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EXECUTIVE SUMMARY 

Ever increasing input material cost coupled with environmental concerns has put 

pressure on profits of oil industry. There is a serious concern to plan, develop and 

exploit the oil and gas reserves in an efficient and optimal way. Production forecasting 

and reservoir modeling can provide vital inputs to efficient management of this hugely 

important energy source. Building reliable numerical reservoir models that incorporate 

all the geological, geophysical, geochemical, and petrophysical data of the reservoir 

available through petroleum exploration process, can help mitigate this problem. Since 

the reservoirs are highly heterogeneous and nonlinear in nature, it is often difficult to 

obtain accurate estimates of the spatial distribution of rock properties representing the 

reservoir and corresponding production profiles. Petroleum engineers always seek to 

construct reservoir models which are capable of consistent production forecasts such 

that further reservoir development in terms of locating new wells, recovery strategies 

(primary, secondary and tertiary), and surface facilities can be optimally designed.   

Once a geological model of a reservoir is constructed with spatial distribution of 

rock properties like porosity and permeability, a flow model is required which can 

estimate multi-phase flow of oil, water and gas through the flow channels into the 

well. Here dynamic rock and fluid properties such as relative permeabilities, fluid 

saturations etc., become important in addition to initial and boundary conditions of the 

reservoir. Several numerical flow models are commercially available such as CMG
® 

(Computational Modeling Group, Calgary, Canada), ECLIPSE (Schlumberger), 

JewelSuite
TM 

(Baker Hughes, Houston, Texas) etc., which can predict the oil, gas and 

water production rates along with bottom hole flowing pressure in each well provided 

all the required inputs are available. However, the static rock properties such as 

permeability and porosity are only available at well locations (exploratory or 

production) and there is no reasonable way to find how these vary between the wells 

and in the rest of the reservoir. Wells may occupy no more than a few percent of the 

total area and we have no clue about these properties over most of the reservoir. The 

available reservoir models cannot, therefore, be used directly. To overcome this 
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difficulty, an inverse problem is usually defined where one searches for porosity and 

permeability distribution maps, relative permeabilities etc., which, when used as input 

to the reservoir simulator, will yield the same production history as has been actually 

recorded in the field. Needless to say this is a tedious exercise and the solution is never 

unique since any number of distributions can be found which will result in similar 

production history. This process is called history matching and was traditionally 

carried out manually which is a very time consuming process. Although some 

reservoir engineers still use it, more often, optimization based automated history 

matching has now become popular. 

In the present study two different techniques, both relatively new, were applied for 

forecasting oil production. The first approach is artificial neural networks (ANN) 

based modeling and the second is genetic algorithm (GA) based optimization. A 

higher-order neural network (HONN) – has been applied for oil production forecast 

from a real field reservoir. The method was first applied for oil production forecasting 

from a single well and then cumulative oil production forecasting from the entire 

reservoir. Neural network approach is simple to use but requires large amount of fairly 

accurate data for training the network which is difficult to get. Forecasting cumulative 

oil production required only individual well production data and that being available; a 

one-step-ahead predictor was designed using HONN to make predictions.  It being an 

empirical or black-box model approach, one cannot use it except for prediction in 

immediate future which limits its usefulness. In principle, it is possible to develop 

another ANN/HONN model which could possibly predict porosity and permeability 

distributions; however this will require a lot of geological, petrophysical, seismic and 

a variety of log data as input which was not available in the present study. 

Towards the automatic history matching problem through reservoir characterization, a 

global optimization method called genetic algorithm (GA) has been employed. The 

methodology was tested and validated by implementing it on a known 2D synthetic 

black-oil reservoir. Subsequently it was applied to a real reservoir situated in Cambay 

Basin, Gujarat, India. 
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Higher Order Neural Network (HONN) Modeling  

In conventional NN, there exists a linear correlation between the neural inputs 

and synaptic weights.  Higher-order neural network embeds higher-order synaptic 

operations (HOSO) (n
th 

order) that nonlinearly correlate the neural inputs with the 

synaptic weights. In present study, the HONN with HOSO architecture embeds the 

linear (conventional) (LSO), quadratic (QSO) and cubic synaptic operations (CSO) for 

cumulative oil production forecasts. Reduced network size, faster training and smaller 

forecasting errors are some of the advantages achieved for HONN over the 

conventional NN. In a pre-processing step the input field production data were treated 

with a low-pass filter which helped reduce noise. Also auto-correlation (ACF) and 

cross-correlation functions (CCF) were employed for choosing optimal neural inputs. 

The HONN model performance was validated using the statistical methods; root mean 

square error (RMSE) and mean absolute percentage error (MAPE).  

The efficacy of HONN procedure was tested for oil production forecasting from a 

single well of the reservoir with input data for: i) only oil production and ii) oil, gas 

and water productions (Chakra, et al., 2013.b). Monthly production data for 94 months 

were available, from which the last 16 months’ data were used for validation keeping 

remaining data for training and testing the HONN model. After careful 

experimentation one hidden layer was used with different number of neurons (1 ~ 5). 

Hyperbolic tangent and linear mapping functions were selected for hidden and output 

layers respectively. The initial learning rate was set to 0.01 which got dynamically 

updated by multiplying with 1.05 for decreasing error and with 0.7 for increasing error 

for each HONN model. 

The simulation results from HONN employing only oil production data as neural input 

shows that the HONN with LSO having 5 neurons in the hidden layer with single lag 

resulted in mean absolute percent error (MAPE )of 13.86 %. The best model using oil, 

gas and water as the neural inputs was HONN with QSO having 4 neurons in the 

hidden layer with MAPE=15.13% which is more than single input case. While 

additional inputs are expected to improve model performance, the inherent noise 

present in the field data overshadowed the advantage. 
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The study was subsequently extended to cumulative oil production forecasts from 

multiple wells from the same reservoir (Chakra, et al., 2013.a). Again, two sets of 

inputs were used a before: i) oil production from five wells and ii) oil, gas and water 

production from five wells.  The structure of HONN for cumulative oil production 

included one hidden layer with different number of neurons (1~10) using the same 

somatic function as before. Proceeding with the pre-processing step, 34 data were 

chose for training, 17 for testing and remaining 10 for validating the HONN model. 

Using only oil production data from all the 5 wells as input, the model with CSO 

having four neurons in the hidden layer resulted in the best performance with a MAPE 

of 3.46%. For the HONN model with oil, gas and water productions as input, HONN 

with CSO having 3 neurons in the hidden layer performed the best with 

MAPE=3.99%.  

Once again, the lack of improvement in the accuracy of prediction with additional 

inputs can be attributed to noisy data. It may be noted that while cumulative oil 

prediction from all the wells had an error of about 4%, the single well case had a much 

higher error of about 15%. This is because of interference of neighboring wells in case 

of a single well model not being accounted for. 

History Matching Using Genetic Algorithm 

Automated history matching through reservoir characterization has been attempted by 

employing a global stochastic evolutionary optimization algorithm called genetic 

algorithm (GA). The algorithm starts with an initial population of potential candidates 

in the search space. This population evolves to improved solutions with every 

generation which consists of three operations; selection, reproduction (crossover) and 

mutation. The power of genetic algorithm comes from the crossover and mutation 

operators. The rate at which the chromosomes experience the crossover and mutation 

are decided by crossover probability (  ) and mutation probability (  ). It is often a 

difficult task to assign these control parameters to reach optimum solutions at a fast 

pace. This limitation of simple GA was overcome by an adaptive version of GA, 

called AGA, where these parameters are dynamically adjusted according to the fitness 

of the population during each generation. The GA code for history matching was 
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developed in MATLAB environment that interfaces with the MATLAB geostatistical 

toolbox “mGstat” and CMG
®
–IMEX

TM
 reservoir simulator. 

The 2D synthetic reservoir from the 10
th

 SPE Comparison Solution Project (Christie 

and Blunt, 2001) has been chosen for validating the SGA and AGA code and for 

history matching methodology. The reservoir has grid dimensions of 100 x 1 x 20 in x, 

y and z directions forming a total of 2000 grid blocks. The model consists of 2 

production wells on either side of the reservoir with 1 injection well at the center. Two 

core holes are assumed to be drilled between the production and the injection wells. 

The reservoir grid blocks are populated with known values of permeability and are 

assumed to be true and resulting production profile from forward simulations from the 

true case is considered as historical field observations. Grid block values represented 

by the well locations are unaltered during GA operations. The objective of the study is 

to estimate the grid block permeability distributions that are conditioned to the field 

observations. The tournament selection operator, uniform k-point crossover operator 

with        and uniform mutation operator with                  have been 

used as parameters for SGA in this study. 

The objective function ( ) for history matching problem minimizes the square of 

difference between the past field production history and corresponding simulator 

output over time.  A set of 40 initial realizations was generated using GSLIB’s VSIM 

geostatistical software packages via ‘mGstat’ interface of MATLAB. The generated 

initial realization has the fitness function ( ) values ranging between 1.77 ~ 68.13 and 

average objective function value (    ) of 12.01. SGA with crossover probability; 

       and mutation probability;          and       were the two sets of 

computations carried out and the results compared after 400 iterations. The set with 

         performed better resulting in converged    values ranging between 0.69 ~ 

17.42 and          . At this stage the best solution from SGA resulted in a 

satisfactory match of simulator output with production history. Both oil and gas 

production rates over the entire period, matched reasonably well with the field 

production history.  In case of AGA, optimization was carried out with initial 

crossover probability,   
        and mutation probability;    

                  . 

Both sets resulted in nearly the same optimization with the set with    
         

performing slightly better. The best permeability realization was achieved at 172
th
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iteration with objective function value,           ,            and       

    . Both SGA and AGA algorithms were able to generate satisfactory history 

matched models which resulted in permeability maps close to the true permeability 

distribution that was hidden from the algorithm.  A comparison between the 

performance of SGA and AGA shows that the AGA was able to converge to optimal 

reservoir realizations much faster than the SGA with fewer iterations.   

The 3D real field reservoir model was divided into 50 x 60 x 3 grid blocks in x, y and 

z directions for the purpose of computations. The reservoir consists of three oil 

bearing sands with top layer known to be essentially homogenous with uniform 

permeability. The permeabilities of the second and third layers were taken to be 

variable. The reservoir has 6 producing wells having 8 years production history. The 

reservoir has a strong water drive provided by two aquifers and surrounded by non-

communicating faults on the remaining boundaries. In present study, field 

permeability distribution is considered as the most sensitive parameter and hence the 

objective of the present study was set to estimate the grid block permeabilities which 

are conditioned to oil production rates, water cut, gas/oil ratio (GOR) and flowing 

bottom hole pressure (BHP). The objective function included oil production rate, 

GOR, water cut and BHP from all 6 producing wells over a period of 6 years of 

production history (2000 ~ 2005). The initial permeability realizations for a population 

of 30 chromosomes were generated using MATLAB’s ‘mGstat’ interface to GSLIB’s 

SGeMS, geostatistical software package, assuming suitable variogram model. The 

initial realizations are conditioned to the permeability values at the grid blocks that 

represent the well locations and these values do not undergo GA operations. The 

minimum and maximum fitness function values of initial realizations ranged between 

24.58 ~ 68.19 with average objective function value,        35.096. The tournament 

selection operator, uniform k-point crossover and mutation operators with    

                 were selected parameters for SGA. At 240
th

 iteration the range of 

minimum and maximum objective function shrank to 19.98 ~ 54.34  and      to 

25.673. AGA with initial values of   
        and    

        converged in 120 

iterations with the objective function values            ,           and 

              The optimized permeability maps resulting from SGA and AGA 
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when used with the simulator provided perfect history match for oil production rates, 

and satisfactory match for water cut, GOR, and for BHP.  

The AGA outperformed SGA by its faster convergence to reach optimum solutions in 

lesser iterations. The best model obtained from the GA optimization was then, used for 

forecasting productions for next two years (2006 ~ 2008) from the entire field.  Since 

historical data were available for these 2 years also (not used in model development), a 

comparison of model predicted results with field data showed a good match thus 

validating the reservoir simulation. The individual well production forecasts were also 

found to be in agreement with measurements. Two new wells were drilled in the year 

2009 which did not exist earlier and hence not accounted for in the model 

development. Only scant measurements are available for these two wells but whatever 

is available is in agreement with predictions. Thus further validating the model 

resulting from the history matching exercise using genetic algorithm.   

To conclude Higher-Order Neural Network modeling, which was tried for the first 

time for production forecasting, was able to predict cumulative oil production with 

mean absolute error less than 5%. Careful selection of input parameters and 

preprocessing raw field data to reduce noise were crucial to the success of this new 

technique.  Genetic algorithm was successfully used as an optimization tool for history 

matching. Adaptive GA was found to be superior to simple GA by reducing the 

computation load with better convergence characteristics. Genetic algorithm provides 

global solution since GA starts with a large number of initial feasible solutions and 

while these evolve to optimum solution with each generation, the population is kept 

diversified at all times thus exploring entire search space at the same time. Successful 

match of historic production of oil, water and gas and satisfactory future predictions 

from existing and new wells established the efficacy of the technique. While only 

permeability was included in the present study, the technique can easily be extended to 

include other parameters in the search vector to make it a general tool for more 

complex reservoirs.    
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CHAPTER-1 

INTRODUCTION 

Petroleum – a natural energy source from the subsurface, occupies a prominent 

position in the world’s present day energy basket and this is likely to continue since 

renewable energy contribution is not expanding rapidly enough. Oil and gas industries 

invest huge amount of money, time and technology for efficient exploration and 

exploitation of petroleum reserves. Reservoir production forecasting, modeling and 

simulation play a vital role in efficient field development, its management and 

strategies under various operating and maintenance scenarios. Reservoir flow 

simulation aims to construct a consistent numerical model that resembles the real 

physics of flow of fluids in the actual reservoir in terms of its geological, 

petrophysical, and geochemical properties. Building a consistent geological reservoir 

model that replicates all the geological realism available through petroleum 

exploration process is not an easy task because of its heterogeneous and nonlinear 

nature.  The geological and petrophysical data available from the exploration and 

production wells represent only a minuscule area, when compared to the total 

reservoir. Moreover, these rock properties (porosity and permeability) vary in an 

unpredictable way with space, and it is often difficult to gain accurate estimates of 

these spatial properties. Challenging fact is that there is no clue how these spatial 

properties are distributed in the region between the wells or the region that does not 

have any production or injection wells. 

 Inspite of all these factors, reservoir engineers always try to construct models that 

resemble geological realism and reproduce historical field observations when 

simulated. A reliable reservoir model assures confidence in production forecast and 

can be used to better understand the present and future reservoir behavior under 

various operating scenarios such as workover, well completion and artificial lift 

strategies etc., Thorough understanding of reservoir behavior is essential for efficient 

and optimal future field development plans such as optimizing the well location, 

surface facilities, and recovery strategies (primary, secondary and tertiary).  
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To understand and, therefore, reliably predict the future performance of a reservoir, it 

is clear that we need to construct a geological model with all rock and fluid properties 

well established. However, one wonders if without going through an elaborate 

exercise of modeling and simulation which is expensive and time consuming, is it 

possible to predict production of oil by any other means. Can artificial intelligence 

which is making a paradigm shift in almost all spheres of human activity not help us? 

More specifically, artificial neural networks (ANN) appear to be promising tool for 

such an attempt.    

1.1 PRODUCTION FORECASTING EMPLOYING HONN 

Artificial neural networks (ANN) based modeling is simple and does not require either 

detailed reservoir characterization or complex flow equations to be solved 

numerically. One simply provides available production data as input and trains a 

network of neurons to give future production of oil. Design of network architecture is 

part of model development. A modified version of ANN called higher order neural 

networks (HONN) may be more suited for this complex problems as HONN models 

may require simpler architecture since these use nonlinear relation between neural 

input and synaptic weights.  

Higher order neural network embeds higher order synaptic operations (HOSO), which 

nonlinearly correlate the neural inputs with the past knowledge (synaptic weights), 

whereas, for conventional NN, there exists a linear correlation between the neural 

input and the synaptic weights.  HONN outperforms conventional NN in terms of fast 

network training, reduced network size, and smaller forecasting errors. First order 

HONN reduces to the linear or conventional ANN. Second order (QSO) and third 

order (CSO) HONN have been used by researchers in other fields. If the neural input 

data are noisy, and field measurements are always noisy, a pre-processing step such as 

use of a low pass moving average filter can help noise reduction. For evaluating the 

patterns in time series production data at different time steps (lag), auto-correlation 

(ACF) and across-correlation functions (CCF) are commonly applied. Moreover, the 

ACF and CCF functions help to identify the optimal inputs for HONN training, as the 

performance of the network also depends on the choice of optimal neural inputs. The 

statistical measures such as root mean square error (RMSE) and mean absolute 
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percentage error (MAPE) provide quantitative tools for comparing and validating the 

performance of HONN models. 

 However, there are limitations to ANN or HONN models which result from the fact 

that such models do not embed any physics of the process being modeled. While such 

models can be trained to act as one-step-ahead predictors, one cannot expect such 

models to be valid for oil field development. Use of production data as input to HONN 

from a single or multiple wells are likely to predict production in near future after 

training but since rock and fluid flow properties are neither used nor generated one 

simply cannot expect such models to be useful for planning better recovery methods or 

even long term production forecasting reliability. 

1.2 RSERVOIR MODELING THROUGH HISTORY MATCHING 

The numerical reservoir models comprise of highly nonlinear partial differential 

equations (PDE) with both space and time as independent variables. The solution of 

these equations require initial and boundary conditions which are usually quite 

complex in petroleum reservoirs. These PDEs describe the mass transfer process and 

hydrodynamical fluid flow within the reservoir system, expressed as a function of 

spatially varying rock properties (porosity and permeability etc.,), fluid properties 

(PVT properties, viscosities etc.,), and rock-fluid interaction properties (relative 

permeabilities, connate water saturation, fluid saturations etc.,). Several numerical 

simulators are commercially available for this purpose, which divide the entire 

reservoir in thousands of three dimensional grid blocks and numerically integrate the 

flow equations to find the solution.    

However, most of these properties, particularly the rock properties are not available 

except at well locations. Unlike correlations being available for estimating relative 

permeabilities, there is no way to estimate rock properties between wells and rest of 

the reservoir. Reservoir simulation therefore, cannot be used directly to find field 

production profile in absence of requite information. 

History matching is one technique to salvage this situation where one aims to find all 

missing information such that when used with the simulator, the output will match 

with the field observations which are typically production of oil, gas and water and 
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bottom hole flowing pressure. The early efforts in this direction were made by 

manually adjusting these parameters and then checking if the predictions matched with 

field observations. This manual trial and error procedure although extremely tedious 

and time consuming, was the only way to find the critical properties such as porosity 

and permeability. The reservoirs being highly heterogeneous, these properties were 

assigned grid block wise and adjusted until a satisfactory match was obtained. If two 

persons attempt to history match the same reservoir independently, they came up with 

very different permeability maps yet claimed equally good match. Clearly history 

matching is an ill-defined problem and does not have a unique solution although 

modeling and simulation do provide a unique solution. The inverse problem as history 

matching is usually referred to, can have infinitely many valid solutions. 

