilization and minimum and maximum time values to route the packets are extracted from

the Xilinx synthesis results. The results are validated with the data transfer among nodes

with the help of Virtex-5 FPGA. The results present an optimal solution over existing ring

NoC configured structures. NoC design and FPGA synthesis is a significant effort to

design the programmable and reconfigurable structure for ring topological network. In

future same structure can be configured for more number of nodes. It is also possible to

integrate the concept of cryptographic techniques of encryption and decryption for

transferring data among nodes.

35

REFERENCES

[1] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Evaluation of current QoS

mechanisms in networks on chip,” in Proceedings of the International Symposium on

System-on-Chip, (SOC’06), pp. 1–4, Tampere, Finland, November 2006.

[2] Andreas Hansson, Kees Goossens and Andrei Radulescu “A Unified Approach to

Mapping and Routing on a Network-on-Chip for Both Best-Effort and Guaranteed Service

Traffic”VLSI Design, Hindawi Publishing Corporation Vol. 2007, pp (1-16).

[3] Ayan Mandal, Sunil P. Khatri , Rabi N. Mahapatra “A Fast, Source-synchronous Ring-

based Network-on-Chip Design” EDAA,2012 PP(1-7).

[4] David Atienzaa, Federico Angiolini, Srinivasan Murali, Antonio Pullinid Luca Beninic,

Giovanni De Michelia, “Network-on-Chip design and synthesis outlook” Integration The

VLSI Journal Elsevier, Vol. 41 , pp(340-359), 2008.

[5] Ganghee Lee, Kiyoung Choi, and Nikil D. Dutt, “Mapping Multi-Domain Applications

onto Coarse-Grained Reconfigurable Architectures” IEEE Transaction on Computer Aided

Design of Integrated Circuits and Systems, Vol. 30, No. 5, pp (637-650) , May 2011.

[6] Francois Deslauriers, Michel Langevin, Guy Bois, Yvon Savaria, Pierre Paulin, RoC: A

Scalable Network on Chip Based on the Token Ring Concept, IEEE Xplore, 2006, pp(157-

158).

[7] Hadjiat K, St-Pierre F, Bois G, Svariya Y, Langevin M, Paulin P “An FPGA

implementation of a scalable network on chip based on token ring concept” 14th IEEE

International Conference on Electronics, Circuits and Systems, (ICECS) 2007,pp(995 –

998)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4456901

36

[8] HaoTian, Ajay K. Katangur, JilingZhong Yi Pan “A Novel Multistage Network

Architecture with Multicast and Broadcast Capability” The Journal of Supercomputing,

Springer, Vol.35, 2006, pp (277–300)

[9] Jason Cong, Yuhui Huang, and Bo Yuan “A Tree-Based Topology Synthesis for On-

Chip Network” Computer Science Department, University of California, Los Angeles,

USA, IEEE Conference Proceedings, pp (650-658), 2011.

[10] Muhammad Aqeel Wahlah, Kees Goossens, “A test methodology for the non-

intrusive online testing of FPGA with hardwired network on chip” Microprocessors and

Microsystems, Elsevier (2012), pp (1-18)

[11] Teijo Lehtonen, Pasi Liljeberg, and Juha Plosila “Online Reconfigurable Self-Timed

Links for Fault Tolerant NoC” VLSI Design, Hindawi Publishing Corporation (2007), pp

(1-13)

[12] Vasilis F. Pavlidis, Eby G. Friedman “3-D Topologies for Networks-on-Chip” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 15, No. 10, October

2007,pp (1081-1091),

[13] Naveen Choudhary “Bursty Communication Performance Analysis of Network-on-

Chip with Diverse Traffic Permutations”, International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-1, Issue-6, January 2012, (page 1)

37

APPENDIX

1. FINAL CODE

i. ROM decoder

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entityROMdecoder is

 Port (A : in std_logic_vector(0 to 3);

 Write: in std_logic;

 read: in std_logic;

