
i

“Bootkit Malware”

A

Project Report

Submitted in partial fulfillment of the

requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE & ENGINEERING

With Specialization in Mainframe Technology

by

Name Roll No.

Adityaa Chaubey R610213005

Mohit Khanna R610213024

Ruman Khan

Yashika Dargan

R610213040

R610213056

under the guidance of

Mr. Ankit Khare

Assistant Professor,

CIT, UPES
Dehradun

Department of Computer Science & Engineering

Centre for Information Technology

University of Petroleum & Energy Studies

Bidholi, Via Prem Nagar, Dehradun, UK

 May-2016

ii

CANDIDATE’S DECLARATION

 We hereby certify that the project work entitled “Bootkit Malware” in partial fulfillment

of the requirements for the award of the Degree of BACHELOR OF TECHNOLOGY in

COMPUTER SCIENCE AND ENGINEERING with specialization in Mainframe Technology

and submitted to the Department of Computer Science & Engineering at Center for Information

Technology, University of Petroleum & Energy Studies, Dehradun, is an authentic record of our

work carried out during a period from January, 2016 to May, 2016 under the supervision of

Mr. Ankit Khare, Assistant Professor, CIT.

 The matter presented in this project has not been submitted by me/ us for the award of

any other degree of this or any other University.

 (Adityaa Chaubey –R610213005)

(Mohit Khanna-R610213024)

(Ruman Khan- R610213040)

(Yashika Dargan- R610213056)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Date: 17/05/2016 Mr. Ankit Khare

Project Guide,

Assistant Professor,

CIT, UPES

Dehradun

Dr. Hanumat G Sastry

Program Head-Mainframe Technologies

Center of Information Technology

University of Petroleum & Energy Studies

Dehradun-248001 (Uttarakhand)

iii

ACKNOWLEDGEMENT

We wish to express our deep gratitude to our guides Mr. Ankit Khare for all advice,

encouragement and constant support they have given us throughout our project work. This work

would not have been possible without their support and valuable suggestions.

We sincerely thank to our respected Program Head of the Department, Dr. Dr. Hanumat G

Sastry, for his great support in doing our project in Bootkit Malware for Linux at CIT.

We are also grateful to Dr. Manish Prateek, Associate Dean CIT and Dr. Kamal Bansal,

Dean COES, UPES for giving us the necessary facilities to carry out our project work

successfully.

We would like to thank all our friends for their help and constructive criticism during our project

work. Finally we have no words to express our sincere gratitude to our parents who have shown

us this world and for every support they have given us.

Name Roll No. Signature

Adityaa Chaubey R610213005

Mohit Khanna R610212024

Ruman Khan R610212040

Yashika Dargan R610213056

iv

ABSTRACT

Malware is an abbreviated term meaning “malicious software.” This is software that is

specifically designed to gain access or damage a computer without the knowledge of the owner.

As all kinds of defendable and detection software protect information system from getting

destroyed by malware effectively, these malwares becomes more and more advanced too.

Current malware continues to penetrate into the underlying bottom of computer system. Boot-kit

is the newest research product. A Boot-kit is a boot virus that is able to hook and patch Operating

System to get loaded into the Kernel, and thus getting unrestricted access to the entire computer.

It is even able to bypass full volume encryption, because the Master Boot Record is not

encrypted. In other words, Boot-kits are an advanced form of rootkits that take the basic

functionality of a rootkit and extend it with the ability to infect the master boot record (MBR) or

volume boot record (VBR) so that the bootkit remains active even after a system reboot. Boot-kit

has powerful latent property and resists to most detection tools, which is fatal to the information

security in many ways. In order to research how to detect Boot-kit, we have to understand its

working mechanism. The research history and actuality of Boot-kit is introduced firstly.

Moreover several important technologies related to Boot-kit are described concretely. Further,

the booting process of computer system is analyzed particularly. Then the working mechanism of

Boot-kit is presented comprehensively from three categories of Boot-kit.

Keywords: BOOTKIT, Latent Property, Malwares, Memory Resident, Master Boot Record,

Volume Boot Record

v

Contents

 SNo. Title Page No.