1.3 AUTOMATIC HISTORY MATCHING 

During last few decades, several approaches for automatic history matching have been 

developed based on: gradient methods; stochastic-global optimization methods; and 

data assimilation methods. Automatic history matching can be viewed as a 

minimization problem where one aims to minimize the objective function that 

embraces sum of the squared differences between the model predictions and observed 

data.  Many gradient-based algorithms are available such as Steepest Decent and 

Gauss-Newton, Singular Value Decomposition and Adjoint method etc which have 

been applied to the ill-posed history matching problems.  

1.3.1 History Matching Using Genetic Algorithm 

Genetic algorithm (GA) is a relatively new optimization technique which is 

evolutionary in nature.  GA as a stochastic optimization tool outperforms other 

gradient based methods (steepest descent, Gauss- Newton method, conjugate gradient 

etc.,) towards reaching a global optimum solution escaping the local optima.  

Genetic algorithm grounds on the principle of Darwin’s theory of “survival of the 

fittest”. The method belongs to the class of evolutionary algorithms that mimics the 

natural selection and genetics of organisms.  The algorithm initializes with an 

ensemble of feasible initial solutions called initial population. The initial solutions in 

the population undergo operations like selection, recombination (crossover) and 
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mutation to generate new chromosomes. The crossover results in exchange of genetic 

materials between chromosomes and mutation operation maintains genetic diversity in 

the solutions. The fitness of newly generated chromosomes are evaluated using a 

fitness function which characterizes the performance of chromosomes in the defined 

search space. This process continues until the algorithm converges to best set of 

chromosomes, which are considered as the potential solutions to the problem. The 

fitness function represents the individual chromosome fitness and is expressed by the 

objective function. The best member of this population is taken to represent the 

optimal solution. Although GA finds only near optimal solutions, for all practical 

purposes these are accepted as optimal. 

The performance of GA is largely controlled by the genetic operators; crossover 

operation and mutation operation. The crossover and mutation probabilities (   

and   ) are the deciding factors whether the selected chromosome (or individual) 

should go through crossover and mutation process. The GA performance is highly 

sensitive to these parameters.  Selecting the optimal values for these parameters is 

usually a manual trial and error procedure. In case of simple GA, the values for    

and    are pre-assigned by the user and will remain unchanged throughout the 

evolutions to reach optimal solutions. Hence the user has to try several times with 

different values for    and    to find optimal values.  This drawback of SGA has been 

overcome by adaptive genetic algorithm (AGA) which seeks to adaptively update    

and    according to the fitness function value of the population in subsequent 

generations. The adaptivity in the AGA code helps the algorithm to converge to 

feasible solutions at a faster rate (in fewer iterations) reducing the computational load 

compared to SGA. 

1.4 RESEARCH OBJECTIVES 

• To develop neural network based models which are capable of forecasting oil 

production based on available field observations for a single well and also 

cumulative production from all the wells. 

• To improve overall performance of neural network by introducing higher-order 

neural network (HONN). 
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• To develop and validate history matching methodology using genetic algorithm as 

an optimization tool using a 2D synthetic reservoir with known permeability 

distribution map. 

• To history match a real 3D reservoir and predict its performance in future 

 

1.5 THESIS OUTLINE 

There are 7 chapters in this thesis and their brief details are as follows: 

Chapter-1 provides the importance of reservoir production forecasting and history 

matching problem towards efficient and optimal field development. A brief 

introduction is provided to the methodologies used for production forecasting and 

automating the history matching process. 

Chapter-2 provides the literature review on neural network modeling and genetic 

algorithm optimization tools and their application to production forecasting and 

history matching of a reservoir. 

Chapter-3 details the higher order neural network (HONN) methodology and 

preprocessing techniques used for oil production forecasting for single well and 

multiple wells in a real reservoir. The chapter also provides computational results 

obtained from HONN application, and discusses the limitations of this technique. 

Chapter-4 discusses the numerical reservoir modeling and simulation approach used 

to compute the hydrodynamical fluid flow in the black-oil reservoir. 

Chapter-5 discusses the details of genetic algorithm and its adaptive variant (GA) 

technique used as optimization tools to solve the history matching problem. This 

chapter also presents the application and validation of GA technique for 2D synthetic 

reservoir history matching. 

Chapter-6 provides the application of SGA and AGA techniques towards a 3D real 

reservoir history matching. This chapter also discusses the potential of the developed 

technique in predicting reservoir performance in future.  

Chapter-7 includes the conclusions and recommendations for future work in the area 

of history matching with genetic algorithm.  
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CHAPTER - 2 

LITERATURE REVIEW 

2.1 HONN APPLICATION TO OIL PRODUCTION FORECASTING 

An important phase in the field of petroleum reservoir engineering is concerned with 

the forecasting of oil production from the reservoir. This estimation of reserves 

involves massive investment of money, time and technology under a wide range of 

operating and maintenance scenarios such as well operations and completion, artificial 

lift, workover, production, and injection operations. A fairly precise estimation of oil 

quantity in the reservoir is in demand; however, the rock and fluid properties of the 

reservoirs are highly nonlinear and heterogeneous in nature. Therefore, it is difficult to 

estimate an accurate upcoming oil production. The oil production from a reservoir 

depends on many static and dynamic parameters such as porosity and permeability of 

rocks (static parameters), and fluid saturation and pressure in the reservoir (dynamic 

parameters). When these static and dynamic parameters are available, the forecasting 

of oil production of a reservoir would be more accurate. However, all the parameter 

data are not always available. This limited data access from the oil fields lessens the 

accuracy of forecasting.  

2.1.1 Literature Review on HONN 

 In the past, several forecasting methods have been developed from decline 

curve analysis to soft computing techniques (Tamhane, et al., 2000). Artificial 

intelligence tools such as neural computing, fuzzy inference systems and genetic 

algorithms have been extensively applied  in petroleum industries because of their 

potential to handle the nonlinearities and time-varying situations (Mohaghegh, et al., 

2001). Neural networks (NN) is one of the most attractive methods of artificial 

intelligence to cope with the nonlinearities in production forecasting (Weiss, et al., 

2002) as well as in parameters estimation (Aminzadeh, et al., 2000) due to its ability to 

learn and adapt to new dynamic environments. Numerous researches have shown 

successful implementation of NN in the field of oil exploration and development such 
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as pattern recognition in well test analysis (Alkaabi and Lee, 1993), reservoir history 

matching (Maschio, et al., 2010), prediction of phase behavior (Habiballah, et al., 

1996) prediction of natural gas production in the United States (Al-Fattah and 

Startzman, 2001) and reservoir characterization (Mohaghegh, et al., 2001) by mapping 

the complex nonlinear input-output relationship. In conventional NN model, each 

neural unit (neuron) performs linear synaptic operation of neural inputs and synaptic 

weights. Later, extensive researches on NN have been made by Gosh and Shin, 

(1992), Giles and Maxwell, (1987), Lee, et al., (1986), Rumelhart and McClelland, 

(1986), and Homma and Gupta, (2002) to capture the nonlinear synaptic operation of 

the input space.  

As well, it has been reported that neural network models outperform any other 

conventional statistical model such as Autoregressive Integrated Moving Average 

(ARIMA), Autoregressive Moving Average (ARMA) and Autoregressive Conditioned 

Heteroskedasticity (ARCH). Castellano-Mendez, et al., (2004) reported multi-layer 

NN perform better for single step-off prediction than linear ARMA (Box and Jenkins, 

1976) model. A superior performance of NN is reported by  Donaldson, et al., (1993) 

when compared  to specialized nonlinear finance models like ARCH. Donaldson, et 

al., (1993) found that ARCH could only partially remove the leptokurtosis and 

symmetric/asymmetric heteroskedasticity from the data used to evaluate the fat-tailed 

and heteroskedasticity nature of the stock return.  Tiwari, et al., (2012) and   Nayak, et 

al., (2004) also reported superiority of NN model over ARMA model in river flow 

forecasting of hydrological model. 

Although the conventional time series models have several advantages and are 

widely applied for forecasting, but these models have their own limitations while 

attempting to solve highly nonlinear time series data and also not perform well at 

times (Tokar and Johnson, 1999) . More details on comparison between NN models 

and conventional statistical techniques for forecasting of time series data can be found 

in  the research paper by Hill, et al., (1994).    

In order to overcome the constraints of the conventional NN models, numerous 

methods of modification and improvement of NN model have been carried out.  One 

innovative neural structure embeds higher-order synaptic operations (HOSO) and a 



9 
 

new NN model, named Higher-order neural network (HONN), was developed 

employing the HOSO architecture (Hou, et al., 2007; Gupta, et al., 2003). The 

exclusive feature of HONN is the expression of the correlation of neural inputs by 

computing products of the inputs. It has been found that HONN has significant 

advantages over conventional NN such as faster training, reduced network size, and 

smaller forecasting errors  (Tiwari, et al., 2012, Gupta, et al., 2010; Redlapalli, 2004; 

Song, et al., 2009). The advantage of NN methods over conventional statistical 

techniques motivated us to employ HONN model for forecasting of highly nonlinear 

production data from petroleum reservoir. 

HONN has been used to forecast cumulative oil production from an oil field 

reservoir with limited parameter data: i) oil production data and ii) oil, gas and water 

production data (no data on pressure and fluid saturation available). The case studies 

have been carried out to verify the potential of the proposed neural approach with 

limited available parameters from an oil field in Cambay basin, Gujarat, India. The 

prime case studies were carried out for forecasting the oil production data from single 

well using the oil, gas and water production data from the same well (Chakra, et al., 

2013.b).  Later, the cumulative oil production forecasting from 5 producing wells 

using the oil, gas and water production from 5 wells were also presented in this 

research work (Chakra, et al., 2013.a). The HONN for production forecasting was 

developed in MATLAB environment and the source code is presented in Appendix-A. 

2.2 INTRODUCTION TO HISTORY MATCHING 

The primary goal of history matching is to develop a valid reservoir simulation 

model that predicts reservoir performance under various operating scenarios; such that 

an appropriate reservoir field development and management could be achieved. The 

reservoir model as such created using any numerical flow simulator cannot be used 

directly for reservoir performance prediction unless the built model honors all the 

geological, geophysical and petrophysical properties of the reservoir. These properties 

are represented by several model parameters such as porosity and permeability which 

are spatially varying rock properties but otherwise static or time independent. The 

other model parameters include dynamic entities such as fluid saturations, pressure, 

relative permeabilities, location of oil/water interface etc along with the initial 
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condition of the reservoir. Reservoir simulation is the science of calculating the rate of 

production of various fluids given the model parameters. On the other hand history 

matching is the art of estimating model parameters given the production data as a 

function of time. From the above statements, history matching appears to be reverse of 

simulation but the solution is non-unique and to find a reasonable parameters set out 

of an infinity of possibilities, which is close to reality, is an art. 

The reservoir flow models are set of highly nonlinear partial differential equations 

with space and time as independent variables together with appropriate initial and 

boundary conditions. These equations describe hydrodynamical flow of fluid and mass 

transfer process within the reservoir system, expressed as a function of spatially 

varying rock properties, fluid properties, and relative permeability characteristics of 

the reservoir. Solving these mathematical model equations analytically is too complex 

and therefore, numerical techniques are used to approximate the reservoir 

performance. For this purpose several simulators are commercially available. Once the 

output from the simulator model in terms of oil/gas production rates, gas-oil/ water-oil 

ratio, and pressure is obtained, the same has to be matched with the field history.  

The process of adjusting the reservoir model parameters in the reservoir simulator 

until a reasonable match is achieved between the simulated production and pressure 

data with the observed data is referred to as History Matching. The history matching 

process is a time consuming phase of a reservoir simulation study, and it is an 

essential preface in crafting any sensible predictions with the simulator (Crichlow, 

1977). Matching past history ensures that the model so constructed is a satisfactory 

approximation of the reservoir and is capable of predicting future performance which 

is a crucial step in managing the reservoir optimally. Indeed history matched models 

are necessary for analyzing the uncertainty in reservoir prediction and field 

development plans such as well placement, well type, well spacing, original oil in 

place, artificial lift strategies, enhanced oil recovery strategies (gas injection or water 

flooding), integration of subsurface and surface facilities (Hajizadeh, 2011).   

During the process of history matching, several uncertain parameters, (refer to 

Section (2.3.2) for details) which influence production forecast, are altered to obtain a 

good match between the simulator output and the field history. These parameters are 
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varied either singly or collectively to lessen the difference between the observed data 

and those calculated by the simulator (Crichlow, 1977). History matching is, therefore, 

an iterative process where one gradually but systematically minimizes the difference 

between calculated and measured values by analyzing the changes made in the 

previous simulation run and incorporating the necessary change in the next simulation 

run.  

This procedure of history matching can be done either manually or can be 

automated. Classical history matching technique in practice was manual, trial and 

error method, which is time consuming and cumbersome. Efforts have, however, been 

made to automate the process of history matching and there has been a significant 

progress in developing history matching algorithms which can continuously update the 

reservoir models by assimilating  new data as it is obtained. These methods are 

iterative, in a general sense, and are usually coupled with some statistical analysis with 

optimization techniques to obtain the ‘best’ combination of sensitive parameters to 

attain a good history matched model. 

2.3 OBJECTIVES OF HISTORY MATCH IN RESERVOIR MODELS 

History matching aims to improve the reproducing capability of past 

hydrodynamical behavior of the initial reservoir model built by amalgamating the data 

obtained during field exploration and when the field was put on production.  Hence the 

primary objective of history matching is to achieve a valid reservoir simulation model 

which is consistent with the available field history such as pressure, water- oil ratios, 

gas-oil ratios, water-gas ratios, fluid saturations and production rates. Additionally, 

history matching also aims to accomplish a better understanding of current status and 

description of reservoir and clarify the uncertainty related to the aquifer support, paths 

of fluid migration, communication barriers and depletion mechanisms (Ertekin, et al., 

2001; Chidambaram and Ertekin, 2009; Odinukwe and Correia, 2010; Shahkarami, 

2012). 

History matched models are also used for verification and identification of the area 

of by-passed reserves and unusual operating conditions such as casing leaks and 

improper allocation of fluids to wells etc. (Mattax and Dalton, 1990). History 

matching process helps in improving the future field development plans and data 
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acquisition programs since the quality of the match better captures the production 

behavior of the reservoir. Moreover a higher degree of confidence in performance 

prediction of reservoir can be achieved with a history matched model (Ertekin, et al., 

2001; Chen, 2007). 

2.3.1 Key Performance Parameters To Be Matched 

The reservoir engineer aims to determine the reservoir description that 

minimizes difference between the observed and the simulator performance during 

historical production period. There are several parameters available for establishing a 

good history match (Crichlow, 1977): 

 Pressure  Gas-oil ratios 

 Flow rates  Water-oil ratios 

The above mentioned are the key parameters used as observed/ measured data that are 

monitored once the field is put on production. In fact the observed data are the time 

series data (hourly, daily, monthly, quarterly or yearly) that are observed at the 

production or injection well locations. 

Flow rates of oil, gas and water productions and injection rates are normally 

treated as most accurate measurement data.  Generally fluid production data at the 

well locations are functions of reservoir properties and their correlation to model 

descriptions are relatively complicated.  Gas production rates from an old field may 

not be precise if the gas is flared. Generally, injection flow rates are considered to be 

less accurate in comparison to production rates, as there is a possibility of losing fluids 

at the casing or behind the pipe due to leakage. Moreover the production data are 

susceptible to well constraints and changes occur in the flow regimes and path with 

time (Oliver and Chen, 2011). However, inaccuracies associated with the production 

data for the above reasons mentioned can be determined and corrected.  

Average reservoir pressure (shut- in pressure) or pressures at well locations are 

frequently available and are valuable for correcting pressures to bottomhole 

conditions. Bottomhole flowing pressure and shut-in bottomhole pressure are 

frequently available, but these are less reliable data than the average reservoir pressure 

(shut-in pressure) (Odinukwe and Correia, 2010). 



13 
 

2.3.2 Key Parameters Used For History Matching 

Deciding and identifying of an uncertain parameter that is highly sensitive to 

observed reservoir performance is a difficult task in the history matching process. The 

prime idea of history matching is based on the concept of “hierarchy of uncertainty” 

(Fanchi, 2001) which represents the ranking of model input parameters according to 

its quality, that helps the engineer to decide which are the least and the most reliable 

parameters. There are numerous parameters that are modified individually or 

collectively to get a good match and are presented in Table 2.1 (adopted from 

Crichlow, 1977). 

Table 2.1. Key reservoir parameters used for history matching problem. 

Rock Modification 

Data 

Fluid 

Modification Data 

Relative 

Permeability 

Data 

Individual Well 

Completion Data 

♦Porosity at each 

grid block 
♦Compressibilities 

♦Shift in relative 

permeability 

curve 

♦Skin effect  

♦Vertical and 

horizontal 

permeabilities at 

each grid block 

♦PVT 
♦Shift in critical 

saturation data 

♦Bottom hole 

pressure 

♦Thickness 
♦Viscosity 

  

♦Fluid saturations 

Several researchers (Cosentino, 2001; Shahkarami, 2012) in 20th century 

reported that there are a few parameters in the above table, which have less uncertainty 

involved from the above mentioned table (Table 2.1). Those parameters are: PVT 

parameters, gross thickness, initial reservoir pressure, viscosity, pour point, 

temperature and initial water saturations. The most uncertain reservoir parameters 

which have significant impact on observed data are transmissibility, relative 

permeabilities and permeabilities at each grid location. Aquifer properties such as 

aquifer transmissibility, aquifer storage and strength are tuned to attain a good match 

if there is a presence of an aquifer in the reservoir. 

The reservoir dynamic parameters such as: reservoir pressure, flow rates, gas-oil 

ratios, water-oil ratios are influenced by the three phase fluid saturations, since these 
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are directly related to the quantity of expansive energy within the porous rock. 

Inability to maintain a given production rate from an area and to maintain subsequent 

drop in pressure, saturations are most common cause observed during history 

matching. This is because of insufficient oil in place and influx in a given locality, 

which can be corrected by adjusting the pore volume and increasing the oil saturation. 

Rock compressibility is another reservoir parameter that can be adjusted to achieve 

drawdown pressure in the reservoir after considerable fluid withdrawal. An increase of 

water saturation in model without any influx or injection of water observed during 

history matching can be corrected by assigning low rock compressibility (Crichlow, 

1977).  

Relative permeability is an important complex reservoir parameter that directly 

influences the flow rate, gas-oil and water-oil ratios and reservoir pressure caused by 

fluid flow movement under pressure gradient. The uncertainty related to relative 

permeability is high since these data are obtained from flooding of core samples  

Fanchi, (2001), kept relative permeability at the top of his “hierarchy of uncertainty” 

list, because they are more frequently modified than other parameters. Changes in 

relative permeability can be incorporated by adjusting the imbibition and drainage 

curves within a considerable range. 

2.4 MANUAL HISTORY MATCHING 

Manual history matching is an art of science (Fanchi, 2001) where the reservoir 

engineer utilizes his years of experience, knowledge and personnel judgment to 

modify those parameters which he used as a measure of the reservoir system behavior 

that is sensitive to field observations (Crichlow, 1977). The parameter modifications 

are done, until the simulator produces a reasonable match between simulator responses 

and historical field observations. Manually matching reservoir history is an iterative 

and tedious process since the model parameters are sequentially adjusted by an ad hoc 

approach. The success of this methodogly depends on the quality and quantity of 

available data, characteristic of the reservoir under study and finally the engineer’s 

knowledge about the reservoir model under study, and his experience on field 

operations (Gul, 2011; Shahkarami, 2012). Each of these principles consequently 

provides solutions that have non-uniqueness; hence there are no definite rules for 



15 
 

methodology of history matching processes.  Several reports by Mattax and Dalton, 

(1990); Saleri and Toronyi, (1998); Williams, et al., (1998); Cosentino, (2001) and 

Ertekin, et al., (2001) presented detailed description of structured methodology for 

manual history matching process.    