D : out std_logic_vector(0 to 15));

endROMdecoder;

architecture Behavioral of ROMdecoder is

begin

process(A, write,read)

begin

if(write = '1' and read = '0') then

Case A is

when "0000" =>

D <= "1000000000000000";

when "0001" =>

D <= "0100000000000000";

when "0010" =>

D <= "0010000000000000";

when "0011" =>

D <= "0001000000000000";

when "0100" =>

D <= "0000100000000000";

38

when "0101" =>

D <= "0000010000000000";

when "0110" =>

D <= "0000001000000000";

when "0111" =>

D <= "0000000100000000";

when "1000" =>

D <= "0000000010000000";

when "1001" =>

D <= "0000000001000000";

when "1010" =>

D <= "0000000000100000";

when "1011" =>

D <= "0000000000010000";

when "1100" =>

D <= "0000000000001000";

when "1101" =>

D <= "0000000000000100";

when "1110" =>

D <= "0000000000000010";

when "1111" =>

D <= "0000000000000001";

when others => null ;

end case ;

end if;

end process ;

end Behavioral;

ii. ROM demux

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

39

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;

--use UNISIM.VComponents.all;

entity ROMdemux is

 Port (Enable : in std_logic;

add_line : in std_logic_vector(0 to 3);

 write: in std_logic;

 read : in std_logic;

dest_node : out std_logic_vector(0 to 15));

end ROMdemux;

architecture Behavioral of ROMdemux is

begin

process(enable ,add_line,write,read)

begin

if (enable='1')then

if(write = '0' and read ='1') then

caseadd_line is

when "0000"=>

dest_node<= "1000000000000000" ;

when "0001"=>

dest_node<= "0100000000000000" ;

when "0010"=>

dest_node<= "0010000000000000" ;

when "0011"=>

dest_node<= "0001000000000000" ;

when "0100"=>

dest_node<= "0000100000000000" ;

when "0101"=>

dest_node<= "0000010000000000" ;

when "0110"=>

40

dest_node<= "0000001000000000" ;

when "0111"=>

dest_node<= "0000000100000000" ;

when "1000"=>

dest_node<= "0000000010000000" ;

when "1001"=>

dest_node<= "0000000001000000" ;

when "1010"=>

dest_node<= "0000000000100000" ;

when "1011"=>

dest_node<= "0000000000010000" ;

when "1100"=>

dest_node<= "0000000000001000" ;

when "1101"=>

dest_node<= "0000000000000100" ;

when "1110"=>

dest_node<= "0000000000000010" ;

when "1111"=>

dest_node<= "0000000000000001" ;

when others => null;

end case ;

end if ;

end if;

end process ;

end Behavioral;

iii. Token RING

Library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

packagering_pack is

typet_noc is array (0 to 15) of std_logic_vector(63 downto 0);

41

end package ring_pack;

--end of package

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

usework.ring_pack.all;

entityToken_Logic is

Port(data_in : in t_noc;

data_out : out t_noc;

source_ring_address : in std_logic_vector(0 to 3);

destination_ring_address : in std_logic_vector(0 to 3));

endToken_Logic;

architecture Behavioral of Token_Logic is

begin

process(data_in,source_ring_address,destination_ring_address)

begin

casesource_ring_address is

when "0000" =>

Case destination_ring_address is

--Destination node 0

when "0000"=>

data_out(0) <= data_in(0);

when "0001" =>

data_out(1) <= data_in(0);

when "0010" =>

data_out(2) <= data_in(0);

when "0011" =>

data_out(3) <= data_in(0);

when "0100" =>

data_out(4) <= data_in(0);

when "0101" =>

data_out(5) <= data_in(0);

when "0110" =>

42

data_out(6) <= data_in(0);

when "0111" =>

data_out(7) <= data_in(0);

when "1000" =>

data_out(8) <= data_in(0);

when "1001" =>

data_out(9) <= data_in(0);

when "1010" =>

data_out(10) <= data_in(0);