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Figures viii

1. Introduction 1

1.1. Overview 1

1.2. History 2

1.3. Problem Statement 2

1.4. Motivation 2

1.5. Objective 3

1.6. Pert Chart Legend 3

2. System Analysis 4

2.1. Existing Work 4

2.2. System Requirements 6

3. Design 7

3.1. Flow Chart Diagram 7

3.2. Use-Case Diagrams 8

3.3. Sequence Diagrams 9

3.4. Data Flow Diagram 10

3.5. State Diagram 11

3.6. Process Model Used 12

vi

3.6.1. Prototype Model 12

4. Implementation 13

4.1. Algorithm 13

4.2. Pseudo Code 14

4.3. Analysis 15

4.3.1 Booting Process in Linux 15

4.3.2 Daemon Process 19

4.3.3 Shell Scripting 20

5. Screen Shots 21

6. Review 25

6.1. Conclusion 26

6.2 Future Scope 27

6.3. Limitations 27

References 28

vii

LIST OF FIGURES
Fig. No. Name Page No.

1. Introduction

Fig. 1.1. Pert Chart 3

3. Design and Implementation

Fig. 3.1. Flow Chart 7

Fig 3.2. Use Case Diagram 8

Fig 3.3. Sequence Diagram 9

Fig. 3.4.1. DFD Diagram: Dfd (Level 0) 10

Fig. 3.4.2. DFD Diagram: Dfd (Level 1) 10

Fig. 3.4.3 State Diagram 11

Fig. 3.5. Process Model: Prototype Model 12

5. Screen Shots

5.1.1 Terminal 21

5.1.2 Shell script 22

5.1.3 Parse File 22

5.1.4 KeyMaps 23

5.1.5 Logger.txt 24

5.1.6 Output File 25

1

1. INTRODUCTION

1.1 Overview

Bootkit, as an innovative root kit technology, which primarily transfers its storage location from

the file system to the hardware store, and activates itself while or even before the operating

system kernel is loaded. Therefore, boot-kit can tamper with the operating system and control the

whole computer system. Compared to classic malware, it achieves a more powerful capability of

hiding and controlling. Bootkit threats have always been a fatal tool in the hands of

cybercriminals, allowing them to build a persistent and stealthy presence in their victims’

systems. The most recent noteworthy news in bootkit attacks was associated with attacks on 64

bit versions of the Microsoft Windows platform, which restricted the loading of unsigned kernel-

mode drivers. However, there is no bootkit available for Linux platform .This project takes an

overview of various existing bootkit technologies and summarizes their technical characteristics

to build a bootkit malware for Linux. This opens a door to the malware defenders for preventing

the computer systems from bootkit. The aim is to develop a fatal bootkit malware that cannot be

detected by any standard antivirus as being the antivirus works only on the files systems and on

OS level but the bootkit malware being an independent memory resident malware it has its root

inside the BIOS of the system which acts as the trigger that is responsible for the activation of

the malware residing under the interrupt signals of the system and hence it is triggered at boot

time and it also cannot be deactivated as the memory resident processes can’t be run up by any

scheduling algorithms as their priority is quiet high.

The malware on the other hand will be developed in a python environment and will be a Trojan

virus that will send up the users details to a remote location and another log will be present in the

victim’s computer that can be fetched manually or remotely by using any standard connection

protocol.

2

1.2 HISTORY

If we go back in time, we will come to know that the theoretical preliminary work on malicious

programs goes back as far as 1949. It was John von Neumann (1903-1957) who developed the

theory of self-reproducing automatons.

The term rootkit or root kit originally known as a malicious code containing set of administrative

tools for any Unix-like operating system that can grant the "root" access. If an attacker could

replace the built-in administrative tools on a system with a rootkit, the attacker could easily

obtain root access over the system while actively concealing these modifications from the

original system administrator. Lane Davis and Steven Dake wrote the first known rootkit in the

year 1990.

The next generation of rootkit malware arrived in the malware market in late 1990s and is well

known by the name of ‘bootkit’. If we expand the term it simply means BIOS rootkit. A BIOS

attack does not require any vulnerability on the target system. Once an intruder gains

administrative-level privileges, he can do anything.

1.3 PROBLEM STATEMENT

 An antivirus tool is an essential component for detecting malicious programs residing is your

system.

 All the standard known antiviruses work on OS level and hence can detect the memory-

dependent malwares and protect the system from them.

 It can scan files to see if they have virus code in them from known viruses. It can scan

files to see if the code will do virus-like things. It can wait until a program does

something it should not do, and flag the program as infected.