According to Saleri and Toronyi, (1998) and Williams, et al., (1998), manual 

history matching is performed in two phases. The first phase of the approach starts 

with an average reservoir pressure match by adjusting a few key parameters such as 

aquifer size, pore volume, aquifer transmissibility, permeability multipliers, rock 

compressibility factor and the ratio of vertical to horizontal permeability. A poor 

match of water-oil ratio and gas-oil ratio results in poor match of average reservoir 

pressure (Aziz and Settari, 1979). Once a substantial average reservoir pressure match 

is attained, one can adjust the individual well pressure and its nearby well properties 

across the well. Flow chart of pressure match crafted by Saleri and Toronyi, (1998), is 

presented by Figure 2.1. 

The second phase of manual history matching process is about matching of fluid 

saturation in which the match in fluid saturations are attained by modifying the 

relative permeability curves and vertical transmissibility across the layers to control 

the water flow from lower to upper layer of the reservoir (Williams, et al., 1998). The 

key well histories such as production rates, gas-oil ratios, water cuts and breakthrough 

times are matched during this stage of history match. Figure 2.2 represents the flow 

diagram of the saturation match created by Saleri and Toronyi, (1998). 
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Input well production histories 

and

 run the reservoir simulator 

Check the magnitude and 

shape of pressure vs. time

(∆P/∆t)

Use isobaric maps to check 

pressure gradients

(∆P/∆x)

Use well plots to check 

individual well pressure

(∆P/∆x and (∆P/∆t)

Go to saturation match

Globally adjust pore 

volume (oil, gas and 

aquifer) and 

compressibility  

Adjust horizontal 

permeability regionally

Adjust horizontal 

permeability and pore 

volume locally

Not 

OK

Not 

OK

Not 

OK

OK

OK

OK

 

Figure 2.1. Pressure matching  process by  Saleri and Toronyi, (1998). 

From

 pressure match

Use field cut/ GOR maps to 

check advance of flood front

Use well plots to check 

individual cuts/ GOR’s

Check magnitude and shape of 

field GOR’s/ water cut vs. time

Import well oil production 

histories and run the simulator

Check pressure match

Finish 

Adjust relative permeability 

curves globally

Globally adjust  relative 

permeability, pore volume 

and transmissibility 

regionally

Adjust well relative 

permeability locally

Re-do pressure match

OK
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OK

Not OK

Not OK

Not OK

Not OK

 

Figure 2.2 Saturation matching process by Saleri and Toronyi, (1998). 
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2.4.1 Challenges of Manual History Matching 

  The reservoirs are highly heterogeneous in nature and the manual history 

matching approach is a complex and time consuming task, with update at each 

simulation run being done on a single deterministic model.  Although a good match on 

field performance and key well production histories can be achieved by an 

experienced reservoir engineer, but to attain a reasonable match on each well or 

completion basis (Oliver and Chen, 2011) will be complicated. Since non-matching 

regions are matched using regional multipliers, the history matched models may violet 

the geological constraint (Milliken, et al., 2001).  This results in poor performance 

predictive capability of the history matched reservoir model.  Furthermore, the manual 

history match does not address any uncertainties associated with performance 

predictions.  

2.5 AUTOMATIC HISTORY MATCHING 

As mentioned earlier, solving history matching problem manually is a tedious and 

complex job as it is an ill-posed and inverse problem with non-unique solutions. There 

have been numerous attempts since 1960’s to automate the history matching process 

and thereby, to alleviate the burden of manual history matching. The approach is 

iterative in nature and couples some statistical analysis with optimization techniques to 

obtain the best parameter combination that matches a given reservoir history 

(Crichlow, 1977). Automatic history matching, in a general sense, utilizes the 

computer logic to modify those parameters that influence reservoir performance, 

consequently accomplishing a good reservoir history match. Moreover, automatic 

history matching also aims for multiple history matched reservoir models to increase 

the confidence in future reservoir production forecast and uncertainty quantification. 

Automatic history can be viewed as an optimization problem where the objective 

function minimizes the difference between observed reservoir history and reservoir 

simulator response during historical production period.  General steps for automatic 

history matching are as follows: 

1. Generate a representative set of simulation runs with known parameters 

selected randomly or otherwise. 
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2. Optimize the solution to get a best fit by using search-type methods over 

the uncertain parameters space.   

It is essential to choose an efficient optimization algorithm for minimizing objective 

function for automatic history matching process. These methods are classified into two 

main categories: gradient-based methods and non-gradient methods. 

2.5.1 Gradient Based Methods 

Gradient based methods use traditional optimization approach opted from 

optimal control theory to compute single solution which is near local optimum to the 

initial guess (Landa, et al., 2005). The method calculates the gradients of the objective 

function and then determines the direction of the optimization search to solve the 

problem (Zhang and Reynolds, 2002). In history matching framework, the gradients 

(derivatives) of production responses with respect to changes in the reservoir 

parameters are calculated to determine the direction and the amount of changes 

required for the parameters (Hoffman, 2005). There are several optimization 

algorithms that calculate gradients of the objective function and some of them reported 

by Landa, (1997) and Liang, (2007) are: 

♦Steepest descent ♦Gauss-Newton (GN) 

♦Levenberg- Marquardt ♦Gradual deformation 

♦Singular value decomposition ♦Limited memory Broyden 

Fletcher- Goldfarb Shanno 

(LBFGS) 

♦Conjugate Gradient 

♦Quasi-Newton 

However, the nonlinear regression approach of these gradient methods needs 

both Jacobian (first derivative) or Jacobian and Hessian (second derivative) of the 

objective function with respect to static properties of the reservoir. These methods 

entail an estimation of sensitivity coefficient, which is a partial derivative of dynamic 

reservoir parameters such as saturation and pressure with respect to static reservoir 

parameters such as porosity, permeability and azimuth of geospatial variogram 

(Dadashpour, 2009). The partial derivative is normally attained through finite 

difference approximation. 
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The art of automating the history matching process was introduced by Kruger, 

(1961); by proposing a calculation procedure for determination of the areal 

permeability distribution of a 2D reservoir in case of flooding or cycling projects.  In 

order to show the soundness of calculation procedure, he compared the results 

between the field measurements and calculated pressure distributions and concluded 

that the reservoir model should be conditioned to production data for a reliable 

performance prediction. Jacquard and Jains, (1965) introduced a method for 

computing sensitivity coefficients for history matching problem. They applied a 

modified steepest descent method for minimizing the difference between measured 

and simulated pressure to corresponding changes in the parameters for a 2D, single 

phase, transient flow reservoir model. They described their reservoir model in terms of 

an electrical analogue, where resistance, capacitance and inductance correspond to 

permeability, porosity and production rates of the reservoir model respectively. 

Although their application of history matching was conditional to the zonation of the 

permeability, a successful implementation on history matching problem was reported 

by the authors. 

 Jahns, (1966), used a nonlinear regression approach described by Jacquard and 

Jains, (1965), to match reservoir pressure obtained from interference test. In his 

approach, properties of each reservoir zone such as transmissibility and storage term 

(functions of pressure behavior) are varied using regression analysis to achieve a 

pressure match. He reported that while method can rigorously handle single phase 

flow, it is not suitable for multiphase flow if there is drastic change in fluid saturation. 

Coats, et al., (1970), introduced a gradient-based method which combines least square 

and linear programming to estimate a linear relationship between the error and the 

reservoir properties. They used the zonation approach as a parameterization method 

with upper and lower boundary constraints on reservoir descriptors such as 

permeability and porosity.  They generated reservoir description within the constraints 

using a random generator from a number of runs via reservoir simulator. They tested 

their methodology on three 2D reservoirs experiencing single phase oil, single phase 

gas and two phase (gas and water) flows. Though their methodology produced a 

satisfactory match because of the constraints placed on the parameters, but their 

assumptions based on the linear relationship between pressure error and reservoir 
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properties may not be strongly valid. This drawback created limitations on the 

application of their methodology for further studies. 

A gradient-based method as a search technique and linear programming was 

used by Slater and Durrer, (1971) to achieve a best history matched model. They 

modified the gradient method proposed by Jacquard and Jain with reduced 

computational time that finds the search direction and step size for correcting 

sensitivity coefficient, which is required to minimize the objective function. They 

reported that it was difficult to find the step size by gradient method in low 

permeability and porosity region due to high sensitivity and strong non-linear 

relationship between the objective function and the low permeability values. Thomas, 

et al., (1972) used a classical Gauss-Newton method as optimization tool for 

automatically varying the reservoir parameters to achieve better history matched 

reservoir models. Box-type constraints on the reservoir parameters (sensitivity 

coefficients) were implemented. They claimed that the method can handle non-linear 

cases better than the results reported by previous researches. Their methodology 

resulted in equivalent history match in fewer reservoir simulation runs when compared 

with the work of Coats, et al., (1970). 

The calculation of gradients, based on sensitivity coefficient method was 

proposed by Carter, et al., (1974) and Hirasaki, (1975); in which the derivatives of all 

pressure and saturation with respect to model parameters; so-called sensitive 

coefficients are calculated. This is then used to calculate the Hessian matrix for 

second-order, gradient based optimization algorithms (Li, 2008). For reservoir history 

matching, Carter, et al., (1974), suggested two new iterative non-linear programming 

techniques for minimizing the objective function of a reservoir experiencing single 

phase, compressible flow. They utilized the Jacquard and Jain’s method for sensitivity 

coefficient calculation using gradient method, but within predefined constraint 

intervals of reservoir parameter values. They reported that their method was equally 

effective in producing a good match between observed and calculated pressure in 

comparison with previous works, also with a guarantee to find reasonable reservoir 

parameter values in predefined constraint intervals. The drawback of this method is 

that, it is applicable only for single phase flow problems and requires additional 

computational time in sensitivity coefficient calculation and become less efficient near 
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the optimum solution. A semi-automatic history matching procedure suggested by 

Hirasaki, (1975), was useful for problems which required only matching oil 

production data, but the methodology was found to be inapplicable to complex 

reservoirs. He implemented the method to estimate the reservoir parameters by finding 

a relation between the derivative of cumulative oil production with respect to reservoir 

parameters (sensitivity coefficients) and dimensionless cumulative injection.  

 Chen, et al., (1974) and Chavent, et al., (1975), formulated the history 

matching problem as an optimal control problem, where the reservoir parameters: like 

permeability are considered as the forcing variables and observed data: pressure as the 

state variable. They used adjoint method to calculate the gradient of the objective 

function. Adjoint methods calculate the derivatives of an objective function which is 

the least squared error between observed and calculated production data. This is then 

subjected to first order gradient-based optimization algorithm to perform minimization 

process. Chen, et al., (1974), illustrated their work on a single phase synthetic 

reservoir and an actual single phase Saudi Arabian reservoir. Since history matching 

problem can be viewed as an optimal control problem they considered reservoir 

parameters as continuous function of space rather than limiting the parameters as 

uniform in the zones. The authors reported, that computation time required for 

optimization was less than the conventional constant-zone gradient optimization 

techniques. Chavent, et al., (1975), tested their methodology on a single phase semi-

realistic reservoir model of dimension 9x19 grid with 10 producing wells having 5 

years of historical pressure and production data. They applied steepest descent method 

to minimize a non-quadratic objective function and used adjoint method for 

calculating the gradients. They avoided the generation of unrealistic values of 

transmissivities occurring at any point during computation with the use of adjoints. 

The downside of the methodology was that it is only applicable to linear problems and 

requires numerous iterations for highly non-linear problems. 

 Watson, et al., (1980), successfully tested the method proposed by Chen, et al., 

(1974), and Chavent, et al., (1975), on a 2D, 2-phase reservoir model experiencing 

waterflooding. They used optimal control approach to estimate the spatially varying 

permeability, porosity and relative permeabilities. Yang and Watson, (1988), 

employed a constrained optimization technique called the variable-metric (or quasi-
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Newton) method with optimal control theory for automatic history matching of 

reservoir models. They successfully applied two variable-metric methods such as the 

Broyden/ Fletcher/ Goldfarb/ Shanno (BFGS) method and a self-scaling variable-

metric (SSVM) method, to test on two synthetic, two phase, 1D and  2D reservoir 

models. They claimed that the variable-metric methods; BFGS and SSVM are more 

attractive as compared to the steepest descent and conjugate-gradient methods, except 

when the permformance metrics is quadratic.  The authors concluded that their 

methods were very efficient in handling the parameter inequalitlity constraints and 

improving the convergence rate which are necessary for the automatic history 

matching. 

A probabilistic approach called the Bayesian framework for history matching 

as a substitute to zonation approach was introduced by Gavalas, et al., (1976), and 

Shah, et al., (1978). The methodology provides better estimates of true permeability 

and porosity distributions in the reservoir than the conventional zone-gradient 

optimization methods. The Bayesian framework was tested on a single phase, 1D 

synthetic reservoir. The Bayesian estimation uses prior statistical information (mean 

and co-variance) on the unknown parameters and incorporates geological information 

as a penalty term in the objective function to reduce statistical uncertainty in reservoir 

parameter estimation. Shah, et al., (1978), compared the results obtained using 

Bayesian estimation with those of reparameterization by zonation and sensitivity 

coefficient method, based on computation of the traces of a posterior co-variance 

matrix. Both groups, Gavalas, et al., (1976), and Shah, et al., (1978), reported that the 

correctness of the Bayesian estimates depends on the accuracy of the prior knowledge 

on the statistics and geological information. 

 de Marsily, et al., (1984), proposed a pilot point method in conjunction with 

the optimal control theory for parameterization of groundwater hydrology. The 

concept of the pilot point method was first adopted in petroleum engineering by 

Fasanino, et al., (1986), for single phase gas reservoir parameterization by perturbing 

reservoir parameter (such as permeability and porosity) values at selected locations of 

pilot points to match reservoir production history. The reservoir properties at the 

remaining locations are interpolated using kriging or conditional simulation with 

respect to the reservoir parameter values at the pilot points. Thus, pilot point technique 
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avoides gradient calculation in all grid blocks expect at the pilot points which, in turn, 

reduce unknown reservoir parameters that have to be estimated. This method provides 

only an approximate solution for the inverse problem like history matching, and also 

there is unceratinity about the number of pilot points to be specified and their locations 

to minimize the objective function. Further application of pilot point method and its 

extension in history matching can be found in works of Floris, (1996); Bissell, et al., 

(1997); Xue, et al., (1997); Landa and Horne, (1997); and Wen, et al., (1998). Bissell, 

et al., (1997), successfully applied the pilot point method on a synthetic reservoir to 

estimate the porosity values for history matching.  They found optimal locations for 

pilot points using the sensitivity information computed from a direct method, which 

assumes that high sensitivity reservoir regions are influenced by the pilot point 

locations. Cuypers, et al., (1998), discussed how to choose number of pilot points and 

optimum location by combining the geological uncertainity and sensitivity to objective 

function. The pilot point technique suffers from a few drawbacks due it slow 

convergence to optimum solution, overshooting or undershooting of reservoir 

paramters at the pilot points, consequently resulting in fluctuations of objective 

functions as iterations proceed ( Xue, et al., 1997, and Liu and Oliver, 2004). 

 Anterion, et al., (1989), extended the method, proposed by Carter, et al., (1974) 

and Chavent, et al., (1975), to multi-phase flow problem. The sensitivity coefficient 

calculation based on gradients are implemented on a fully implicit, synthetic, 3-phase, 

3D reservoir. Their testing resulted in an improved accuracy of history matched 

models and reduced simulation runs and computer processing time as compared to 

other gradient methods. The authors concluded that the indulgence of experienced 

reservoir engineer on history matching problem cannot be automated/ substituted as 

computers do not have the ability to choose the parameters to be changed. Extensive 

studies and applications of  gradient simulator to calculate sensitivity matrix have been 

reported by Bissell, (1994), Wu, et al., (1999), Wu and Datta-Gupta, (2002), 

Rodrigues, (2006), Cominelli, et al., (2007) and Oliver, et al., (2008). However, the 

experience of these authors shows that reservoir models with greater than a few 

thousands of grid blocks are to large and complex to be solved using direct methods 

due to limitations in memory and computation time. Although Killough, et al., ( 1995), 

tried speeding the iterative solver, but still 10% of forward simulation was required for 
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calculating the sensitivity coefficients. They introduced a multiple right hand side 

iterative linear equation solver (MRHS) for system of adjoint equations that 

considerably boost the gradient solver performance. The authors experimented  their 

methodology on reservoir models having upto 10,000 grid blocks and  showed a 

comparison between the MRHS iterative solver and standard red-black line successive 

overrelaxation (RBLSOR) and direct (D4) solvers. 

 Tan and Kalogerakis, (1992), applied a modified Guass-Newton method for 

history matching problem of a 3-phase, 3D synthetic reservoir to estimate the 

parameters such as permeability and porosity.  They showed the successful execution 

of the methodology to automate completely the history matching procedure and 

resulted in achieving genuine  permeability and porosity values from a wide range of 

intial guess. They also reported the capability of Guass-Newton method in reducing 

the number of sensitive coefficients to be calculated. This method was employed for 

hisotry matching problem of a single phase reservoir by Chu, et al., (1995). They tried 

to condition the well-test pressure data with the reservoir grid block permeability and 

porosity distributions with modified generlized pulse-spectrum technique (MGPST). 

They showed that the method achieved a reasonable estimate of the sensititvity related 

to the permeability distribution, but not with the porosity distribution. The authors also 

presented a technique for generating realizations of permeability and active well skin 

factors that are conditioned to the wellbore pressure. Reynolds, et al., (1996), used the 

Gauss-Newton methodology to construct a posteriori estimate of reservoir parameters 

and a reduced parameterization technique for history matching of multi-well pressure 

data. The authors applied a subspace method as parameterization technique to reduce 

the size of the Hessian matrix, that has to be solved during each Guass-Newton 

iteration. They reported, there was a significant reduction in computaion time required 

for generating realizations conditioned to prior geological and observed data. He, et 

al., (1997), applied the same approach used by Chu, et al., (1995), to generate 

sensititvity coefficients related to porosity fields for a single phase flow reservoir. 

They concluded that they did not achieve better estimates of sensitivity coefficeints 

related to porosity fileds, hence they extended the practice of Carter, et al., (1974), for 

estimating the sensitivity coefficients related to porosity and permeabiltiy fields. The 

methodology was further extended by Wu, et al., (1999), for 2D, 2-phase flow of oil 
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and water  synthetic reservoir history matching problem. They achieved history 

matched model by adjusting the mean log-permeability of each layer rather than 

adjusting the individual grid block permeabilities. Li, et al., (2003), extended the 

methodology for a 3D, 3-phase reservoir history matching problem. The drawback 

reported by authors who applied Gauss-Newton method and its varients was its slow 

convergence for long time production data and undesirable match for the well-test 

pressure data in case of bad intial estimates. 