when "1011" =>

data_out(11) <= data_in(0);

when "1100" =>

data_out(12) <= data_in(0);

when "1101" =>

data_out(13) <= data_in(0);

when "1110" =>

data_out(14) <= data_in(0);

when "1111" =>

data_out(15) <= data_in(0);

when others=>

null;

end case;

when "0001" =>

Case destination_ring_address is

--Destination node 1

when "0000"=>

data_out(0) <= data_in(1);

when "0001" =>

data_out(1) <= data_in(1);

when "0010" =>

data_out(2) <= data_in(1);

when "0011" =>

data_out(3) <= data_in(1);

when "0100" =>

43

data_out(4) <= data_in(1);

when "0101" =>

data_out(5) <= data_in(1);

when "0110" =>

data_out(6) <= data_in(1);

when "0111" =>

data_out(7) <= data_in(1);

when "1000" =>

data_out(8) <= data_in(1);

when "1001" =>

data_out(9) <= data_in(1);

when "1010" =>

data_out(10) <= data_in(1);

when "1011" =>

data_out(11) <= data_in(1);

when "1100" =>

data_out(12) <= data_in(1);

when "1101" =>

data_out(13) <= data_in(1);

when "1110" =>

data_out(14) <= data_in(1);

when "1111" =>

data_out(15) <= data_in(1);

When others=> null;

end case;

--Destination node 2

when "0010" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(2);

when "0001" =>

data_out(1) <= data_in(2);

when "0010" =>

data_out(2) <= data_in(2);

44

when "0011" =>

data_out(3) <= data_in(2);

when "0100" =>

data_out(4) <= data_in(2);

when "0101" =>

data_out(5) <= data_in(2);

when "0110" =>

data_out(6) <= data_in(2);

when "0111" =>

data_out(7) <= data_in(2);

when "1000" =>

data_out(8) <= data_in(2);

when "1001" =>

data_out(9) <= data_in(2);

when "1010" =>

data_out(10) <= data_in(2);

when "1011" =>

data_out(11) <= data_in(2);

when "1100" =>

data_out(12) <= data_in(2);

when "1101" =>

data_out(13) <= data_in(2);

when "1110" =>

data_out(14) <= data_in(2);

when "1111" =>

data_out(15) <= data_in(2);

When others=> null;

end case;

--Destination node 3

when "0011" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(3);

45

when "0001" =>

data_out(1) <= data_in(3);

when "0010" =>

data_out(2) <= data_in(3);

when "0011" =>

data_out(3) <= data_in(3);

when "0100" =>

data_out(4) <= data_in(3);

when "0101" =>

data_out(5) <= data_in(3);

when "0110" =>

data_out(6) <= data_in(3);

when "0111" =>

data_out(7) <= data_in(3);

when "1000" =>

data_out(8) <= data_in(3);

when "1001" =>

data_out(9) <= data_in(3);

when "1010" =>

data_out(10) <= data_in(3);

when "1011" =>

data_out(11) <= data_in(3);

when "1100" =>

data_out(12) <= data_in(3);

when "1101" =>

data_out(13) <= data_in(3);

when "1110" =>

data_out(14) <= data_in(3);

when "1111" =>

data_out(15) <= data_in(3);

When others=> null;

end case;

--Destination node 4

46

when "0100" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(4);

when "0001" =>

data_out(1) <= data_in(4);

when "0010" =>

data_out(2) <= data_in(4);

when "0011" =>

data_out(3) <= data_in(4);

when "0100" =>

data_out(4) <= data_in(4);

when "0101" =>

data_out(5) <= data_in(4);

when "0110" =>

data_out(6) <= data_in(4);

when "0111" =>

data_out(7) <= data_in(4);

when "1000" =>

data_out(8) <= data_in(4);

when "1001" =>

data_out(9) <= data_in(4);

when "1010" =>

data_out(10) <= data_in(4);

when "1011" =>

data_out(11) <= data_in(4);

when "1100" =>

data_out(12) <= data_in(4);

when "1101" =>

data_out(13) <= data_in(4);

when "1110" =>

data_out(14) <= data_in(4);

when "1111" =>

data_out(15) <= data_in(4);