 Most of the malwares including rootkits are easily detected and removed by the antivirus

program.

1.4 MOTIVATION

Bootkit malwares do not come under the scan radius of the antivirus program and hence can

affect the computer easily without being detected. So being a hacker it is really tough to breach

into one's security firewall just by initiating a standard virus. We can embed the files under

bootkit malware name and can get access to one's computer.

3

1.5 OBJECTIVES

The objectives of the project are:

 To create an undetectable malware

 To study boot process of a system

 To define the vulnerability parameters of a system

1.6 PERT CHART LEGEND

A PERT chart is a project management tool used to schedule, organize, and coordinate tasks

within a project. PERT stands for Program Evaluation Review Technique, a methodology

developed by the U.S. Navy in the 1950s.

Figure 1.1: Pert Chart

4

2 SYSTEM ANALYSIS

2.1 Existing work

A rootkit works by changing the output of system actions. This could be by replacing standard

commands such as [ls] with other tools. It can also be by modifying libraries or kernel code.

Rootkits don't necessarily take advantage of an exploit, but rather the user. They may rely on

another exploit to place them. Boot sector viruses are a subset of rootkits, but the term is far

older. It referred specifically to viruses that would alter to the boot sector of a hard drive to

launch themselves on reboot. [1] They have a connotation of hacking from the era when MS

DOS was still a substantial piece of the personal computing world. Being from simpler times, the

viruses were often simpler and didn't always need booting to another OS instance to detect.

Despite that, their launch early in the boot process could provide them with all the potential

power that we associate with rootkits.

The literature that is under study is INVESTIGATION OF MALWARE DEFENCE AND

DETECTION TECHNIQUES[2], Investigation of bypassing malware defences and malware

detections[3] , Method and apparatus for updating flash memory resident firmware through a

standard disk drive interface[4] to grab a basic understanding for the scanning and detection

process of malwares and an overview on how malwares work, Computer operating process

allocating tasks between first and second processors at run time based upon current processor

load to get a basic understanding of the working of the boot processes and runtime processes.

Stoned Boot-kit is a new boot-kit targeting Windows Operating Systems which is being able to

by-pass code integrity verification and signed code checks. 416 bytes of size, it is small and

effective. [5]

Namesis Malware [6] is a new stealthy payment card bootkit malware that hijacks PC’s boot

process to gain complete access and persistence.

5

Some other popular Bootkit Viruses and the areas they affect:-

(Source: http://www.welivesecurity.com/2012/12/27/win32gapz-new-bootkit-technique/)

6

2.2 System Requirements

The project requires the following requirements for proper functioning:

 Software Requirements:

o Ubuntu\RHEL 6.0

o Python, C++

o Text File

 Hardware Requirements:

o Processor Pentium IV and above

o 512MB Ram

o 20GB Hard Disk

2.3 Features

 Code to record keystrokes invoked by shell scripting.

 Shell script listed as daemon process with highest priority

 No need to start the shell script every time at the time of system start

 Functions to record every key stroke including the duration.

 Output file automatically transferred to remote location in a timely manner.

7

3. DESIGN

3.1 FLOW CHART DIAGRAM

A flowchart is a type of diagram that represents an algorithm, workflow or process, showing the

steps as boxes of various kinds, and their order by connecting them with arrows. This

diagrammatic representation illustrates a solution model to a given problem. Flowcharts are used

in analyzing, designing, documenting or managing a process or program in various fields.

Figure 3.1: Flow Chart

https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Problem_solving

8

3.2 USED CASE DIAGRAM [7]

A use case diagram is a representation of a user's interaction with the system that shows the

relationship between the user and the different use cases in which the user is involved. A use

case diagram can identify the different types of users of a system and the different use cases.

Figure 3.2: Use Case Diagram

https://en.wikipedia.org/wiki/Use_Case

9

3.3 SEQUENCE DIAGRAM

A Sequence diagram is an interaction diagram that shows how processes operate with one

another and in what order. A sequence diagram shows object interactions arranged in time

sequence. It depicts the objects and the sequence of messages exchanged between the objects

needed to carry out the functionality

Figure 3.3: Sequence Diagram

https://en.wikipedia.org/wiki/Interaction_diagram

10

3.4 DATA FLOW DIAGRAM

Data flow diagram is an approach to visualize the data processing. A data flow diagram is strong

in illustrating the relationship of processes, data stores and external entities in information

system.