  Bi, et al., (2000), used Levenberg-Marquardt method, which is a version of 

Gauss-Newton method with modification in Hessian matrix to improve the 

convergence rate. They implemented the methodology to condition 3D stochastic 

channels to well-test pressure and well observation data, which is an extension of the 

work done by Landa and Horne, (1997) on conditioning 2D stochastic channels to 

pressure data.  Zhang, et al., (2003), used the same methodology to condition 2D 

stochastic channels to pressure data and well observations by introducing a 

randomized maximum likelihood (RML) method for generating better initial guess for 

the Levenberg-Marquardt algorithm. The method was also applied by Vefring, et al., 

(2006) to estimate the reservoir properties by minimizing the difference between the 

measurements from the drilling process and corresponding reservoir simulation model 

states. However, the Levenberg-Marquardt algorithm resulted in slow convergence 

and also induced instability for models with large production data and parameters. 

Conjugate gradient or quasi-Newton method, is believed to be more efficient 

and require less computation time to compute the sensitivity coefficients. This method 

requires only the gradients of the objective function and thus reduces the 

computational time needed for sensitivity coefficients to form Hessian matrix. 

Makhlouf, et al., (1993), employed this approach to estimate gridblock permeabilities 

of reservoir having 2-phase (oil and water) and 3-phase flows. The method used 6400 

CPU seconds on a CRAYX-MP/48 for matching historical production data of the 

reservoir model with 450 gridblocks.  They illustrated the effects of bi-cubic spline 

approximation against zonation and regularization techniques on history matching. 

Deschamps, et al., (1998), extended the work of Anterion, et al., (1989) on gradient 

optimizing algorithms, by examining six different gradient optimizers for 3-phase, 3D 

history matching problem. These include; Gauss-Newton/ steepest descent (ConReg), 
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quasi-Newton (QN), ConReg/QN hybrid, Dennis-Gay-Welsch (DGW) method, 

Double-Dog-Leg Strategy (DDLS) and the Al Baali-Fletcher (ABF) method. They 

concluded that the hybrid Gauss-Newton; ConReg and DDLS are more efficient than 

the quasi-Newton method except for larger reservoir models with gridblocks greater 

than 10,000 and 100’s of parameters. A variant  of quasi-Newton, called the limited 

memory BFGS (LBFGS) was utilized by Zhang and Reynolds, (2002), for complex  

history matching problems. LBFGS method needs only the gradient and objective 

function values from the previous iteration to construct the Hessian approximation, 

Zhang and Reynolds, presented extensive studies on various gradient optimizers such 

as: Levenberg-Marquardt, preconditioned conjugate gradient, BFGS and LBFGS for 

synthetic and real reservoirs. They stated that the LBFGS is a more efficient optimizer 

than the modified Levenberg-Marquardt and the Gauss-Newton minimizing 

algorithms for large scale reservoirs. A comparison between the simultaneous 

perturbation stochastic approximation (SPSA) and the LBFGS methods was presented 

by Gao and Reynolds, (2006). They concluded that SPSA provided slower 

convergence than the LBFGS algorithm, but was better than the steepest descent 

algorithm. They also suggested a line-search algorithm, data damping procedure and 

enforced constraints on model parameters for improving the efficiency of 

minimization algorithms. Liu and Oliver, (2004), tested the quasi-Newton method as 

minimizing algorithm and adjoint equation for gradient calculation on a 5-spot water 

injection problem with more than 73,000 model parameters. Dong and Oliver, (2005), 

used the same approach for automatic history matching problem of time-lapse seismic 

data, by minimizing the difference between measurement changes to that of reservoir 

simulator response. Eydinov, et al., (2009), reported the implementation of LBFGS 

algorithm for estimating the relative permeability curves and distribution of porosities 

and permeabilities for 3-phase synthetic reservoir. 

A knowledge based system (KBS) was created by Parish, et al., (1993), in 

conjunction with Sequential Bayes method as a decision support tool for reservoir 

engineers. The knowledge based system assists the engineers to interact with the 

framework of automatic history matching. The KBS uses knowledge of the engineer 

about the field which is stored in a database and uses rule-based instructions such as 

IF… THEN, ELSE, statement to make suitable decisions on history matching. 
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An alternative to conventional gradient optimization method is the Gradual 

Deformation method which can be considered as a stochastic optimization method, 

since it does not require the calculations of gradients of objective functions to reach 

optimal solution. The method was proposed by Roggero and Hu, (1998) and Hu, 

(2000),  for conditioning 3D stochastic reservoir models to the well-test and 

production data. The method is an efficient inverse algorithm that gradually deforms 

the Gaussian-related stochastic model whilst maintaining the statistical characteristics 

(spatial variability) of the reservoir models.  The method is usually formulated as the 

linear combination of two Gaussian realizations with expected mean and covariance to 

generate new realizations, which better match the production data than the initial 

realizations. In this case, the history matching problem is transformed to 1D 

optimization problem, since the combinations are parameterized with a single 

parameter. The match obtained from newly generated realizations was further 

improved by combining with other equi-probable realization, this process continues 

until a satisfactory match is achieved by the newly generated reservoir model 

realizations. Hu, (2000), extended the work to multidimensional gradual deformation, 

local gradual deformation and deformation gradually with respect to structural 

parameters. Moreover the method is applicable for calibrating the non-Gaussian 

reservoir models by transforming the non-Gaussian framework to Gaussian framework 

(e.g. lognormal model, truncated Gaussian model).  

Hu, et al., (2001), demonstrated the efficiency of this method for constraining 

reservoir facies model generated by sequential simulator to the production data. A 

prior constraint was included in the objective function by Ravalec-Dupin and 

Nœtinger, (2002), when they realized that the correct sampling of posterior probability 

density function was not granted using gradual deformation algorithm that has only 

data mismatch as the objective function. Caers, (2003), showed the application of 

gradual deformation method with multi-point geostatistics to generate initial 

realizations for a streamline simulation model that deforms the initial realization to 

match the observations at well locations. Liu and Oliver, (2004), concluded that the 

gradual deformation is better than Markov Chain Monte Carlo (MCMC) method when 

they compared the distribution of conditional realization obtained from both the 

methods. Further extension of application from pixel-based models to object based 
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model such as Boolean models was presented by Hu and Jenni, (2005). An application 

of local gradual deformation in history matching using real reservoir data was 

presented by Gervais, et al., (2007). They pointed out that an issue arises in defining 

the partition of the fine-scale geological model while applying local gradual 

deformation method. 

 The advantage of these type of gradients-based methods is that it converges fast to 

optimal solution. Even though these methods are very efficient and widely used, they 

suffer from drawbacks like converging to local optimum solution by escaping the 

global optimum solution and also calculation of first and second order derivatives of 

highly nonlinear objective function is a problem. These limitations of gradient based 

algorithms draws attention of researchers to come up with stochastic methods which 

are non-gradient based. 

2.5.2 Non-Gradient Based Methods 

Non-gradient methods are also known as stochastic algorithms, which perform 

better in approaching the global optimum and escaping local optimum solutions 

(Kathrada, 2009). Moreover, the non-gradient methods do not require any calculation 

of complex gradients to minimize the objective functions. On the other hand, 

stochastic algorithms usually require significant computation time and large number of 

simulation runs to converge to global optimum in comparison to gradient-based 

methods. However, stochastic algorithms are most suitable for non-unique history 

matching problems, as these methods do not require an initial guess close to the 

optimum. Instead, a number of equi-probable reservoir models are generated which 

evolve progressively with the help of certain operators until global optimum is reached 

(Liang, 2007). Over the past four decades there has been an enormous progress in 

developing the stochastic algorithms by several researchers. Some of the commonly 

used stochastic algorithms are: 

♦Simulated Annealing ♦Ant colony optimization 

♦Scatter and Tabu searches ♦Kalman filters 

♦Neighborhood Algorithm ♦Genetic Algorithms 

♦Particle swarm optimization ♦Simultaneous perturbation         

stochastic approximation 
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2.5.2.1. Simulated Annealing: Simulated annealing (SA) proposed by Kirkpatrick, et 

al., (1983) and Cerný, (1985) is a probabilistic heuristic method for finding global 

optimum solutions in a large discrete search space. SA was first introduced for 

reservoir characterization by Farmer, (1989).  Extensive researches on SA for inverse 

modeling of reservoir have been accomplished by many researchers in early 90’s. 

Ouenes, (1992), applied the methodology for simultaneously estimating and 

conditioning of the petrophysical properties of the reservoir. He confirmed the 

robustness of the methodology by making comparison with other gradients methods. 

Further, Ouenes, et al., (1992), employed SA for simultaneously estimating relative 

permeability curves and capillary pressure for gas/water laboratory core floods. 

Sultan, et al., (1993), used SA for automatic history matching of a black oil reservoir 

experiencing waterflooding. They reported, a good match with field production data 

was attained with the implementation of SA.   Ouenes and Saad, (1993), proposed a 

new, fast, parallel SA algorithm to reduce computation time for minimizing the 

objective function of large scale reservoirs. They tested the parallel processing 

algorithm on a reservoir model with dimension 280 x 180 using a CRAY Y-MP with 4 

processors.  Panda and Lake, (1993), applied parallel SA algorithm using Intel’s 

Hypercube processor iPSC 860 for estimating the permeability fields. Later, Ouenes, 

et al., (1994), applied SA algorithm for estimating the permeabilities, pore volume, 

reservoir wettability and wellbore properties of a fractured reservoir.  Deutsch and 

Journel, (1994), applied the algorithm to construct a stochastic reservoir model that 

honors available geological and production data. Sagar, et al., (1995), used SA to 

minimize an objective function that included information on geometric average 

permeability along with the spatial statistics from well log/core data. Sen, et al., 

(1995), introduced a heat-bath algorithm for SA method instead of traditional 

Metropolis algorithm and applied it to a set of outcrops and tracer flow data for 

estimating permeability fields. The authors reported that for small simulation 

problems, SA based on metropolis performed well but for larger problems, heat-bath 

algorithm equaled and often outperformed metropolis algorithm. Abdassah, et al., 

(1996), reported that a better reservoir simulation can be achieved by incorporating 

acoustic impedance data to the conventional SA method. Portella and Frais, (1999), 

used SA method for solving automatic history matching problem by combining it with 

the pilot point method for reducing the number of adjusting parameters.  Further, the 
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resultant history matched model was used to generate realizations by applying a 

geostatistical technique. Each of these realizations was subjected to flow simulations 

to ensure the desired confidence interval of reservoir performance predictions. Even 

though a satisfactory match was achieved with SA method, the slow convergence 

limited its application for further studies. 

2.5.2.2. Scatter Search: Scatter search (SS) technique was proposed by Sousa, et al., 

(2006) for automatic history matching. SS starts with an initial set of solutions called 

reference set (RefSet), which have the best solutions acquired from the previous 

solution attempts. The idea behind this technique is to improve the quality of the 

RefSet by making a non-convex linear combination of the RefSet solutions, which 

gradually generate new sets of solutions.  The newly created sets are ranked according 

to their fitness function, and then the fittest RefSet solutions are selected for the next 

iteration. Sousa, et al., (2006), tested their technique for history matching of 

homogeneous and heterogeneous synthetic reservoirs. They framed their history 

matching problem as a combinatorial optimization problem in which the uncertainty of 

the parameters had to be discretized. The reduction in the state space between the 

discretized parameter values enhances the accuracy of the results, consequently 

increases the number of possible solutions.  Albeit, the implementation seems to be 

limited for small number of parameters, the SS technique reported to be quite efficient 

in generating the quality RefSet solutions that requires fewer simulation runs. 

2.5.2.3. Neighbourhood Algorithm (NA): Neighbourhood algorithm is a global 

optimization, non-derivative search algorithm in a Bayesian framework used to sample 

the multidimensional parameter space.  Similar to simulated annealing, NA generates 

ensembles of history matched models by first generating initial random sets of models, 

and then ranks each of them according to the degree of match with the data. The 

spatial properties of the geometrical construct, called the Voronoi cells, are used to 

create new models by uniform random walk from the previous best matched models. 

Sambridge, (1999), first introduced NA applications to petroleum engineering for 

highly non linear problems like waveform inversion of seismic data. He showed that 

the method was robust and efficient with reduction in the computation time and 

memory requirement depending on ensemble size and dimension of the parameter 

space. The author reported that the methodology was compatible with the distributed 
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systems. Subbey, et al., (2004) and Christie, et al., (2006), employed a Bayesian 

framework for quantification of uncertainty in flow through porous media by using 

NA algorithm to develop history matched models.  Rotondi, et al., (2006), applied NA 

algorithm on an offshore gas field consisting of seven wells having 6 years of 

production history. The hydrocarbon forecasts and uncertainty quantification using 

Bayesian inference matched well with data when compared to other history matching 

algorithms. Erbaş and Christie, (2007), examined the efficacy of NA sampling 

algorithm for generating history matched models for a real field from North Sea 

reservoir. Their research was more inclined towards finding the inaccuracies 

associated with different sampling algorithms used for uncertainty quantification in 

reservoir performance predictions and parameter estimation. Suzuki, et al., (2008), 

combined neighbourhood algorithm with ‘similarity distance’ measure to 

accommodate large reservoir realizations. 

2.5.2.4. Particle Swarm Optimization (PSO): Particle swarm optimization is a bio-

inspired; population based stochastic optimization method for discrete and continuous 

optimization problems. PSO, an intelligent search technique, introduced by Kennedy 

and Eberhart, (1995), from the idea inspired by behavioral model of fish schooling or 

bird flocking. In particle swarm optimization, the possible solutions called the 

‘particles’ are positioned in the search space and are moved through the search space. 

The position of the each particle represents each candidate solution for the 

optimization problem, where each particle searches for its best position according to 

the rule based on each particle’s personal knowledge and swarm knowledge. Kathrada, 

(2009), introduced this methodology to reservoir engineering, when he tested PSO in 

conjunction with hierarchal clustering algorithm on a synthetic reservoir to generate 

history matched models. Fernández Martïnez, et al., (2009), applied PSO for seismic 

history matching by conditioning the subsurface facies model to match production 

history and time-lapse seismic data. They reported that PSO is as efficient as other 

global optimizer in terms of its convergence and in estimating the uncertainty of 

parameters of posterior models.   Mohamed, et al., (2010), made a comparison 

between three stochastic algorithms: Hamiltonian Monte Carlo (HMC) algorithm, 

Neighbourhood Algorithm (NA), and the Particle Swarm Optimization (PSO) by 

generating multiple history matched models. They concluded that Hamiltonian Monte 
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Carlo and  Particle Swarm Optimization are the potential techniques for uncertainity 

quantification of reservoir models.  A combination of PSO with ANN-based soft- 

sensor and genetic algorithm was applied for optimzation of a real field by Ali 

Ahmadi, et al., (2012). Awotunde, (2012), improved the basic PSO method for 

generating multple history matched models of permeability distributions. Some of the 

applications of PSO in determininmg the optimal well locations can be found in the 

wok of Onwunalu and Durlofsky, (2010), Guojian, et al., (2012), and Nwankwor, et 

al., (2013). 

2.5.2.5. Ant-colony Optimzation (ACO): Ant-colonoy optimzation is a population 

based stochatic optmization method that utilizes the swarm intelligence, developed 

from the social behavioral model of ants. ACO is a metaheuristic algortihm for 

combinatorial optimization problems, introduced by Dorigo, et al., (1996), from the 

stuides of  communicative behavior among real ants in finding the shortest path 

between the food source and their nest. ACO is an evolutionary approach applicable to 

both disceret and continuous variable optimization problems, where many generations 

of artifical ants search for an optimal solution for the problem. Fatemeh and Farhang, 

(2008), proposed  the application of ACO technique to estimate fluid injection rates, 

optimal well locations for production and injection, and well flow pressure. They 

coded the ACO algorithm in MATLAB environment and ilustrated its ability in 

providing fast convergence and accurate solutions.  A mutidimensional, continuous, 

ACO was used by Rutkowski, et al., (2008), for estimating reservoir description of 

history matched models, and also for determining the number of optimum phase 

seperaters in oil industry. Li, et al., (2010 ), applied a hybrid particle swarm- ACO 

(PS- ACO) algorithm for recognizing oil-bearing zones of a reservoir.  Hajizadeh, 

(2011), and Hajizadeh, et al., (2011), presented extensive studies on  ACO, differential 

evolution (DE) algorithm for achieving  multiple history matched reservoir models 

and quantification  of uncertainity in ultimate oil recovery. They tested their 

methodologies on two reservoirs: a) simple Teal South Reservoir  with eight reservoir 

parameters and a single well, b) PUNQ-3 complex reservoir. A comparison of ACO, 

DE algorithm with Neighbourhood Algorithm showed that the former provided an 

impoved quality of multiple history matched models and required lesser number of  

simulation runs to achieve quality match for PUNQ-3 complex reservoir. The same 
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methodology was found to be mariginal when applied to simple Teal South reservoir 

with sinlge well and univariate objective function. A comparison of ACO, DE 

algorithm with Neighbourhood Algorithm showed that the former provided an 

impoved quality of multiple history matched models and required lesser number of  

simulation runs to achieve quality match for PUNQ-3 complex reservoir. The same 

methodology was found to be mariginal when applied to simple Teal South reservoir 

with sinlge well and univariate objective function. Hajizadeh ans coworkers also 

extended the application of these methodologies for muti-objective history matching 

problems and reported that the DE-rand was a better option for such problems. The 

use of ACO with back- propagation algorithm (ACO- BP) proposed by,  Irani and 

Nasimi, (2012), and Amir, et al., (2013), enhanced the evolution capability of the 

neural network and thereby, production forecasting of history matched models. They 

experimented the hybrid ACO-BP algorithm for estimating permability distributions 

from the well log data of Mansuri Bangestan reservoir of Iran. Their experimental 

results showed that, ACO-BP algorithm was more effcient in comparison with 

conventional BP algorithm for parameter estimation. Popa, et al., (2012),  utilized 

ACO for waterflood analysis for an unconventional reservoir characterized with low 

permeability, high porosity and high oil saturation. 

2.5.2.6. Ensemble Kalman Filters (EnKF) And Its Varients: Evensen, (1994), 

proposed a Monte Carlo type Kalman Filter called Ensemble Kalman filter (EnKF). 

EnKF incorporates prior knowledge of the parameter to be estimated with the 

knowledge about available observations to achieve an estimate that resembles the 

truth. For past two decades, there has been an enournous research and successful 

application of EnKF in reservoir engineering and inverse problem of history matching. 

The literature survey presented here on the application of EnKF in reservoir 

engineering showcases some of the impotant works done in past years.    

 Lorentz

en, et al., (2003), first introduced EnKF in petroleum engineering for tuning the 

parameters in a two phase flow model. First application of EnKF in history matching 

was presented by Nævdal, et al., (2002), for updating the static parameters in near-well 

reservoir modeling by tuning the permeability fields. Nævdal and co-workers extended 

the application of EnKF to update 2D, 3-phase, North Sea reservoir by continuously 
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adjusting permeability, saturations and pressure fields and simultaneously assimilating 

the new data as it arrive.  

  Gu and Oliver, (2005), used EnKF for continuous updating of porosity, 

permeability, pressure and saturation fields of 3D, PUNQ-S3 reservoir history 

matching problem. The authors reported the use of small ensemble size, which 

resulted in a fairly good history match and reduced computational cost incurred in 

generating 40 history matched models. They pointed out issues related to overshooting 

of permeability and porosity fields which required further investigations. Gao, et al., 

(2006), quantified the uncertainty for the PUNQ-S3 problem in a Bayesian setting 

with randomised maximum likelihood (RML) and showed the results were consistent 

with those obtained while using EnKF. Gu and Oliver, (2005), analysed the limitations 

of EnKF while working with non-Gaussian members in the state variables. Their 

investigation showed that non-physical values were generated during Kalman update 

when distribution of one of the state variables was far from normal.  They also 

claimed that EnKF and linear inversion problem using Bayesian approach are the 

same. 