47

When others=> null;

end case;

--Destination node 5

when "0101" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(5);

when "0001" =>

data_out(1) <= data_in(5);

when "0010" =>

data_out(2) <= data_in(5);

when "0011" =>

data_out(3) <= data_in(5);

when "0100" =>

data_out(4) <= data_in(5);

when "0101" =>

data_out(5) <= data_in(5);

when "0110" =>

data_out(6) <= data_in(5);

when "0111" =>

data_out(7) <= data_in(5);

when "1000" =>

data_out(8) <= data_in(5);

when "1001" =>

data_out(9) <= data_in(5);

when "1010" =>

data_out(10) <= data_in(5);

when "1011" =>

data_out(11) <= data_in(5);

when "1100" =>

data_out(12) <= data_in(5);

when "1101" =>

data_out(13) <= data_in(5);

when "1110" =>

48

data_out(14) <= data_in(5);

when "1111" =>

data_out(15) <= data_in(5);

When others=> null;

end case;

--Destination node 6

when "0110" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(6);

when "0001" =>

data_out(1) <= data_in(6);

when "0010" =>

data_out(2) <= data_in(6);

when "0011" =>

data_out(3) <= data_in(6);

when "0100" =>

data_out(4) <= data_in(6);

when "0101" =>

data_out(5) <= data_in(6);

when "0110" =>

data_out(6) <= data_in(6);

when "0111" =>

data_out(7) <= data_in(6);

when "1000" =>

data_out(8) <= data_in(6);

when "1001" =>

data_out(9) <= data_in(6);

when "1010" =>

data_out(10) <= data_in(6);

when "1011" =>

data_out(11) <= data_in(6);

when "1100" =>

49

data_out(12) <= data_in(6);

when "1101" =>

data_out(13) <= data_in(6);

when "1110" =>

data_out(14) <= data_in(6);

when "1111" =>

data_out(15) <= data_in(6);

When others=> null;

end case;

--Destination node 7

when "0111" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(7);

when "0001" =>

data_out(1) <= data_in(7);

when "0010" =>

data_out(2) <= data_in(7);

when "0011" =>

data_out(3) <= data_in(7);

when "0100" =>

data_out(4) <= data_in(7);

when "0101" =>

data_out(5) <= data_in(7);

when "0110" =>

data_out(6) <= data_in(7);

when "0111" =>

data_out(7) <= data_in(7);

when "1000" =>

data_out(8) <= data_in(7);

when "1001" =>

data_out(9) <= data_in(7);

when "1010" =>

data_out(10) <= data_in(7);

50

when "1011" =>

data_out(11) <= data_in(7);

when "1100" =>

data_out(12) <= data_in(7);

when "1101" =>

data_out(13) <= data_in(7);

when "1110" =>

data_out(14) <= data_in(7);

when "1111" =>

data_out(15) <= data_in(7);

When others=> null;

end case;

--Destination node 8

when "1000" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(8);

when "0001" =>

data_out(1) <= data_in(8);

when "0010" =>

data_out(2) <= data_in(8);

when "0011" =>

data_out(3) <= data_in(8);

when "0100" =>

data_out(4) <= data_in(8);

when "0101" =>

data_out(5) <= data_in(8);

when "0110" =>

data_out(6) <= data_in(8);

when "0111" =>

data_out(7) <= data_in(8);

when "1000" =>

data_out(8) <= data_in(8);

51

when "1001" =>

data_out(9) <= data_in(8);

when "1010" =>

data_out(10) <= data_in(8);

when "1011" =>

data_out(11) <= data_in(8);

when "1100" =>

data_out(12) <= data_in(8);

when "1101" =>

data_out(13) <= data_in(8);

when "1110" =>

data_out(14) <= data_in(8);

when "1111" =>

data_out(15) <= data_in(8);