3.4.1 DFD:LEVEL 0

Figure 3.4.1: Dfd (Level 0)

3.4.2 DFD: Level 1

Figure 3.4.2: Dfd (Level 1)

11

3.5 State Diagram

A state diagram is a type of diagram used in computer science and related fields to describe the

behavior of systems. State diagrams require that the system described is composed of a finite

number of states; sometimes, this is indeed the case, while at other times this is a reasonable

abstraction. Many forms of state diagrams exist, which differ slightly and have different

semantics.

Figure 3.5: State Diagram

12

3.6 Process Model Used

3.6.1 Prototype

Prototype is used as a project planning technique. This model suggests building a working

prototype of the system, before development of the actual software. A prototype has limited

functional capabilities, low reliability, or insufficient performance as compared to actual

software. A prototype can be built very quickly by using several shortcuts. The shortcuts usually

involve developing insufficient, inaccurate, or dummy functions.

Prototyping model is advantageous to use especially when exact technical solutions are unclear

for development. A prototype can be helpful for developing the systems with unclear

requirements and system with unresolved technical issues. Overall development cost can be

turnout to be lower.

Prototypes are also advantageous to use for development of the graphical user interface (GUI)

parts of the application. Through prototype it becomes easier to illustrate input data formats,

messages, reports and the interactive dialogues to the user. For user it becomes much easier to

form an opinion about the user interface, rather than imagining the working of a hypothetical

interface.

Figure 3.6: Prototype Model

13

3. IMPLEMENTATION

4.1 ALGORITHM

The initial step towards an understanding of why the knowledge and analysis of algorithms are

so vital is to define exactly what is meant by an algorithm. According to a popular algorithms

textbook [8]., "an algorithm is any well-defined computational procedure that takes some value,

or set of values, as input and produces some value, or set of values as output." In other words

algorithms are like blueprints for accomplishing a given, well-defined task.

An algorithms may be expressed in many kinds of notation, namely natural languages, pseudo

codes, flowcharts, drakon-charts, some programming language convention and control tables (

which are processed by interpreters).

Here we have used the pseudo code method to represent the algorithm. This algorithm deals with

every step in building the bootkit malware for Linux Operating Systems. The algorithm starts

with the booting process of the Linux Operating System (Ubuntu/RHEL). It further talks about

how the shell script containing the malware is automatically invoked when we start the system.

The key logger is developed in python environment using key codes from text file. The user key

strokes are stored in an independent output file. This file is periodically transferred to a remote

location using TCP/IP protocols. Step by step execution of our project is depicted in the pseudo

code with proper naming conventions and worldwide accepted pseudo code generation rules.

14

4.2 Pseudo Code

1. Start

2. System is switched on

3. backup.sh is automatically invoked at boot load time

3. showkey > path of logger.txt

it will store the press and release status of the actual keystrokes

4. main malware is also invoked in shell script

python path of parse.py

5. keymaps.txt file is opened in read mode

hence is converted into array

args[88] contains all the keystrokes values

6. output.log file is opened in write mode

date and time is recorded in output.log file

7. index[] array contains numeric code of logger.txt

8. now matching results from args[] array and index[] array

9. if (index==42 or index==54) and line[12:len(line)-1]=="press":

10. write <Shift pressed> in output.log

11. else if index==58 and line[12:len(line)-1]=="press":

12. write <Caps pressed> in output.log

13. else if index==28 and line[12:len(line)-1]=="release":

14. start writing in next line of output.log

15. else if index==57 and line[12:len(line)-1]=="release":

16. write after a <tab> space in output.log

17. else if (index==42 or index==54) and line[12:len(line)-1]=="release":

18. write <Shift released>

19. else if index==58 and line[12:len(line)-1]=="release":

20. write <Caps released>

21. else if line[12:len(line)-1]=="release":

22. write args[index] i.e. keystroke information in output.log file

23. Close the output.log file

24. Send the output.log file at desired remote location

25. stop

15

4.3 Analysis

4.3.1 Booting Process in Linux

The steps involved in Booting up a Linux system are as follows:-

Step 1. BIOS (Basic Input/Output System)

Step 2. MBR (Master Boot Record)