 Zafari and Reynolds, (2007), reported that EnKF failed to sample the posterior 

PDF for multi-model problems when the ensemble goes to infinity. However, they 

concluded that the RML method approximately sampled the correct posteriors.  

Reasonable results were obtained in case of a 2D synthetic reservoir which had less 

nonlinear problems. They also showed that for linear case, rerunning the time step 

proposed by  Wen and Chen, (2005), to recompute time dependent parameters were 

inappropriate.  Skjervheim, et al., (2007), used EnKF for continuous model updating 

by assimilating 4D seismic and production data which resulted in improved estimation 

of permeability field. The method was a combination of EnKF and Ensemble Kalman 

Filter Smoother when the seismic data were given as a difference between two surveys 

at the same location but at different times. They tested the methodology on a synthetic 

reservoir and a real North Sea reservoir. Good results were obtained in the case of 

synthetic reservoir, providing better permeability estimates when seismic data were 

added to the production data. But for the North Sea reservoir, very different 

permeability estimates were obtained with the addition of seismic data to production 

data, while retaining the production match. This means that interpretation of seismic 
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data in terms of permeability map may not be unique. Lodoen and Omre, (2008), 

illustrated how to account for an upscaling problem when using the filter, and 

quantified loss in accuracy and precision. The idea is to use coarse scale fluid flow 

simulation results to predict fine scale simulation results, and to assess the associated 

prediction uncertainty. The relationship between production properties from a coarse 

scale and a fine scale fluid flow simulator is estimated by the application of EnKF. Liu 

and Oliver, (2005), used EnKF to condition lithofacies realizations generated by pluri-

Gaussian model. The authors, presented a comparison between the performance of 

EnKF and gradient-based minimization method for the problem of estimating the 

facies boundaries in history matching. For this purpose, distributions of reservoir 

model realizations from 20 independent ensembles were then compared with the 

distribution from 20 RML realizations for a 2D water flood model with 1 injector and 

4 producers. The results showed that EnKF was effective for history matching the 

production data. Their investigations also showed computational effort to generate 20 

independent realizations was similar for both the methods. 

 Wen and Chen, (2005), used EnKF with confirming option for continuously 

updating ensembles of permeability distriubution  to match production history of real 

time reservoir model. They suggested, an ensemble size of 50 or 100 for EnKF, was 

too small to estimate the uncertainty in the model, whereas an ensemble size of 200 

seemed to be sufficient. Arroyo-Negrete, et al., (2008), proposed a sensitivity-based 

covariance localization to overcome the limitations of traditional EnKF such as; 

instabilities, parameter over/undershooting and loss of geological realism. The 

robustness and practical ability of the approach were demonstrated using a synthetic 

example and Goldsmith field case. They showed a comparison of results obtained 

between standard EnKF and conditioned EnKF. They claimed, conditioned EnKF has 

the ability to retain the shape of the non-Gaussian nature of the histograms that leads 

to reasonable updated model. Haugen, et al., (2008), showed, how EnKF could be 

used for assisted history matching of a North Sea reservoir model by estimating the 

water-oil contact and gas-oil contact. Their investigations raised some issues related to 

EnKF which include the estimation of structural parameters and estimation of multi-

model and non-Gaussian facies distributions. Jafarpour and McLaughlin, (2008), 

combined the Discrete Cosine Transforms (DCT) parameterization with EnKF to 
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estimate the unknown geological properties of large reservoirs. They examined the 

proposed method on two, 2-phase, 2D, synthetic reservoirs during waterflooding 

having different types of geological variability. The authors applied DCT 

parameterization to both state variables and model parameters which resulted in better 

history matched production data as compared with traditional EnKF. Chen, et al., 

(2008), proposed an ensemble based closed loop optimization method that combines a 

novel ensemble based optimization scheme (EnOpt) with EnKF and does not require 

any adjoints. Foss and Jensen, (2011), proposed an application in which they 

combined EnKF with Model Predictive Control (MPC) in a closed loop reservoir 

management scheme. This problem was solved using adjoint based optimization. 

 Agbalaka and Oliver, (2008), used EnKF to automate the history matching of 

facies distribution and production data. They demonstrated the use of sub-space 

methodology for problems of generating maximum posterior estimates and 

realizations of log-permeability and porosity fields conditioned to synthetic pressure 

data for single phase flow for both 2D and 3D cases. The method produced 

satisfactory results. Liang, et al., (2007), proposed a weighted EnKF, by modifying the 

assimilation equation with the addition of a weighting factor to each ensemble 

member. The method was applied to a complex reservoir having seventeen layers. 

They made a performance comparison between weighted EnKF and traditional EnKF. 

Chitralekha, et al., (2010), applied EnKF for characterization and history matching of 

an unconventional 3D steam assisted Gravity Drainage oil reservoir. Distance 

dependent covariance localization and globalization methods were used for updating 

grid block permeabilities by assimilating near-well measurement data. They assessed 

the quality of ensemble realizations in terms of their weighted mean square error 

(WMSE) and R-square values. Both the methods resulted in reasonable history match 

demonstrating the efficacy of the localization approach. However, their globalization 

method did not provide any significant improvement in the quality of production 

history match, but localized method yielded permeability values having low error 

when compared to truth case. Their 3D reservoir was synthetic with known 

permeability distribution which helped them to compare their EnKF predictions of 

permeabilities with actual values but lacked realism. They also observed that the 

RMSE in the estimated permeability of localized EnKF was consistently lower than 
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that of the global EnKF algorithm. Emerick and Reynolds, (2011), showed significant 

improvement in production data match and performance prediction with the use of  

half-iteration EnKF (HI-EnKF) with covariance localization for a field case, but the 

computational cost was high, as HI-EnKF required rerunning of ensemble from time 

zero at every data assimilation step. These authors compared the performance of HI-

EnKF with covariance localization and that without covariance localization for a real 

field and reported that the former method avoided the propagation of spurious 

correlation and loss of variance by maintaining a better production match and 

performance prediction. Phale and Oliver, (2011), proposed constrained EnKF method 

(CEnKF), which takes into account the physical constraints on plausible values of the 

state variables during data assimilation. The problem such as, negative value for 

updated molar density of CO2 for some region encountered during history matching of 

2D compositional model and highly heterogeneous 3-phase reservoir model, were 

avoided with the usage of CEnKF. They showed, CEnKF technique had the ability to 

enforce non-negativity constraints on molar densities and bound constraints on 

saturations and thus achieving a better estimation of reservoir properties.  

When rock properties are modelled using Gaussian random field, there is a tendency 

to under estimate the uncertainty associated with geological structures. Zhang and 

Oliver, (2011), analysed uncertainty associated with regional trend as one important 

source of uncertainty, represented by stochastic trend coefficients. They proposed a 

method for representing and updating multiple scales of heterogeneity in EnKF, which 

was tested on deep water reservoir model having 2000,000 unknown parameters. Their 

analysis showed an unsatisfactory match for production history of a real field with 

traditional EnKF as it was difficult to match the water cut in the main producer. The 

results obtained with multi-scale parameterization showed an improved data and water 

cut match with the reduction in tendency to underestimate the uncertainty. The 

limitations of EnKF to quantify the uncertainties in data mismatch, sampling errors in 

posterior probability distributions and handling highly nonlinear problems, led to 

introduction of hybrid EnKF and its varients using stochastic algorithms.  Kovalenko, 

et al., (2012), assessed the sampling error occuring at a single update step of EnKF. 

For this, they derived a distribution of Euclidean norm of the sampling error emering 

at a single step update, under assumptions of negligilbe observation error and 
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normality of forecast distributions. Several synthetic reservoir models were used for 

illustarting the error propagation at single step update. Emerick and Reynolds, (2013), 

compared the sampling performance of nine ensemble- based techniques with an 

adjoint method for a small, highly nonlinear reservoir, for which a MCMC sampling 

algorithm was used to generate reference posterior distribution of reservoir 

parameters. They conducted the performance analysis in terms of uncertainity 

quantification of history matched models and computaional cost incurred.  Tavakoli, et 

al., (2013), introduced a parallel data assimilation framework for uncertainty 

quatification and reservoir characterization, where the multiple realizations were 

distributed among several computers for computations. The communication among 

these parallel systems were performed at data assimilation step. They tested the 

parallel ensemble-based framework on synthetic reservoir for EnKF and Ensemble 

Smoother (ES) method. They concluded that the parallel framework reduced the 

computation time as compared to the serial ones, a parallel efficiency of 35% was 

attained for EnKF and more than 50% for ES technique. Heidari, et al., (2013), used 

EnKF in conjunction with two second order parameterization methods such as; pilot 

points and gradual deformation to avoid  deviation of constraint petrophysical 

properties from prior knowledge . 

2.5.2.7. Genetic Algorithm (GA): Genetic algorithm is a direct search metaheuristic 

method that grounds on the evolutionary  concept of natural selection and genetics. 

GA belongs to a class of evolutionary algorithms developed by Holland, (1975), based 

on Darwin’s theory of “survival of the fitttest”. This evolutionary process utilizes a 

population of individuals called chromosomes, are processed on the principles of 

natural selection, inheritance, recombination (crossover) and mutation, over 

generations using random search within the defined search space to reach potential 

solutions.  The newly generated individuals of the population are evaluated using 

fitness function and the success of the reproduction varies with the fitness. GA have 

been widely applied in many engineering and real world problems such as protein 

structure prediction (Contreras-Moreira, et al., 2003), learning robotic behaviour 

(Birk, et al., 1998), computer automated system design (Li, et al., 2004), inverse 

problems in electromagnetics (Tanaka, et al., 1994), inverse modeling  of coupled 

flow-mass trasportation (Mayer and Huang, 1999), optimal design of gas transmission 
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pipeline (Goldberg, 1987; Montoya-O, et al., 2000), design of optimal neural 

architecture for on-line soft-sensor development (Dam and Saraf, 2006) etc. 

Genetic algorithm has proved to be an efficient and effective method for reservoir 

parameterization and ill-posed, inverse history matching problems. The application of 

genetic algorithm for reservoir modeling was first introduced by Sen, et al., (1995), for 

generating stochastic permeability distributions from a set of reservoir outcrops and 

tracer flow data, followed with uncertainty quantification of production forecasts. A 

string of binary coded chromosome that represents permeability values at each grid 

location with a population size of 200 was adopted in their stuides. The formulation of 

genetic algorithm used for their study was based on standard fitness-proportionate 

selection operator, k-point crossover operator, and bit-flip mutation operator.  It was 

reported that they achieved global optimal solution with a crossover probability of 

0.60, mutation probability of 0.01 and update probabiltiy of 0.90. The authors 

concluded that the peformance of GA was highly dependent on  the choice of 

population size and crossover, mutation and update probabilities. A modified GA was 

proposed by Bush and Carter, (1996), for estimating parameters such as sand 

permeability, shale permeability and fault throw. Their modifed GA incorporated a 

non-standard binary encoding, modified breeding strategies and niching, and was 

tested on a vertical cross section of a synthetic PUNQ-S3 reservoir. They encoded the 

reservoir parameters in a variable length binary choromosome with 3 x 4 bit length to 

spot large scale structures. They transformed to 3 x 8 bit choromosome to identify 

small structures of reservoir after 10 iterations. Since the authors initially encountered 

difficulties with the ghost clusters, they employed inter-leaving procedure for 

chromosome construction rather than the concatenation procedure.  It was reported 

that they used steady state GA with modified rank selection operator that includes 

elitism. In steady-state GA, the population size  of offspring is equal as the parents 

population size after each iteration. They applied a random k-point crossover operator 

to generate two offspings followed by mutation operation. The authors reported that 

their modified GA outperformed the standard, GA. Another successful application of 

GA in identifying the hetrogeneous reservoir properties by matching the tracer 

breakthrough profiles using six reservoir parameters was demonstrated by Guerreiro, 

et al., (1998).  They tested the proposed method on a hetrogeneous quarter of five-spot 
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synthetic reservoir, considering six parameters such as; the geometry of insertion and 

porosity inside and outside the insertion, for matching tracer breakthrough profile. The 

parameters were encoded in a 45 bit long binary chromosome, with a population size 

of 200, utilizing three crossover operators; single point, two point and uniform 

crossover operation with probabilities of 0.08, 0.48, 0.24 respectivey, and bilt-flip 

mutation with 0.02 mutation probability . They used a rank-based selection with 

elitism for selecting the best realization according to the individual’s fitness value, 

which are the sum of the weighted absolute difference between the observed values 

and the candidate solutions. The authors concluded that they achieved a satisfactory 

optimal solution with their proposed work flow. 

 Huang, et al., (1998), developed a neural-genetic model for permeability 

estimation from well log data. They utilized genetic algotihm to optimize the 

connection weights for training the neural netwroks for permeability predictions.  

Their results showed that the performance error was consistenly reduced with the use 

of GA when compared with the results obtained for NN trained with backpropagation 

algorithm.  However, they found that GA optimizer was limited due to its slower 

convergence.  Later,  Huang, et al., (2000), modified their work in neural-genetic 

modeling for fast convergence by integrating a fuzzy reasoning, which established a 

hybrid neural-fuzzy-genetic technique. In this technique the connection weights in GA 

are initialized by utilizing the weights trained by backpropagation algorithm. Soleng, 

(1999), applied steady state GA to condition the petrophysical properties of the 

reservoir to field observations. He examined the methodology on PUNQ S3 synthetic 

reservoir models of dimension 19 x 28 x 5. The grid block horizontal and vertical 

permeabilities and porosities are considered as the petrophysical parameters to be 

estimated, such that the reservior description is conditioned to field observations 

(bottom hole pressure, gas/oil ratio, and water cut). A population size of 50 was 

utilized and single point crossover, simple swap mutation and replacement operators 

were carried out for GA evolutions. The probability of swap mutation was considerd 

as zero at the grid block well locations. The author reported the method was fast in 

achieveing reasonable near-optimal solutions that are close to the realistic reservoir 

conditions. Soleng also analysed the uncertainity associated with total oil production 

from the field, using 10 history matched realizations resulting from independent GA 
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runs. He suggested that the disruptive effect of crossover can be eliminated with the 

use of 3D crosssover operation. The author tested his technique on a small reservoir 

considering only a few parameters for conditioning to field observations, but 

expressed his doubts about the efficiency of the method for large scale reservoir.  

 An extensive testing of the GA optimizer for reservoir history matching and a 

comparison with simulated annealing and GA with hill climbing were attempted by 

Romero and Carter, (2001). They tested on a coarse scale simulation model of 

synthetic PUNQ- S3 complex reservoir of dimension 12 x 44 x 10 having 11 

producers and 6 injectors. 57 pilot points that included 17 well locations and 40 

distributed pilot point locations in each of the nine layers (one inactive layer) were 

used for estimating the grid block permeabilities, porosities and  shale volume. A 

sequential Guassian simulation was utilized for generating initial grid block 

parameters, which hornors paramaters at well locations and pilot points. They used 

seven sets of reservoir parameters such as permeability, porosity, V-shale, 

geostatistical parameters, well- skin factors, and relative permeability end points. Each 

set of parameters were allocated to a different chromosome, each chromosome being 

designed to allow any structure  and were treated separately during crossover and 

mutation operations.  A non-standard structure of the genome design for a population 

size of 20 was adopted for history matching. The permeability, porosity,  and V-shale 

were encoded in a complex 3D chromosome structure with many extrons. The fault 

parameters were encoded as three real numbers with known upper and lower bounds 

and  geostatistical parameters were encoded as four real numbers, with known upper 

and lower bounds. The skin factors were encoded as 17 real numbers and the relative 

permeability end-points were encoded as 36 real numbers, with all of the end-points 

for a particular layer grouped together in one part of the chromosome.  All the 

parameters except the permeability, porosity, and V-shale were encoded in one 

dimensional chromosomes. They used k-point crossover operator for 1D 

chormosomes and bit-flip crossover operator for 3D choromosomes, subjected to three 

mutaion operators; jump mutation, creep mutation and shift mutation. Well skin 

factors were subjected to shift mutation, and all other reservoir parameters used jump 

and creep mutations. The authors concluded that the algorithm produced better 

optimal solutions than the results from simulated annealing and equalvent results with 
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manual history matching process. They showed the method to be inherently suitable 

for parallelization and reasonably insensitive to parameters settings used to control 

GA. 

Williams, et al., (2004), proposed a novel concept called the top down reservoir 

modeling (TDRM) in history matching and uncertainty quantification. The TDRM 

approach is a trademarked technology of BP, which forms an important part of 

reservoir simulation as semi-automatic history matching tool.  The approach utilizes 

genetic algorithm optimzer in conjunction with reservoir simulation model  for TDRM 

workflow to find reasonable multiple history matched models, in depletion analysis 

and for uncertainty quantification. The authors reported that the tool had been 

successfully implemented in development, appraisal and mature stages of 18 oil and 

gas reservoirs. The authors claimed that the TDRM approach resulted in an increase of 

20% in the estimated net present value (NPV) of the projects. Kromah, et al., (2005),  

succesfully applied the TDRM workflow proposed, in BP Trinidad and Tobago 

(bpTT) assets for finding optimal well locations in a mature oil field that had 30 years 

production history from 13 wells. It was reported they completed the history match 

and performance prediction within three weeks. In addition to TDRM, GA 

optimization has been utilized in commercial software called MEPO
®
 by Scanpower 

Petroleum Technology, and ENABLE
®
 by Energy Scitech, Roxar; for improving the 

quality of history matched models.  A further utilization of MEPO
®
 for automatic 

history matching, subsurface uncertainty quantification and infill well optimization 

was attempted by Choudhary, et al., (2007). They developed a structured workflow 

that used evolutionary strategy and genetic algorithm optimization methods for re-

evaluation of multiple history matched models. Their approach was tested on two 

West African mature fields. Velez-Langs, (2005), presented a detailed review on the 

application of genetic algorithm to reservoir characterization and field development 

plans in petroleum engineering. Ballester and Carter, (2007), designed a new real-

coded non-generational GA optimizer, to run on a cluster of 24 parallel computers 

(Sun Ultraspare5 workstations), for characterizing a real petroleum reservoir (Midge 

reservoir model) using available production data.  The parallelization procedure 

reduced computation time required for several optimizations to achieve an ensemble 

of diverse and calibrated reservoir models. Further, they analyzed the optimized 
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ensembles generated by GA with a clustering algorithm in order to identify the 

number of distinct calibrated models that are consistent with the production data. They 

used real-coded crossover operator such as PNX and vSBX (for details refer Ballester 

and Carter, 2004) and a replacement operator with implicit elitism feature. A 

population size ranging from 10 – 150 allowing 10000 function evaluations was used. 

Their proposed methodology resulted in an improved quality and diversity of history 

matched models, in comparisons to previous studies on the same Midge reservoir 

model by BP. Their results also showed that it was possible to attain distinct reservoir 

models in spite of the use of regularization terms in the objective function.  

It is often difficult to model a fractured reservoir with available field data. The 

characterization of multiphase flow properties of such fractured network having 

multiscale nature and its geological modeling imposes large computational cost. 