When others=> null;

end case;

--Destination node 9

when "1001" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(9);

when "0001" =>

data_out(1) <= data_in(9);

when "0010" =>

data_out(2) <= data_in(9);

when "0011" =>

data_out(3) <= data_in(9);

when "0100" =>

data_out(4) <= data_in(9);

when "0101" =>

data_out(5) <= data_in(9);

when "0110" =>

data_out(6) <= data_in(9);

52

when "0111" =>

data_out(7) <= data_in(9);

when "1000" =>

data_out(8) <= data_in(9);

when "1001" =>

data_out(9) <= data_in(9);

when "1010" =>

data_out(10) <= data_in(9);

when "1011" =>

data_out(11) <= data_in(9);

when "1100" =>

data_out(12) <= data_in(9);

when "1101" =>

data_out(13) <= data_in(9);

when "1110" =>

data_out(14) <= data_in(9);

when "1111" =>

data_out(15) <= data_in(9);

When others=> null;

end case;

--Destination node 10

when "1010" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(10);

when "0001" =>

data_out(1) <= data_in(10);

when "0010" =>

data_out(2) <= data_in(10);

when "0011" =>

data_out(3) <= data_in(10);

when "0100" =>

data_out(4) <= data_in(10);

53

when "0101" =>

data_out(5) <= data_in(10);

when "0110" =>

data_out(6) <= data_in(10);

when "0111" =>

data_out(7) <= data_in(10);

when "1000" =>

data_out(8) <= data_in(10);

when "1001" =>

data_out(9) <= data_in(10);

when "1010" =>

data_out(10) <= data_in(10);

when "1011" =>

data_out(11) <= data_in(10);

when "1100" =>

data_out(12) <= data_in(10);

when "1101" =>

data_out(13) <= data_in(10);

when "1110" =>

data_out(14) <= data_in(10);

when "1111" =>

data_out(15) <= data_in(10);

When others=> null;

end case;

--Destination node 11

when "1011" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(11);

when "0001" =>

data_out(1) <= data_in(11);

when "0010" =>

data_out(2) <= data_in(11);

54

when "0011" =>

data_out(3) <= data_in(11);

when "0100" =>

data_out(4) <= data_in(11);

when "0101" =>

data_out(5) <= data_in(11);

when "0110" =>

data_out(6) <= data_in(11);

when "0111" =>

data_out(7) <= data_in(11);

when "1000" =>

data_out(8) <= data_in(11);

when "1001" =>

data_out(9) <= data_in(11);

when "1010" =>

data_out(10) <= data_in(11);

when "1011" =>

data_out(11) <= data_in(11);

when "1100" =>

data_out(12) <= data_in(11);

when "1101" =>

data_out(13) <= data_in(11);

when "1110" =>

data_out(14) <= data_in(11);

when "1111" =>

data_out(15) <= data_in(11);

When others=> null;

end case;

--Destination node 12

when "1100" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(12);

55

when "0001" =>

data_out(1) <= data_in(12);

when "0010" =>

data_out(2) <= data_in(12);

when "0011" =>

data_out(3) <= data_in(12);

when "0100" =>

data_out(4) <= data_in(12);

when "0101" =>

data_out(5) <= data_in(12);

when "0110" =>

data_out(6) <= data_in(12);

when "0111" =>

data_out(7) <= data_in(12);

when "1000" =>

data_out(8) <= data_in(12);

when "1001" =>

data_out(9) <= data_in(12);

when "1010" =>

data_out(10) <= data_in(12);

when "1011" =>

data_out(11) <= data_in(12);

when "1100" =>

data_out(12) <= data_in(12);

when "1101" =>

data_out(13) <= data_in(12);

when "1110" =>

data_out(14) <= data_in(12);

when "1111" =>

data_out(15) <= data_in(12);

When others=> null;

end case;