Step 3. LILO or GRUB

LILO:-Linux Loader

GRUB:-Grand Unified Boot loader

Step 4. Kernel

Step 5. Init

Step 6. Run Levels

(Source: https://en.wikipedia.org/wiki/Systemd)

16

1. BIOS:

 I. Whenever we power on a Linux system, the BIOS performs a test known as Power-On Self-

Test (POST) for the various different hardware components attached to the system to ensure that

everything is working properly.

ii. Further it checks that whether the computer is being started from an off position (i.e. cold

boot) or from a restart (i.e. warm boot) is stored at this location.

iii. Then it retrieves the required information from Complementary Metal-Oxide Semiconductor

i.e. CMOS, which is a battery operated memory chip on the motherboard that stores date, time

and critical system information.

 iv. Once BIOS sees everything is fine it will begin searching for an operating system Boot

Sector on a valid master boot sector on all available drives like hard disks, CD-ROM drive etc.

 v. Once BIOS finds a valid MBR it will give the instructions to boot and executes the first 512-

byte boot sector that is the first sector (“Sector 0”) of a partitioned data storage device such as

hard disk or CD-ROM etc.

2. MBR

i. Normally we use multi-level boot loader. Here MBR means I am referencing to DOS MBR

ii. After BIOS executes a valid DOS MBR, the DOS MBR will search for a valid primary

partition marked as bootable on the hard disk.

iii. If MBR finds a valid bootable primary partition then it executes the first 512-bytes of that

partition which is second level MBR.

iv. In Linux we have two types of the above mentioned second level MBR known as LILO and

GRUB

3. LILO

i. LILO is a Linux boot loader which is too big to fit into single sector of 512-bytes.

 ii. So it is divided into two parts: an installer and a runtime module.

iii. The installer module places the runtime module on MBR. The runtime module has the info

about all operating systems installed.

17

iv. When the runtime module is executed it selects the operating system to load and transfers the

control to kernel.

 v. LILO does not understand file systems and boot images to be loaded and treats them as raw

disk offsets

GRUB

 i. GRUB MBR consists of 446 bytes of primary boot loader code and 64 bytes of the partition

table.

 ii. GRUB locates all the operating systems installed and gives a GUI to select the operating

system need to be loaded.

 iii. Once user selects the operating system GRUB will pass control to the kernel of that

operating system.

4. Kernel

i. Once GRUB or LILO transfers the control to Kernel, the Kernels does the following tasks

Initializes devices and loads init module and mounts root file system.

5. Init

i. The kernel, once it is loaded, finds init in sbin(/sbin/init) and executes it.

 ii. Hence the first process which is started in Linux is init process.

 iii. This init process reads /etc/inittab file and sets the path, starts swapping, checks the file

systems, and so on.

iv. It runs all the boot scripts (/etc/rc.d/*,/etc/rc.boot/*)

 v. Starts the system on specified run level in the file /etc/inittab

6. Run level

18

i.There are 7 run levels in which the linux OS runs and different run levels serves for different

purpose.The descriptions are given below.

0 – halt

1 – Single user mode

2 – Multiuser, without NFS (The same as 3, if you don’t have networking)

3 – Full multiuser mode

4 – Unused

5 – X11

6 – Reboot

 i.e. can set in which run level we want to run our operating system by defining it on

/etc/inittab file.

Now as per our setting in /etc/inittab the Operating System the operating system boots up and

finishes the bootup process.

 (Source: https://thegeekstuff.com)

https://thegeekstuff.com/

19

4.3.2 Daemon Process

 The three basic types of processes in Linux environment are: interactive processes, batch

processes and daemon processes. Interactive processes are usually executed interactively

by a programmer at the CLI (command line. Batch processes are grouped from a job

queue of processes which are generally not associated with the CLI. They are well suited

for performing recurring tasks when system usage is otherwise low.

 A daemon is a kind of computer program on Linux operating systems that runs for an

eternity unobtrusively in the background, instead of working under the direct control of

an administrator, waiting to be invoked by the occurrence of some specific event or

achievement of a certain condition. Daemons are usually instantiated as processes.

 (Source: http://www.datadisk.co.uk/html_docs/exim/processes.html)

20

4.3.3 Shell Scripting in Linux

Computer understands only the language of 0's and 1's known as the binary language.