Lange, (2009), employed an inversion methodology based on GA optimization that 

was coupled with discrete fracture network (DFN) flow simulator to characterize the 

fractured reservoir models that are consistent with the well-test data. The coupling of 

GA with 3D DFN simulator enabled the execution of synchronized calibration of well-

test data. The author examined the effectiveness of his methodology on a geologically 

realistic fractured model having 3 facies, 2 fracture sets, and 3 wells. He reported that 

the method was capable of characterizing consistent fractured properties such as mean 

conductivity, mean length, orientation dispersion factors, and fracture density. Other 

successful applications of genetic algorithm for optimzation of well locations in were 

reported by Jutila and Goodwin, (2006), Walker, et al., (2008), Litvak and Angert, 

(2009). Han, et al., (2011), presented multi-objective optimization using modified GA 

optimizer for history matching of waterflooding projects. The authors implemented 

GA that included non-dominated sorting and diversity preservation algorithms. The 

fitness of the population was sorted according to proximity and diversity was added by 

analyzing crowding distance as the approach to accomplish global optimum. The 

authors experimented on a 2D heterogeneous reservoir having 400 grid blocks, with 3 

production wells and a single injection well. A reasonable estimate of the reservoir 

parameters, and improved prediction accuracy with small performance error for 

waterflooding project was reported with their method in comparison with conventional 

single objective history matching method. Monfared, et al., (2012), amalgamated 
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subsurface response modeling with genetic algorithm as an optimization tool for 

inverse history matching problem. The methodology was initialized by constructing 

proxy reservoir models based on the available measurements, which consitiute as the 

simulator response .  A reservoir model was then built based on the minimized proxy 

model generated by GA, which required only a limited number of runs and a couple of 

seconds. They found, the evolution of proxy model using GA took shorter time at a 

low cost compared to other global optimization techniques. The authors reported that, 

they achieved high-quality proxy models from 79 forward simulation runs and a 

reduction in global objective function from 581.362 to 9.347 with the use GA. The 

authors tested their methodology on a field case study that had 41 years of production 

history and achieved history matched models which were consistent with the observed 

oil rate, shut-in pressure, repeated formation test pressure, and water cut.  Murgante, et 

al., (2012), presented a comparison between genetic algoirthm and differential 

evolution for automatic history matching. They tested both the metholodgies on four 

case studies, each having varying number of parameters (2, 4, 9 and 16) to be 

estimated for the history matching inverse problem. A soft sensor was designed on the 

basis of a feed-forward neural network by Ali Ahmadi, et al., (2012), in order to 

estimate the reservoir permeabilities of a real field. They used a hybrid genetic 

algorithm and particle swarm optimization method for optimization of the neural 

network-based soft sensor. The optimal initial weighting of the reservoir parameters 

for the neural network was achieved using GA. They reported that there was a good 

agreement between the observed and predicted reservoir permeabilities with the use of 

hybrid optimization technique. A comparison between results obtained from the 

developed soft sensor and the conventional neural network was also demonstrated by 

the authors to show the efficiency of the proposed methodology.  

Above literature review has amply brought out the importance of history matching for 

field development. A host of history matching methods have been tried with the aim of 

arriving at a method which is effeicient and accurate. However, the search is on even 

to this day for that elusive method and present study was motivated by the same 

desire. Genetic algorithm has been tried in the past but rarely on real reservoirs. Since  

of the present study was to first test the developed adaptive genetic algorithm on a 

simple synthetic reservoir and then use it for a real field case. 
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CHAPTER-3 

HIGHER-ORDER NEURAL NETWORKS FOR CUMULATIVE 

OIL PRODUCTION FORECASTING OF                     

PETROLEUM RESERVOIR 

3.1 NEURAL NETWORKS (NN) AND ITS EXTENSION TO HIGHER-ORDER 

NEURAL NETWORKS (HONN) 

Neural networks (NN) are composed of several layers of neural units (neurons): input 

layer, hidden layers and output layer. A neural unit is structured mainly with two 

operations: synaptic operation for weighting, and somatic operation for mapping. In a 

conventional neural unit, the weighting process is operated with linear correlation of 

neural inputs,                                       , and neural weights, 

                                . The linear correlation can be expressed 

mathematically as 

       ∑     

 

   

 (3.1) 

However, in nature, the correlation of neural inputs and neural weights is not simply 

linear, but rather related nonlinearly. This observation introduced a nonlinear (higher-

order) synaptic operation, and NN with the higher-order synaptic operation (HOSO) 

(see Figure 3.1) was developed and named as higher-order neural networks (HONN) 

(Song, et al., 2009; Gupta, et al., 2003). HOSO of HONN embraces the linear 

correlation (conventional synaptic operation) as well as the higher-order correlation of 

neural inputs with synaptic weights (up to nth-order correlation).  An n
th

 order HOSO 

is defined as, 
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(3.2) 

 and the somatic operation, which yields the neural output, is defined as, 

        (3.3) 

In this study, different HOSO have been applied up to third-order. The first-order 

(conventional linear correlation), the second-order and the third-order synaptic 

operations are called linear synaptic operation (LSO), quadratic synaptic operation 

(QSO) and cubic synaptic operation (CSO), respectively. 
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 Figure 3.1. A neural unit (neuron) with higher-order synaptic operation (HOSO)  

The higher-order neural network (HONN), illustrated in Figure 3.2, consists of 

multiple interconnected layers: input layer, hidden layers and output layer. The input 

layer conveys n number of input data to the first hidden layer. Each hidden layer 

includes different number of neurons, and the output layer contains m neurons, m 
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being the number of desired outputs. The number of the hidden layers and the number 

of neurons in each hidden layer can be assigned after careful investigation for different 

applications.  

Hidden LayersInput Layer Output Layer

x1

x2

xn

Y1

Y2

Ym

 

Figure 3.2.  A schematic diagram of HONN with multilayer. 

HONN is trained by an error based algorithm in which synaptic weights (connection 

strength) are adjusted to minimize the error between desired and neural outputs 

(Gupta, et al., 2010; Gupta, 2008; Gupta and Rao, 1994).  Let         be the neural 

input pattern at time step         corresponding to desired output          and 

neural output     . The error of a pattern can be calculated as, 

                (3.4) 

The overall error for an epoch      is defined as, 

     
 

 
      (3.5) 

The overall error (squared error) is minimized by updating the weight matrix    as, 

                      (3.6) 

where the change in weight matrix is denoted by        which is proportional to the 

gradient of the error function      as, 

         
     

      
 

(3.7) 

where     is the learning rate which effects the performance of the algorithm during 

the updating process. The details can be found in Gupta, et al., (2003). 



48 
 

3.1.1 Model Performance Evaluation Criteria 

Several statistical methods have been used to evaluate the performance of neural 

networks in the literature. In these studies, the following performance measures are 

applied to substantiate the statistical accuracy of the performance of HONNs: mean 

square error (MSE), root mean square error (RMSE), and mean absolute percentage 

error (MAPE). These are the commonly used evaluation criteria in assessing a model 

performance for its ability to predict the values that deviate limits from the mean 

value. They indicate the deviation of prediction of applied HONN models, and are 

defined as 

Mean Square Error (MSE): 
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 (3.8) 

Root mean square error (RMSE): 
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       (3.9) 

Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE): 
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  (3.11) 

where   
  is the observed data,   

  is the predicted data, and n is the number of data 

points. In order to illustrate the consistency in performance of HONN model towards 

forecasting the production data, we have used three performance measurement 

metrics. The results obtained using all three metrics are different in their calculated 

values, but the significance of each metrics is similar in performance evaluation of the 

HONN model. Since the raw production data may be scaled before using as input to 

HONN, it is preferable to use MAPE for estimating the relative error  (Azadeh, et al., 

2007). 
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3.1.2 Pre-Processing: Optimal Selection of Input Variables 

Before performing a prediction by HONN, it is important and necessary to refine the 

available input parameter data by applying pre-processing because of two main 

reasons: i) noise reduction and ii) proper selection of input variables.  

The measured oil production data from the field include noise. It is not advisable to 

use raw data for neural network training because in that case, NN requires extremely 

low learning rates. Thus, a preprocessing of the raw experimental production data was, 

therefore, incorporated in all cases. Moving average is a type of low pass filter that 

transforms the time series monthly production data into smooth trends. This filter does 

weighted averaging of past data points in the time series within the specified time span 

(window) to generate a smoothed estimate of a time series.  The time span of moving 

average depends on the analytical objectives of the problem. For the present case 

studies, we used moving average filter with a time span of five-points since it is found 

to be optimal for reducing the random noise by retaining the sharpest step response 

associated with production data. Moving average filter is the simplest and perhaps 

optimal filter that can be used for time domain signals as reported by Smith, (1997). 

After noise reduction process, cross-correlation analysis is carried out to find optimal 

input variables. Determining the significant input variables is an important task in the 

process of training HONN model for production forecasting. A thorough 

understanding of dynamics of petroleum reservoir is necessary to avoid missing key 

input variables and prevent introduction of spurious ones that create confusion in the 

training process. Currently, there are no defined rules for the selection of the input 

variables. Most of the heuristic methods for selecting the input variables are ad-hoc or 

have experimental basis. These statistical methods provide the correlation between 

different input variables by identifying potentially influencing variables at different 

time lags. The idea behind these statistical methods is to investigate the dependence 

between the input variables.  

ACF is a set of auto-correlation coefficients arranged as a function of observations 

separated in time. It is a common tool for assessing the pattern in time series 

production data at numerous time lags. Consider the observations     and      ; 
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         ; then the autocorrelation coefficient      at lagk can be calculated using 

Eq. 3.12 
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 (3.12) 

The CCF is a set of cross-correlation coefficients arranged as a function of 

observations of one or more time series data at different time steps (lag). Consider two 

time series    and              ; the time series      may be related to the past lags 

of time series     and this can be calculated using Eq. 3.13.  Here        is the cross-

correlation coefficient between    and      and   is the lag. This means measurements 

in the variable   are lagging or leading those in   by   time steps. 

       
 ∑     ̅      ̅  ∑  ∑   

√ ∑  
   ∑     √ ∑  

   ∑    
  (3.13) 

In the present study only positive lags have been used. The presence of positive lagk 

between     and     indicates that the relationship between these time series will be 

most significant when the data in    at time    are related to data in   at time      

3.2 HONN FOR PRODUCTION FORECASTING FROM A SINGLE WELL 

(CASE#1) 

A novel neural approach was employed with HONN to forecast oil production from an 

oil field reservoir with limited input parameter data: i) oil production data and ii) oil, 

gas and water production data. Two case studies are carried out to verify the potential 

of the proposed neural approach with the limited available parameters from an oil field 

in Cambay basin, Gujarat, India. A pre-processing step is included for the preparation 

of neural inputs. The details are explained in the succeeding sections 

In this study, forecasting of oil production from the oldest well of the field, Well-1, is 

considered. Two cases are studied for oil production forecasting using: i) only oil 

production data and ii) oil, water and gas production data.  Table 3.1. (a) and (b) 

present the raw and smoothed monthly oil, gas and water productions ratios 

corresponding to each maximum production values of Well-1 from 2001 to 2009. For 

an efficient training for HONN, the monthly production ratios were calculated using 
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the maximum production of products (3000 m
3
/month for oil, 150000 m

3
/month for 

gas, and 1500 m
3
/month for water) through the 9 years production history of Well-1. 

Data smoothing was carried out by using the five point moving average filter with 

each data point weighed equally. 

Table 3.1. a. Ratio of monthly oil, gas and water production to corresponding 

maximum production value of nine years from Well-1. 

Months Oil Gas Water Months Oil Gas Water 

1 0.982 0.982 0.096 48 0.240 0.164 0.920 

2 0.930 0.930 0.135 49 0.241 0.163 0.965 

3 0.950 0.950 0.245 50 0.198 0.140 0.625 

4 0.907 0.907 0.244 51 0.192 0.150 0.670 

5 0.862 0.862 0.144 52 0.200 0.160 0.653 

6 0.704 0.704 0.074 53 0.174 0.131 0.603 

7 0.922 0.922 0.060 54 0.157 0.110 0.699 

8 0.972 0.972 0.076 55 0.147 0.102 0.686 

9 0.874 0.884 0.057 56 0.101 0.073 0.810 

10 0.927 0.914 0.052 57 0.097 0.073 0.785 

11 0.818 0.806 0.287 58 0.150 0.108 0.602 

12 0.764 0.753 0.326 59 0.091 0.065 0.386 

13 0.884 0.872 0.152 60 0.123 0.088 0.557 

14 0.862 0.849 0.134 61 0.205 0.148 0.666 

15 0.813 0.801 0.111 62 0.207 0.149 0.622 

16 0.624 0.618 0.180 63 0.205 0.145 0.664 

17 0.393 0.387 0.542 64 0.133 0.096 0.516 

18 0.507 0.500 0.410 65 0.102 0.071 0.635 

19 0.517 0.386 0.366 66 0.114 0.076 0.701 

20 0.536 0.401 0.375 67 0.107 0.073 0.686 

21 0.490 0.368 0.420 68 0.110 0.073 0.688 

22 0.486 0.364 0.537 69 0.127 0.089 0.626 

23 0.478 0.359 0.552 70 0.059 0.040 0.224 

24 0.396 0.297 0.688 71 0.124 0.093 0.612 

25 0.462 0.346 0.369 72 0.118 0.089 0.644 

26 0.454 0.341 0.529 73 0.050 0.038 0.784 

27 0.474 0.356 0.498 74 0.127 0.098 0.645 

28 0.451 0.338 0.735 75 0.117 0.090 0.473 

29 0.460 0.242 0.665 76 0.109 0.083 0.489 

30 0.440 0.264 0.712 77 0.129 0.099 0.572 

31 0.352 0.211 0.636 78 0.160 0.122 0.590 

32 0.350 0.210 0.643 79 0.142 0.108 0.556 

33 0.315 0.189 0.671 80 0.147 0.114 0.555 

34 0.326 0.196 0.690 81 0.165 0.130 0.490 

35 0.336 0.245 0.651 82 0.141 0.111 0.547 

36 0.248 0.170 0.904 83 0.162 0.126 0.507 

37 0.351 0.235 0.725 84 0.095 0.073 0.570 

38 0.344 0.230 0.692 85 0.090 0.067 0.546 

39 0.165 0.078 0.434 86 0.141 0.107 0.478 

40 0.166 0.117 0.432 87 0.104 0.080 0.579 

41 0.146 0.109 0.398 88 0.092 0.079 0.551 

42 0.163 0.121 0.439 89 0.076 0.047 0.539 

43 0.158 0.109 0.420 90 0.081 0.055 0.583 

44 0.173 0.119 0.419 91 0.078 0.050 0.663 

45 0.267 0.183 0.812 92 0.087 0.059 0.599 

46 0.207 0.142 0.616 93 0.009 0.006 0.159 

47 0.281 0.193 0.886 94 0.418 0.284 0.270 
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Table 3.1. b. Ratio of smoothed monthly oil, gas and water production to 

corresponding maximum production value of nine years from Well-1. 

Months Oil Gas Water Months Oil Gas Water 

1 0.982 0.917 0.096 48 0.233 0.149 0.802 

2 0.954 0.890 0.159 49 0.230 0.151 0.813 

3 0.926 0.865 0.173 50 0.214 0.145 0.767 

4 0.871 0.813 0.168 51 0.201 0.139 0.703 

5 0.869 0.811 0.153 52 0.184 0.129 0.650 

6 0.873 0.815 0.120 53 0.174 0.122 0.662 

7 0.867 0.811 0.082 54 0.156 0.107 0.690 

8 0.880 0.821 0.064 55 0.135 0.091 0.717 

9 0.903 0.840 0.106 56 0.130 0.087 0.716 

10 0.871 0.808 0.160 57 0.117 0.079 0.654 

11 0.853 0.789 0.175 58 0.112 0.077 0.628 

12 0.851 0.783 0.190 59 0.133 0.091 0.599 

13 0.828 0.762 0.202 60 0.155 0.105 0.567 

14 0.789 0.727 0.181 61 0.166 0.112 0.579 

15 0.715 0.658 0.224 62 0.175 0.117 0.605 

16 0.640 0.589 0.275 63 0.170 0.114 0.621 

17 0.571 0.503 0.322 64 0.152 0.100 0.628 

18 0.515 0.428 0.375 65 0.132 0.086 0.640 

19 0.489 0.381 0.423 66 0.113 0.073 0.645 

20 0.507 0.377 0.422 67 0.112 0.071 0.667 

21 0.501 0.351 0.450 68 0.103 0.066 0.585 

22 0.477 0.334 0.514 69 0.105 0.069 0.567 

23 0.462 0.324 0.513 70 0.108 0.072 0.559 

24 0.455 0.319 0.535 71 0.096 0.065 0.578 

25 0.453 0.317 0.527 72 0.096 0.067 0.582 

26 0.447 0.313 0.564 73 0.107 0.076 0.632 

27 0.460 0.303 0.559 74 0.104 0.074 0.607 

28 0.456 0.288 0.628 75 0.106 0.076 0.593 

29 0.435 0.263 0.649 76 0.128 0.092 0.554 

30 0.411 0.236 0.678 77 0.131 0.094 0.536 

31 0.383 0.208 0.665 78 0.137 0.098 0.552 

32 0.357 0.200 0.670 79 0.149 0.107 0.553 

33 0.336 0.196 0.658 80 0.151 0.109 0.548 

34 0.315 0.189 0.712 81 0.151 0.110 0.531 

35 0.315 0.193 0.728 82 0.142 0.103 0.534 

36 0.321 0.201 0.732 83 0.131 0.095 0.532 

37 0.289 0.179 0.681 84 0.126 0.090 0.530 

38 0.255 0.155 0.637 85 0.118 0.084 0.536 

39 0.234 0.143 0.536 86 0.104 0.076 0.545 

40 0.197 0.122 0.479 87 0.101 0.071 0.539 

41 0.160 0.100 0.425 88 0.099 0.069 0.546 

42 0.161 0.107 0.422 89 0.086 0.058 0.583 

43 0.181 0.120 0.498 90 0.083 0.054 0.587 

44 0.194 0.126 0.541 91 0.066 0.040 0.509 

45 0.217 0.139 0.631 92 0.135 0.085 0.455 

46 0.234 0.149 0.731 93 0.171 0.109 0.343 

47 0.247 0.158 0.840 94 0.418 0.265 0.270 

3.2.1 Structure of HONN for Single Well Production Forecasting 

A number of design factors for HONN were considered such as selection of neural 

structure (order of synaptic operation), numbers of neurons and hidden layers for this 
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study. Also, different mapping functions (somatic operation) were selected after 

careful investigation in each layer: a sigmoidal (hyperbolic tangent) function for 

hidden layers and a linear function for the output layer.  

In this study, three synaptic operations were embedded in an HONN: linear synaptic 

operation (LSO), quadratic synaptic operation (QSO) and cubic synaptic operation 

(CSO).  Only one hidden layer was used since it resulted in the best output for time 

sequence applications such as forecasting (Tiwari, et al., 2012) and different number 

of neurons (1~5) in the hidden layer were applied. Each HONN model was run with 

learning rate of 0.01 and different initial synaptic weights. The learning rate was 

dynamically updated by multiplying with 1.05 for decreasing error and with 0.7 for 

increasing error. The pre-processed data were divided into three segments for training, 

testing and validation. The number of data sets used for training and testing of HONN 

model for each case study changes; however, last 16 months (month 78~94) data are 

used to validate HONN models for case study. Each model was performed for 200 

epochs for training and testing, and then, a validation was carried out.  