--Destination node 13

56

when "1101" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(13);

when "0001" =>

data_out(1) <= data_in(13);

when "0010" =>

data_out(2) <= data_in(13);

when "0011" =>

data_out(3) <= data_in(13);

when "0100" =>

data_out(4) <= data_in(13);

when "0101" =>

data_out(5) <= data_in(13);

when "0110" =>

data_out(6) <= data_in(13);

when "0111" =>

data_out(7) <= data_in(13);

when "1000" =>

data_out(8) <= data_in(13);

when "1001" =>

data_out(9) <= data_in(13);

when "1010" =>

data_out(10) <= data_in(13);

when "1011" =>

data_out(11) <= data_in(13);

when "1100" =>

data_out(12) <= data_in(13);

when "1101" =>

data_out(13) <= data_in(13);

when "1110" =>

data_out(14) <= data_in(13);

when "1111" =>

data_out(15) <= data_in(13);

57

When others=> null;

end case;

--Destination node 14

when "1110" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(14);

when "0001" =>

data_out(1) <= data_in(14);

when "0010" =>

data_out(2) <= data_in(14);

when "0011" =>

data_out(3) <= data_in(14);

when "0100" =>

data_out(4) <= data_in(14);

when "0101" =>

data_out(5) <= data_in(14);

when "0110" =>

data_out(6) <= data_in(14);

when "0111" =>

data_out(7) <= data_in(14);

when "1000" =>

data_out(8) <= data_in(14);

when "1001" =>

data_out(9) <= data_in(14);

when "1010" =>

data_out(10) <= data_in(14);

when "1011" =>

data_out(11) <= data_in(14);

when "1100" =>

data_out(12) <= data_in(14);

when "1101" =>

data_out(13) <= data_in(14);

58

when "1110" =>

data_out(14) <= data_in(14);

when "1111" =>

data_out(15) <= data_in(14);

When others=> null;

end case;

--Destination node 15

when "1111" =>

Case destination_ring_address is

when "0000"=>

data_out(0) <= data_in(15);

when "0001" =>

data_out(1) <= data_in(15);

when "0010" =>

data_out(2) <= data_in(15);

when "0011" =>

data_out(3) <= data_in(15);

when "0100" =>

data_out(4) <= data_in(15);

when "0101" =>

data_out(5) <= data_in(15);

when "0110" =>

data_out(6) <= data_in(15);

when "0111" =>

data_out(7) <= data_in(15);

when "1000" =>

data_out(8) <= data_in(15);

when "1001" =>

data_out(9) <= data_in(15);

when "1010" =>

data_out(10) <= data_in(15);

when "1011" =>

data_out(11) <= data_in(15);

59

when "1100" =>

data_out(12) <= data_in(15);

when "1101" =>

data_out(13) <= data_in(15);

when "1110" =>

data_out(14) <= data_in(15);

when "1111" =>

data_out(15) <= data_in(15);

When others=> null;

end case;

when others=> null;

end case;

end process;

end Behavioral;

iv. MAIN PROGRAM

--program

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

usework.ring_pack.all;

entityring_noc is

 Port (node_data_in : in t_noc;

node_data_out : out t_noc;

clk : in std_logic;

reset : in std_logic;

read : in std_logic;

write : in std_logic;

source_node_address : in std_logic_vector(0 to 3);

 destination_node_address : in std_logic_vector(0 to 3);

enable : in std_logic);

endring_noc;

architecture Behavioral of ring_noc is

60

componentROMdecoder is

Port (A : in std_logic_vector(0 to 3);

 Write: in std_logic;

read: in std_logic;

D : out std_logic_vector(0 to 15));

end component ;

component ROMdemux is

Port(enable : in std_logic;

add_line : in std_logic_vector(0 to 3);

Write: in std_logic;

read: in std_logic;

dest_node : out std_logic_vector(0 to 15));

end component ;

componenttoken_Logic is

 Port (data_in : in t_noc;

data_out : out t_noc;

source_ring_address : in std_logic_vector(0 to 3);

 destination_ring_address : in std_logic_vector(0 to 3));

end component;