In the initial days of computing, instruction were provided using the binary language,

which is difficult to program and understand, to read and write. So in OS there is special

program called Shell. Shell accepts your instruction or commands in English (mostly)

and if it’s a valid command, it is pass to kernel.

Shell is a user program or its environment provided for user interaction. Shell is a

command language interpreter that executes commands read from the standard input

device (keyboard) or from a file. Shell is not part of system kernel, but uses the system

kernel to execute programs, create files etc.

21

5. SCREENSHOTS

 (Terminal)

22

(shell script)

(python script)

23

 (keymaps.txt)

24

 (logger.txt)

25

 (output file)

26

6. REVIEW

6.1 Conclusion

A bootkit is a type of malware that infects the Master Boot Record (MBR). This infection

method allows the malicious program to be executed before the operating system boots. As soon

as BIOS (Basic Input Output System) selects an appropriate boot device (it can be a hard disk or

a flash drive), the bootkit that resides in the MBR starts executing its code. Once the bootkit

receives the control, it usually starts preparing itself (reads and decrypts its auxiliary files in its

own file system that it has created somewhere in the unallocated disk space) and returns the

control to the legitimate boot loader overseeing all stages of the boot process. Bootkit Malware

attacks at the booting time and is a resident member of the system.

Antiviruses are unable to detect the malware as it is beyond their scan radius. The malware

developed here is a Trojan virus that can remotely send user data to a remote desired location

and the development process of the malware will take place in python environment and the

development process is done in g++. Further the shell script that can make this process i.e.

malware memory resident is developed and this is done in standard Linux environment and the

creation of this memory resident process is using a daemon and a zombie process that will make

this process an always active memory resident process. The next part deals with the GRUB

loader that is tweaked such that the shell script created gets triggered at the boot time, i.e. every

time the system is rebooted the process gets initiated.

27

6.2 Limitations

 Dependency on Internet: This malware makes transfer of keystrokes recorded to a remote

location with the help of the internet using standard TCP/IP protocols which makes the

project highly dependent on the internet connectivity.

 Deadlock: A deadlock may arise when the system is trying to allot a resource used by the

daemon process to some other process which requires the resource to fulfil its task and a

queue of such processes might be created.

 Data Corruption: Results of the malware will be negatively affected if at any point in time

the file from which process takes in the data gets corrupted.

 Ambiguity: An ambiguity may arise when the malware reads multiple keys pressed

simultaneously.

6.3 Future Scope

 Designing an antivirus for Bootkit Malware

After studying and implementing bootkit malware in Linux we should be able to design an

antivirus which is able to detect and remove bootkit malware.

 Recording Mouse Clicks

Along with keystrokes the malware should be able to record mouse clicks as well as

coordinates of mouse click.

 Deadlock prevention

Mutual Exclusion principle can be implemented in case of an already occupied room.

28

References

1]Rootkit V/S Bootkit[Internet].c2014.India;[cited 2015 Jan 02] Available From:

http://security.stackexchange.com/questions/24178/what-is-the-difference-between-boot-sector-

virus-and-rootkits

[2]Daryabar, F. Dehghantanha, A. Udzir. 2011. Investigation of bypassing malware defenses and

malware detections, in Information Assurance and Security (IAS). 28(2): 173-178.

[3]Farid Daryabar, Ali Dehghantanha, Hoorang Ghasem Broujerdi. 2011. INVESTIGATION OF

MALWARE DEFENCE AND DETECTION TECHNIQUES Vol. 1: 645-650.

[4]Hongbo Gao, Qingbao Li, Yu Zhu, Wei Wang, Li Zhou. 2012. Research on the working

mechanism of Bootkit, in Information Science and Digital Content Technology (ICIDT) Vol.3:

476-479.

[5]Stoned Standard[Internet].c2007.Wellington,New Zealand: Stoned.Standard;[cited 2007 Feb13]

Available From: http://www.symantec.com/security_response/writeup.jsp?docid=2000-121813-

0658-99

[6]Namesis Bootkit [Internet].c2010.India: Swati Khandelwal;[cited 2015 Dec 15] Available

From: http://thehackernews.com/2015/12/nemesis-banking-malware.html

[7]Lillian Rostad. 2012. An extended misuse case notation: Including vulnerabilities and the

insider threat Vol. 1: 1-11.

[8] Introduction to Algorithms (Second Edition by Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, Clifford Stein).