The network was designed for prediction mode. If the input to the network was 

production data at time t, then the output is taken to at time t+1. During the network 

training, the network output was compared with the production data at time t+1 and 

the error was used to correct the synaptic weights. This means that the network is used 

as a one-step-ahead predictor. This is necessary for production forecasting. 

3.2.2 Case#1.a 

In this case study, the monthly oil production ratios from month 1 to month 94 were 

used for oil production forecasting as listed in Table 3.1.a and b. The graphical 

representation of original oil production data and smoothed data are shown in Figure 

3.3.  As seen in the figure, the high peaks of the data were smoothed. After the 

smoothing process, the auto-correlation of the oil production data was calculated by 

auto-correlation function (ACF). The ACF plot of oil production is presented in Figure 

3.4. The ACF shows that the lags from lag0 to lag21 have some correlation within the 

95% confidence level (above the region of marked line with scale 0.2, positive 

region). From the ACF plot, it was identified that lag1 and lag2 have the most 

significant correlation which means that the input variables in these lags are the 
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optimal to train HONN. In such condition, we had trained HONN to forecast oil 

production based on three scenarios:  

1) using only lag1 (single lag1) for training, 

2) using only lag2 (single lag2) for training  

3) using lag1 and lag2 (accumulated lag2) for training.  

 

Figure 3.3. Oil production history of Well-1 from 2001~2009 before and after 

smoothing 

 

Figure  3.4.  ACF of oil production after pre-processing. The blue line represents the 

confidential level of correlation (outside of the line represents 95% of confidence). 

1) HONN using Single Lag1 

In scenario 1, first 51 months data were used for training and next 26 months data for 

testing. The lag1 data presented to HONN after pre-processing is illustrated in Table 
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3.2. In Table 3.2, Input corresponds to oil productions rates of Well-1 and Target 

corresponds to the oil production data that has been advanced by one step. 

During the simulation, the training process and validating process were studied by 

applying regression. The regression of the best HONN models with LSO, QSO and 

CSO for the validation set of data are presented in Figure 3.5 .(a), (b), (c); 

respectively.  

Table 3.2. The train and test data used to train HONN model for scenario 1 (lag1) 

Months Input Target Months Input Target 
1 0.982 0.954 40 0.197 0.160 

2 0.954 0.926 41 0.160 0.161 

3 0.926 0.871 42 0.161 0.181 

4 0.871 0.869 43 0.181 0.194 

5 0.869 0.873 44 0.194 0.217 

6 0.873 0.867 45 0.217 0.234 

7 0.867 0.880 46 0.234 0.247 

8 0.880 0.903 47 0.247 0.233 

9 0.903 0.871 48 0.233 0.230 

10 0.871 0.853 49 0.230 0.214 

11 0.853 0.851 50 0.214 0.201 

12 0.851 0.828 51 0.201 0.184 

13 0.828 0.789 52 0.184 0.174 

14 0.789 0.715 53 0.174 0.156 

15 0.715 0.640 54 0.156 0.135 

16 0.640 0.571 55 0.135 0.130 

17 0.571 0.515 56 0.130 0.117 

18 0.515 0.489 57 0.117 0.112 

19 0.489 0.507 58 0.112 0.133 

20 0.507 0.501 59 0.133 0.155 

21 0.501 0.477 60 0.155 0.166 

22 0.477 0.462 61 0.166 0.175 

23 0.462 0.455 62 0.175 0.170 

24 0.455 0.453 63 0.170 0.152 

25 0.453 0.447 64 0.152 0.132 

26 0.447 0.460 65 0.132 0.113 

27 0.460 0.456 66 0.113 0.112 

28 0.456 0.435 67 0.112 0.103 

29 0.435 0.411 68 0.103 0.105 

30 0.411 0.383 69 0.105 0.108 

31 0.383 0.357 70 0.108 0.096 

32 0.357 0.336 71 0.096 0.096 

33 0.336 0.315 72 0.096 0.107 

34 0.315 0.315 73 0.107 0.104 

35 0.315 0.321 74 0.104 0.106 

36 0.321 0.289 75 0.106 0.128 

37 0.289 0.255 76 0.128 0.131 

38 0.255 0.234 77 0.131 0.137 

39 0.234 0.197 
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The simulation results from HONN model in terms of RMSE and MAPE are show in 

Table 3.3. The selection criteria for a better model are lower values of MAPE and 

RMSE. 

 (a) (b) (c)  

Figure 3.5 Regression of validation set of HONN with (a) LSO having 5 neurons in 

the hidden layer, (b) QSO having 5 neurons in the hidden layer (c) CSO having three 

neurons in the hidden layer. 

From simulation results, the best model was HONN with LSO having five neurons in 

the hidden layers. The performance indices of best model shows HONN with LSO 

resulted in MAPE = 13.86% and RMSE=0.067. With CSO, MAPE =14.89% was 

achieved with three neural units in the hidden layer, and MAPE =15.98% was 

achieved with QSO having five neurons in the hidden layer.  

Table 3.3.  Performance measure of HONN with oil production ratio using single 

Lag1.  

Synaptic 

Operation 

Number 

of 

Hidden 

Layers 

Number 

of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear 

Synaptic 

Operation 

1 

1 0.068 0.002 15.932 2.635 

2 0.067 0.001 15.680 2.195 

3 0.067 0.001 16.379 2.471 

4 0.068 0.001 14.500 1.660 

5 0.067 0.001 13.863 0.442 

Quadratic 

Synaptic 

Operation 

1 

1 0.066 0.000 17.040 0.888 

2 0.067 0.001 18.370 2.575 

3 0.066 0.000 16.940 2.120 

4 0.067 0.001 16.554 0.840 

5 0.068 0.002 15.983 1.864 

Cubic 

Synaptic 

Operation 

1 

1 0.066 0.000 15.647 1.081 

2 0.066 0.000 15.295 2.092 

3 0.066 0.000 14.890 1.689 

4 0.067 0.002 16.742 2.676 

5 0.066 0.001 16.375 1.264 
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1) HONN using Single Lag2 

For scenario 2, first 50 months data for training and next 26 months data for testing 

were selected applying single lag2 after pre-processing and the data were arranged as 

listed in Table 3.4. In single lag2, the target data used for HONN has been advanced 

by 2 time steps.  

Table 3.4. The train and test data used to train HONN model for scenario 2 (lag2) 

Months Input Target Months Input Target 

1 0.982 0.926 39 0.234 0.160 

2 0.954 0.871 40 0.197 0.161 

3 0.926 0.869 41 0.160 0.181 

4 0.871 0.873 42 0.161 0.194 

5 0.869 0.867 43 0.181 0.217 

6 0.873 0.880 44 0.194 0.234 

7 0.867 0.903 45 0.217 0.247 

8 0.880 0.871 46 0.234 0.233 

9 0.903 0.853 47 0.247 0.230 

10 0.871 0.851 48 0.233 0.214 

11 0.853 0.828 49 0.230 0.201 

12 0.851 0.789 50 0.214 0.184 

13 0.828 0.715 51 0.201 0.174 

14 0.789 0.640 52 0.184 0.156 

15 0.715 0.571 53 0.174 0.135 

16 0.640 0.515 54 0.156 0.130 

17 0.571 0.489 55 0.135 0.117 

18 0.515 0.507 56 0.130 0.112 

19 0.489 0.501 57 0.117 0.133 

20 0.507 0.477 58 0.112 0.155 

21 0.501 0.462 59 0.133 0.166 

22 0.477 0.455 60 0.155 0.175 

23 0.462 0.453 61 0.166 0.170 

24 0.455 0.447 62 0.175 0.152 

25 0.453 0.460 63 0.170 0.132 

26 0.447 0.456 64 0.152 0.113 

27 0.460 0.435 65 0.132 0.112 

28 0.456 0.411 66 0.113 0.103 

29 0.435 0.383 67 0.112 0.105 

30 0.411 0.357 68 0.103 0.108 

31 0.383 0.336 69 0.105 0.096 

32 0.357 0.315 70 0.108 0.096 

33 0.336 0.315 71 0.096 0.107 

34 0.315 0.321 72 0.096 0.104 

35 0.315 0.289 73 0.107 0.106 

36 0.321 0.255 74 0.104 0.128 

37 0.289 0.234 75 0.106 0.131 

38 0.255 0.197 76 0.128 0.137 

Table 3.5 lists the simulation results using single lag2 from HONN models. The 

performance indices of the best HONN model with LSO resulted in MAPE = 18.6% 
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and RMSE=0.083. However, the HONNs with QSO and CSO did not result in 

acceptable outputs with single lag2. Parity plots are not included here for brevity. 

Table 3.5 Performance measure of HONN with oil production ratio using single lag2. 

Synaptic 

Operation 

Number  

of 

Hidden 

Layers 

Number 

of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear Synaptic 

Operation 
1 

1 0.082 0.003 19.182 1.392 

2 0.083 0.002 18.599 0.818 

3 0.083 0.002 18.985 1.224 

4 0.084 0.002 19.273 1.487 

5 0.080 0.004 21.345 1.785 

Quadratic 

Synaptic 

Operation 

1 

1 0.076 0.001 25.953 2.882 

2 0.076 0.001 24.899 2.202 

3 0.077 0.001 23.824 2.189 

4 0.079 0.003 21.624 3.454 

5 0.076 0.000 24.146 0.930 

Cubic Synaptic 

Operation 
1 

1 0.076 0.001 25.223 2.165 

2 0.078 0.001 21.822 1.798 

3 0.076 0.001 24.943 1.734 

4 0.076 0.000 25.745 0.716 

5 0.078 0.004 23.315 1.930 

2)  HONN using accumulated Lag2 

In this scenario, after the pre-processing, the data were selected applying accumulated 

lag2 (lag1 and lag2), and the data were arranged for training and testing as shown in 

Table 3.6. The Input-1 and Input-2 in Table 3.6 corresponds to oil production from 

Well-1 at time lag1 and time lag-2. Both lag1 and lag2 are combined to form the 

training and validation data for accumulated lag2. 

In this scenario, the accumulated lag2 were achieved by correlating the sum of 

observations of single lag1 and single lag2. The simulation studies presented that both 

HONN with LSO and CSO having two neurons in the hidden layer resulted in the best 

regression results with regression value for training = 0.997 and validation = 0.998.  

The simulation results using accumulated lag2 from HONN models are presented 

in Table 3.7. From this table it is seen that HONN with LSO having two neurons in 

the hidden layer resulted in MAPE = 13.67% and RMSE=0.067. These results are 

comparable to those obtained in scenario (1) but the standard deviations are higher, 

meaning, thereby, that using lag2 in any form does not help the predictions. 
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Table 3.6 The train and test data used to train HONN model for scenario 3 

accumulated lag2) 

Months Input-1 Input-2 Target Months Input-1 Input-2 Target 

1 0.982 0.954 0.926 39 0.234 0.197 0.160 

2 0.954 0.926 0.871 40 0.197 0.160 0.161 

3 0.926 0.871 0.869 41 0.160 0.161 0.181 

4 0.871 0.869 0.873 42 0.161 0.181 0.194 

5 0.869 0.873 0.867 43 0.181 0.194 0.217 

6 0.873 0.867 0.880 44 0.194 0.217 0.234 

7 0.867 0.880 0.903 45 0.217 0.234 0.247 

8 0.880 0.903 0.871 46 0.234 0.247 0.233 

9 0.903 0.871 0.853 47 0.247 0.233 0.230 

10 0.871 0.853 0.851 48 0.233 0.230 0.214 

11 0.853 0.851 0.828 49 0.230 0.214 0.201 

12 0.851 0.828 0.789 50 0.214 0.201 0.184 

13 0.828 0.789 0.715 51 0.201 0.184 0.174 

14 0.789 0.715 0.640 52 0.184 0.174 0.156 

15 0.715 0.640 0.571 53 0.174 0.156 0.135 

16 0.640 0.571 0.515 54 0.156 0.135 0.130 

17 0.571 0.515 0.489 55 0.135 0.130 0.117 

18 0.515 0.489 0.507 56 0.130 0.117 0.112 

19 0.489 0.507 0.501 57 0.117 0.112 0.133 

20 0.507 0.501 0.477 58 0.112 0.133 0.155 

21 0.501 0.477 0.462 59 0.133 0.155 0.166 

22 0.477 0.462 0.455 60 0.155 0.166 0.175 

23 0.462 0.455 0.453 61 0.166 0.175 0.170 

24 0.455 0.453 0.447 62 0.175 0.170 0.152 

25 0.453 0.447 0.460 63 0.170 0.152 0.132 

26 0.447 0.460 0.456 64 0.152 0.132 0.113 

27 0.460 0.456 0.435 65 0.132 0.113 0.112 

28 0.456 0.435 0.411 66 0.113 0.112 0.103 

29 0.435 0.411 0.383 67 0.112 0.103 0.105 

30 0.411 0.383 0.357 68 0.103 0.105 0.108 

31 0.383 0.357 0.336 69 0.105 0.108 0.096 

32 0.357 0.336 0.315 70 0.108 0.096 0.096 

33 0.336 0.315 0.315 71 0.096 0.096 0.107 

34 0.315 0.315 0.321 72 0.096 0.107 0.104 

35 0.315 0.321 0.289 73 0.107 0.104 0.106 

36 0.321 0.289 0.255 74 0.104 0.106 0.128 

37 0.289 0.255 0.234 75 0.106 0.128 0.131 

38 0.255 0.234 0.197 76 0.128 0.131 0.137 

 

For case#1.a, the overall performance measure shows that HONN with LSO resulted 

in good performances by yielding a stable value between the range of,      

            and             with different configurations of neurons in the 

hidden layer.  
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Table 3.7 Performance measure of HONN with oil production ratio using accumulated 

lag2 

Synaptic 

Operation 

Number of 

Hidden 

Layer 

Number of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear Synaptic 

Operation 
1 

1 0.071 0.005 15.153 1.598 

2 0.067 0.003 13.671 1.068 

3 0.072 0.004 14.714 1.170 

4 0.069 0.007 16.025 2.606 

5 0.069 0.002 14.575 1.000 

Quadratic 

Synaptic 

Operation 

1 

1 0.064 0.002 16.651 1.670 

2 0.069 0.003 18.083 2.720 

3 0.069 0.002 17.302 1.777 

4 0.069 0.004 16.250 2.204 

5 0.065 0.004 16.229 3.492 

Cubic Synaptic 

Operation 
1 

1 0.066 0.004 18.189 1.834 

2 0.071 0.004 15.315 0.964 

3 0.070 0.004 16.759 1.563 

4 0.070 0.009 17.034 1.780 

5 0.070 0.006 16.407 2.914 

   

3.2.3 Case#1.b 

For this simulation study, monthly oil, gas and water production rate of Well-1 from 

September 2001 to March 2009 were used for oil production forecasting. Table 3.1 (a) 

and (b) present the monthly oil, gas and water production data ratios for nine years (94 

months) before and after smoothing. 

This case study shows how additional input parameters (gas and water production) 

influence the performance of HONN model in forecasting oil production. The 

production data were preprocessed by applying smoothing process and cross-

correlation. The smoothing process was carried out by a moving averaging filter with 

five sequence data points as discussed earlier. Oil, gas and water production ratios, 

before and after smoothing, are graphically presented in Figure 3.3 (for oil) and in 

Figure 3.6 (a), (b) for gas and water respectively. After that, and smoothed data were 

used to find cross-correlation function (CCF) between three production data as shown 

in Figure 3.7. The significant input variables were determined using CCF by 

identifying the correlation between oil and other components. 

 It is observed from the CCF plot that the correlations between oil and oil (auto-

correlation), oil and gas, oil and water are significant at lag1, lag1 and lag2, and lag23, 
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respectively (Table 3.8). A total of 4 input vectors were identified for monthly oil 

production forecasting by HONN model.  The smoothed data from Table 3.1 (b) were 

arranged applying the lags obtained from the CCF plot as presented in Table 3.8. 

Input1 represents the correlation of oil at lag1, input 2 and input 3 refers to the 

correlation of oil with gas production at lag1 and lag2, and input 4 represents the 

correlation of oil with water production at lag23 (see Table 3.9 for the input and 

output data for this case). 

(a) (b)  

Figure  3.6.  (a) Gas production data from Well-1 before and after smoothing (b) 

Water production from Well-1 before and after smoothing. 

 

Figure 3.7. CCF of smoothed oil, gas and water production data. The legend represents 

the correlation between two parameters; notation inside the legend box C01, C02 and 

C03 represent oil, gas and  water.  

Table 3.8. Most significant input variable selected based on CCF of monthly 

production data 
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Table 3.9 The train and test data sets used for training HONN model for case#1.b 

Months Input-1 Input-2 Input-3 Input-4 Target 

1 0.462 0.347 0.358 0.096 0.455 

2 0.455 0.341 0.347 0.159 0.453 

3 0.453 0.34 0.341 0.173 0.447 

4 0.447 0.336 0.34 0.168 0.46 

5 0.46 0.325 0.336 0.153 0.456 

6 0.456 0.308 0.325 0.12 0.435 

7 0.435 0.282 0.308 0.082 0.411 

8 0.411 0.253 0.282 0.064 0.383 

9 0.383 0.223 0.253 0.106 0.357 

10 0.357 0.214 0.223 0.16 0.336 

11 0.336 0.21 0.214 0.175 0.315 

12 0.315 0.202 0.21 0.19 0.315 

13 0.315 0.207 0.202 0.202 0.321 

14 0.321 0.215 0.207 0.181 0.289 

15 0.289 0.192 0.215 0.224 0.255 

16 0.255 0.166 0.192 0.275 0.234 

17 0.234 0.154 0.166 0.322 0.197 

18 0.197 0.131 0.154 0.375 0.16 

19 0.16 0.107 0.131 0.423 0.161 

20 0.161 0.115 0.107 0.422 0.181 

21 0.181 0.128 0.115 0.45 0.194 

22 0.194 0.135 0.128 0.514 0.217 

23 0.217 0.149 0.135 0.513 0.234 

24 0.234 0.16 0.149 0.535 0.247 

25 0.247 0.169 0.16 0.527 0.233 

26 0.233 0.16 0.169 0.564 0.23 

27 0.23 0.162 0.16 0.559 0.214 

28 0.214 0.155 0.162 0.628 0.201 

29 0.201 0.149 0.155 0.649 0.184 

30 0.184 0.138 0.149 0.678 0.174 

31 0.174 0.131 0.138 0.665 0.156 

32 0.156 0.115 0.131 0.67 0.135 

33 0.135 0.098 0.115 0.658 0.13 

34 0.13 0.093 0.098 0.712 0.117 

35 0.117 0.084 0.093 0.728 0.112 

36 0.112 0.081 0.084 0.732 0.133 

37 0.133 0.096 0.081 0.681 0.155 

38 0.155 0.112 0.096 0.637 0.166 

39 0.166 0.119 0.112 0.536 0.175 

40 0.175 0.125 0.119 0.479 0.17 

41 0.17 0.122 0.125 0.425 0.152 

42 0.152 0.107 0.122 0.422 0.132 

43 0.132 0.092 0.107 0.498 0.113 

44 0.113 0.078 0.092 0.541 0.112 

45 0.112 0.076 0.078 0.631 0.103 

46 0.103 0.07 0.076 0.731 0.105 

47 0.105 0.074 0.07 0.84 0.108 

48 0.108 0.077 0.074 0.802 0.096 

49 0.096 0.07 0.077 0.813 0.096 

50 0.096 0.072 0.07 0.767 0.107 

51 0.107 0.082 0.072 0.703 0.104 

52 0.104 0.08 0.082 0.65 0.106 

53 0.106 0.082 0.08 0.662 0.128 

54 0.128 0.098 0.082 0.69 0.131 

55 0.131 0.1 0.098 0.717 0.137 
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Table 3.10 presents the results from HONN models with its performance measure in 

terms of RMSE and MAPE for different configurations of neurons in the hidden layer 

and synaptic operation. In this case study, the best model resulted in MAPE=15.13%, 

and RMSE=0.069 by HONN with QSO having four neurons in the hidden layer.   