SIGNAL M : std_logic_vector(0 to 15);

signal N : std_logic_vector(0 to 15);

begin

U1: ROMdecoder port map(A(3)=>source_node_address(3),

A(2)=>source_node_address(2),

 A(1)=>source_node_address(1),

 A(0)=>source_node_address(0),

 D(0)=> M(0),

 D(1)=> M(1) ,

 D(2)=> M(2),

 D(3)=> M(3),

 D(4)=> M(4),

61

 D(5)=> M(5),

 D(6)=> M(6),

 D(7)=> M(7),

 D(8)=> M(8),

 D(9)=> M(9),

 D(10)=> M(10),

 D(11)=> M(11),

 D(12)=> M(12),

 D(13)=> M(13),

 D(14)=> M(14),

 D(15)=> M(15),

 write => write,

 read => read);

U2 :ROMdemux port map (enable=> enable ,

add_line(0)=>destination_node_address(0),

 add_line(1)=>destination_node_address(1),

 add_line(2)=>destination_node_address(2),

 add_line(3)=>destination_node_address(3),

 dest_node(0)=> N(0),

 dest_node(1)=> N(1),

 dest_node(2)=> N(2),

 dest_node(3)=> N(3),

 dest_node(4)=> N(4),

 dest_node(5)=> N(5),

 dest_node(6)=> N(6),

 dest_node(7)=> N(7),

 dest_node(8)=> N(8),

 dest_node(9)=> N(9),

 dest_node(10)=> N(10),

 dest_node(11)=> N(11),

 dest_node(12)=> N(12),

 dest_node(13)=> N(13),

 dest_node(14)=> N(14),

 dest_node(15)=> N(15),

62

 read => read,

 write => write);

U3: token_Logic port map(data_in =>node_data_in,

 data_out =>node_data_out ,

 source_ring_address(0) =>source_node_address(0),

 source_ring_address(1) =>source_node_address(1),

 source_ring_address(2) =>source_node_address(2),

 source_ring_address(3) =>source_node_address(3),

destination_ring_address(0) =>destination_node_address(0),

destination_ring_address(1) =>destination_node_address(1),

destination_ring_address(2) =>destination_node_address(2),

 destination_ring_address(3)=>destination_node_address(3));

end Behavioral;

63

2. FPGA CODE FOR TWO NODES

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ring_noc_fpga is

 Port (ring_noc_data_in : in STD_LOGIC_VECTOR (1 downto 0);

 ring_noc_data_out : out STD_LOGIC_VECTOR (1 downto 0);

 source_node_node : in STD_LOGIC;

 destination_node : in STD_LOGIC);

end ring_noc_fpga;

architecture Behavioral of ring_noc_fpga is

begin

process(source_node_node,destination_node,ring_noc_data_in)

begin

case source_node_node is

when '0' => -- node 0

case destination_node is

when '0' =>

ring_noc_data_out <= ring_noc_data_in;

when '1' =>

ring_noc_data_out <= ring_noc_data_in;

when others=>

null;

end case;

when '1' => -- node 1

case destination_node is

when '0' =>

ring_noc_data_out <= ring_noc_data_in;

64

when '1' =>

ring_noc_data_out <= ring_noc_data_in;

when others=>

null;

end case;

when others=>

null;

end case;

end process;

end Behavioral;

65

3. RESEARCH PUBLICATION

The work done in our final year project of our B.Tech study was published in the form of

research paper tiltled “ROTATOR ON CHIP (ROC) DESIGN BASED ON RING

TOPOLOGICAL NETWORK ON CHIP (NOC)” in Elsevier- Procedia Computer science

Journal, Vol.45, March, 2015. The paper was also presented in a paper conference

ICACTA-2015 organized by Dwarkadas J. Sanghvi College of Engineering, Mumbai held

on 26
th

 and 27
th

 of March, 2015.

66