Table 3.10. Performance measure of HONN with oil, gas and water production ratio. 

Synaptic  

Operation 

Number 

of 

Hidden 

Layers 

Number 

of 

Neurons 

RMSE MAPE 

Mean SD Mean SD 

Linear 

Synaptic 

Operation 

(LSO) 

1 

1 0.068 0.005 17.896 3.547 

2 0.071 0.003 17.863 3.846 

3 0.076 0.004 17.951 1.533 

4 0.070 0.006 18.563 4.083 

5 0.068 0.005 20.223 1.955 

Quadratic 

Synaptic 

Operation 

(QSO) 

1 

1 0.065 0.003 15.612 0.765 

2 0.061 0.010 15.853 1.541 

3 0.064 0.006 15.953 2.439 

4 0.069 0.007 15.128 0.475 

5 0.071 0.011 18.358 1.076 

Cubic Synaptic 

Operation 

(CSO) 

1 

1 0.070 0.002 17.034 0.749 

2 0.076 0.007 16.073 1.684 

3 0.078 0.005 19.214 0.776 

4 0.074 0.002 16.363 0.774 

5 0.054 0.008 17.906 1.047 

3.2.4 Discussions 

From the case studies, the performance evaluation criteria indicates that the better oil 

production forecasting can be achieved using HONN with LSO with only one input 

parameter i.e. oil production data. In this study, the selection of lag time is an 

important factor that influences the forecasting results. Auto-correlation function 

(ACF) indicates that the most significant lag for oil production forecasting with only 

one parameter (oil production) is lag1, and HONN with LSO yields the best 

forecasting oil production in this case. Intuitively, it can be expected that QSO and 

CSO would result in better outcome than that of LSO. However, this case study comes 

up with opposite result. This can be explained by recalling that only one input 

parameter (oil production), used in case#1.a, does not generate complex correlation 

with target parameter (oil production to be predicted). Thus, in this case, linear 

combination of synaptic operations could result in better prediction. However, in 

case#1.b, the three input parameters, namely; oil, gas and water production rates may 
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generate nonlinearity and heterogeneity between input and target parameters. In this 

case, the higher-order synaptic operations, QSO and CSO, would be better suited to 

forecast the oil production.  

 

Figure 3.8 Comparison between the actual oil production and the forecasted results 

from HONN with LSO using single lag-1 from case#1.a. 

Using the HONN, one-step-ahead production model, for Well-1 in the Tarapur block 

of Cambay Basin, predictions were made for 16 months (from February 2008 to 

September 2009 (i.e. month 77 ~ 94) beyond the date used for model development and 

its training.  A comparison of the prediction by the best HONN model with LSO using 

single lag1 with the actual oil production is presented by Figure 3.8. As seen in this 

model, the match is satisfactory for the first 13 months. 

It is observed that the performance of HONN with LSO in the case#1.a shows less 

MAPE than that in the case#1.b. One would expect that since gas and water 

production rates are intimately connected with oil production rate, case#1.b ought to 

have shown better match or lower MAPE. The contrary results may be attributed to 

the possibility that the noise in gas and water production measurements even after 

filtering may have overshadowed the advantage gained by added input information. 

Additionally, the number of input patterns in case#1.a is higher than that in the 

case#1.b. The reduction in the number of input patterns for training HONN in the 

case#1.b is caused by the number of lags. In the case#1.b, the highest number of lags 

is 23 which reduce the input pattern numbers as P – 23 where P is the number of initial 

input patterns. The patterns for oil, gas and water productions are selected based on 

cross-correlated pattern. Overall, it can be inferred that for the application of HONN 
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for forecasting, the number of input variables is one of the significant factors 

determining the order of synaptic operation.  

Mean absolute percentage error (MAPE) is a measure of uncertainty in forecasting of 

oil production from a single well. A high value of 13 ~ 15% is indicative of lack of 

enough input information to the HONN model. One important information that is 

missing is clearly the well pressure (bottom hole pressure). Another one is the 

presence of other wells in its vicinity and their production pattern which, to some 

extent, could have been reflected by the well pressure. It may, therefore, be anticipated 

that if this procedure is used for all the five wells in this reservoir, MAPE will be 

reduced. The next section presents a study with five wells. 

3.3 HONN FOR CUMULATIVE OIL PRODUCTION FORECASTING FROM 

MULTIPLE OIL PRODUCING WELLS (CASE#2) 

HONN has been used for the first time to forecast cumulative oil production from an 

oil field reservoir with limited parameter data: i) oil production data and ii) oil, gas 

and water production data (no data on pressure and fluid saturation available). Again 

two case studies have been carried out to verify the potential of the proposed neural 

approach with limited available parameters from an oil field in Cambay basin, Gujarat, 

India. In case#2.a, data on only one dynamic parameter, oil production, from 5 

producing wells, are used for forecasting, whereas in case#2.b, data on three dynamic 

parameters, oil, gas and water production from 5 producing wells, are used for 

forecasting. A pre-processing step is included for the preparation of neural inputs.  

3.3.1 Structure of HONN for Five Wells Cumulative Oil Production Forecasting 

In this study, a number of design factors for HONN were considered such as selection 

of neural structure (order of synaptic operation), numbers of neurons and hidden 

layers. Also, different mapping functions (somatic operation) were selected after 

careful investigation in each layer: a sigmoidal (hyperbolic tangent) function for 

hidden layers and a linear function for the output layer. In HONN, three synaptic 

operations were applied for HONN modeling: linear synaptic operation (LSO), 

quadratic synaptic operation (QSO) and cubic synaptic operation (CSO). It should be 

noted that LSO represents the synaptic operation of the conventional NN. Only one 
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hidden layer was used since it resulted in the best output for time sequence 

applications such as forecasting (Tiwari, et al., 2012) and different number of neurons 

(1~10 for case#2.a, and 1 ~ 5 for case#2.b) in the hidden layer were applied. Each 

HONN model was run with learning rate of 0.01 and different initial synaptic weights. 

The learning rate was dynamically updated by multiplying with 0.7 for increasing 

error and with 1.05 for reducing error. After pre-processing, the data were divided into 

three segments for training, test and validation. 35 data sets were used for training, 17 

for testing and remaining 10 data for validation. Each model was trained and updated 

for 200 epochs for training test and before validation.  

3.3.2 Case#2.a 

In this case study, for training HONN, the monthly oil production ratios from month 1 

to month 63 were used for cumulative oil production forecasting as shown in Table 

3.11.a. The monthly production ratios were calculated using the maximum production 

of products (approximately 9500 m
3
/month for oil) through the six year production 

history of Well-1, Well-2, Well-3, Well-4 and Well-5. For example, C1, the 

production ratio for Well-1, is calculated by dividing the first month’s oil production 

from this well by 9500 and so on.  

In the pre-processing stage, the oil production ratio data were smoothed using a five 

point moving average filter.  Table 3.11.b. shows the smoothed oil production data for 

this case study. The graphical representation of original oil production verses 

smoothed production data for Well-1 to Well-5 is shown in Figure 3.9. As seen in this 

figure, the high peaks of the data were smoothed. After the smoothing process, the 

cross-correlations of the cumulative oil production data for the five wells were 

calculated by the cross-correlation function (CCF). The CCF plots of oil production 

after smoothing are presented in Figure 3.10. In Figure 3.10, C1 symbolizes the oil 

production ratio of Well-1 and so on and C6 symbolizes the cumulative oil production. 

C1-C6, in Figure 3.10, represents the cross-correlation between the oil production 

from Well-1 and cumulative oil production from all the wells. As shown, the highest 

correlation occurs at lag0. Since lag0 represents current time step (no step ahead), lag0 

can be neglected for forecasting methods. From the CCF plot, it was identified that 

lag1 and lag2 have the most significant correlation which means that the input 



67 
 

variables in these lags are the optimal to train HONN. HONN was trained to forecast 

cumulative oil production based on three scenarios:  

1) using only lag1 (single lag1) for training, 

2) using only lag2 (single lag2) for training  

3) using lag1 and lag2 (accumulated lag2) for training.  

Table 3.11 a.  Ratios of raw monthly oil production from Well-1, Well-2, Well-3, 

Well-4 and Well-5 and cumulative oil production. 

Months 

Well-1 Well-2 Well-3 Well-4 Well-5 Cumulative 

(C1) (C2) (C3) (C4) (C5) Oil (C6) 

1 0.111 0.072 0.309 0.09 0.237 0.82 

2 0.111 0.073 0.307 0.088 0.237 0.815 

3 0.099 0.06 0.292 0.075 0.226 0.752 

4 0.103 0.061 0.29 0.081 0.209 0.744 

5 0.106 0.057 0.298 0.072 0.211 0.744 

6 0.078 0.091 0.313 0.058 0.197 0.737 

7 0.111 0.049 0.326 0.084 0.212 0.781 

8 0.109 0.048 0.32 0.07 0.208 0.755 

9 0.052 0.049 0.337 0.088 0.18 0.706 

10 0.053 0.049 0.332 0.089 0.18 0.702 

11 0.046 0.043 0.303 0.079 0.196 0.668 

12 0.051 0.029 0.337 0.097 0.193 0.707 

13 0.05 0.028 0.327 0.051 0.187 0.643 

14 0.055 0.031 0.359 0.01 0.205 0.659 

15 0.084 0.031 0.286 0.11 0.163 0.674 

16 0.065 0.02 0.228 0.094 0.093 0.5 

17 0.089 0.027 0.276 0.131 0.12 0.644 

18 0.076 0.023 0.306 0.102 0.155 0.662 

19 0.076 0.023 0.307 0.064 0.155 0.626 

20 0.062 0.02 0.28 0.066 0.142 0.571 

21 0.061 0.022 0.316 0.045 0.164 0.607 

22 0.063 0.023 0.348 0.047 0.176 0.657 

23 0.055 0.02 0.308 0.081 0.153 0.617 

24 0.05 0.031 0.496 0.062 0.114 0.753 

25 0.046 0.029 0.479 0.058 0.107 0.72 

26 0.032 0.02 0.419 0.063 0.093 0.626 

27 0.031 0.018 0.401 0.061 0.086 0.597 

28 0.047 0.021 0.391 0.041 0.1 0.601 

29 0.043 0.032 0.322 0.034 0.084 0.515 

30 0.039 0.043 0.252 0.026 0.068 0.429 

31 0.065 0.04 0.45 0.077 0.083 0.714 

32 0.065 0.05 0.463 0.078 0.073 0.729 

33 0.065 0.048 0.443 0.077 0.07 0.702 

34 0.042 0.029 0.357 0.033 0.069 0.531 

35 0.032 0.035 0.508 0.046 0.079 0.701 

36 0.036 0.039 0.693 0.053 0.089 0.909 

37 0.034 0.037 0.647 0.049 0.083 0.849 

38 0.035 0.016 0.665 0.05 0.095 0.86 

39 0.04 0.019 0.609 0.04 0.092 0.8 

40 0.018 0.013 0.218 0.013 0.054 0.317 

41 0.039 0.018 0.601 0.039 0.089 0.786 

42 0.037 0.017 0.579 0.037 0.086 0.757 

43 0.016 0.019 0.632 0.038 0.059 0.763 
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Months 

Well-1 Well-2 Well-3 Well-4 Well-5 Cumulative 

(C1) (C2) (C3) (C4) (C5) Oil (C6) 

44 0.04 0.035 0.564 0.04 0.046 0.725 

45 0.037 0.033 0.576 0.044 0.057 0.748 

46 0.034 0.03 0.579 0.041 0.053 0.737 

47 0.041 0.028 0.543 0.038 0.001 0.651 

48 0.051 0.024 0.584 0.041 0.001 0.699 

49 0.045 0.014 0.567 0.048 0.054 0.728 

50 0.046 0.013 0.577 0.046 0.056 0.739 

51 0.052 0.06 0.563 0.055 0.033 0.764 

52 0.044 0.128 0.592 0.058 0.031 0.853 

53 0.051 0.123 0.596 0.044 0.03 0.844 

54 0.03 0.12 0.593 0.039 0.017 0.798 

55 0.028 0.124 0.655 0.046 0.025 0.878 

56 0.045 0.124 0.572 0.041 0.032 0.814 

57 0.033 0.218 0.514 0.029 0.033 0.827 

58 0.029 0.193 0.44 0.028 0.031 0.722 

59 0.024 0.176 0.426 0.027 0.018 0.671 

60 0.026 0.188 0.457 0.029 0.019 0.718 

61 0.025 0.167 0.346 0.021 0.015 0.574 

62 0.027 0.183 0.364 0.027 0.001 0.602 

63 0.003 0.14 0.339 0.031 0.204 0.717 

Table 3.11.b  Ratios of smoothed monthly oil production from Well-1, Well-2, Well-3, 

Well-4 and Well-5 and cumulative oil production. 

Months 

Well-1 Well-2 Well-3 Well-4 Well-5 Cumulative 

(C1) (C2) (C3) (C4) (C5) Oil (C6) 

1 0.111 0.072 0.309 0.09 0.237 0.82 

2 0.107 0.068 0.303 0.084 0.233 0.796 

3 0.106 0.065 0.299 0.081 0.224 0.775 

4 0.099 0.068 0.3 0.075 0.216 0.758 

5 0.099 0.064 0.304 0.074 0.211 0.752 

6 0.101 0.061 0.309 0.073 0.207 0.752 

7 0.091 0.059 0.319 0.074 0.202 0.745 

8 0.081 0.057 0.326 0.078 0.195 0.736 

9 0.074 0.048 0.324 0.082 0.195 0.722 

10 0.062 0.044 0.326 0.085 0.191 0.708 

11 0.05 0.04 0.327 0.081 0.187 0.685 

12 0.051 0.036 0.332 0.065 0.192 0.676 

13 0.057 0.032 0.322 0.069 0.189 0.67 

14 0.061 0.028 0.307 0.072 0.168 0.637 

15 0.069 0.027 0.295 0.079 0.154 0.624 

16 0.074 0.026 0.291 0.089 0.147 0.628 

17 0.078 0.025 0.281 0.1 0.137 0.621 

18 0.074 0.023 0.279 0.091 0.133 0.601 

19 0.073 0.023 0.297 0.082 0.147 0.622 

20 0.068 0.022 0.311 0.065 0.158 0.625 

21 0.063 0.022 0.312 0.061 0.158 0.616 

22 0.058 0.023 0.35 0.06 0.15 0.641 

23 0.055 0.025 0.389 0.059 0.143 0.671 

24 0.049 0.025 0.41 0.062 0.129 0.675 

25 0.043 0.024 0.421 0.065 0.111 0.663 

26 0.041 0.024 0.437 0.057 0.1 0.659 

27 0.04 0.024 0.402 0.051 0.094 0.612 

28 0.038 0.027 0.357 0.045 0.086 0.554 

29 0.045 0.031 0.363 0.048 0.084 0.571 

30 0.052 0.037 0.376 0.051 0.082 0.598 
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Months Well-1 Well-2 Well-3 Well-4 Well-5 Cumulative 

 
(C1) (C2) (C3) (C4) (C5) Oil (C6) 

32 0.055 0.042 0.393 0.058 0.073 0.621 

33 0.054 0.04 0.444 0.062 0.075 0.675 

34 0.048 0.04 0.493 0.057 0.076 0.714 

35 0.042 0.038 0.53 0.052 0.078 0.738 

36 0.036 0.031 0.574 0.046 0.083 0.77 

37 0.035 0.029 0.624 0.048 0.088 0.824 

38 0.033 0.025 0.566 0.041 0.083 0.747 

39 0.033 0.021 0.548 0.038 0.083 0.722 

40 0.034 0.017 0.534 0.036 0.083 0.704 

41 0.03 0.017 0.528 0.033 0.076 0.685 

42 0.03 0.02 0.519 0.033 0.067 0.67 

43 0.034 0.024 0.59 0.04 0.067 0.756 

44 0.033 0.027 0.586 0.04 0.06 0.746 

45 0.034 0.029 0.579 0.04 0.043 0.725 

46 0.041 0.03 0.569 0.041 0.031 0.712 

47 0.042 0.026 0.57 0.042 0.033 0.713 

48 0.043 0.022 0.57 0.043 0.033 0.711 

49 0.047 0.028 0.567 0.046 0.029 0.716 

50 0.048 0.048 0.577 0.05 0.035 0.757 

51 0.048 0.068 0.579 0.05 0.041 0.786 

52 0.045 0.089 0.584 0.048 0.033 0.8 

53 0.041 0.111 0.6 0.048 0.027 0.827 

54 0.04 0.124 0.602 0.046 0.027 0.837 

55 0.037 0.142 0.586 0.04 0.027 0.832 

56 0.033 0.156 0.555 0.037 0.028 0.808 

57 0.032 0.167 0.521 0.034 0.028 0.782 

58 0.031 0.18 0.482 0.031 0.027 0.75 

59 0.027 0.188 0.437 0.027 0.023 0.702 

60 0.026 0.181 0.407 0.026 0.017 0.657 

61 0.021 0.171 0.386 0.027 0.051 0.656 

62 0.018 0.163 0.35 0.026 0.073 0.631 

63 0.003 0.14 0.339 0.031 0.204 0.717 
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(e)  

Figure 3.9.  Oil production history from 2004~2009 before and after smoothing of (a) 

Well-1, (b) Well-2, (c) Well-3, (d) Well-4, (e) Well-5. 

 

Figure 3.10 Cross-correlation of cumulative oil production to five wells. The legend 

represents the correlation between two parameters. The dark circles on the plot 

indicate the highest correlation between two parameters. 

1) HONN using single Lag1 

In scenario 1, first 35 months data were used for training and next 17 months data 

for testing the model. The data are shown in Table 3.12 wherein, Input-1, Input-2, 

Input-3, Input-4, Input-5 corresponds to oil productions rates from Well-1, Well-2, 

Well-3, Well-4 and Well-5 after smoothing. It may be noted that to account for this 

lag1, the cumulative oil production has been advanced by one time step. 
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Table 3.12 The training, test and target data used to train HONN models for scenario 1 

(lag1). 

Months Input -1 Input -2 Input -3 Input -4 Input-5 Target 

1 0.111 0.072 0.309 0.09 0.237 0.796 

2 0.107 0.068 0.303 0.084 0.233 0.775 

3 0.106 0.065 0.299 0.081 0.224 0.758 

4 0.099 0.068 0.3 0.075 0.216 0.752 

5 0.099 0.064 0.304 0.074 0.211 0.752 

6 0.101 0.061 0.309 0.073 0.207 0.745 

7 0.091 0.059 0.319 0.074 0.202 0.736 

8 0.081 0.057 0.326 0.078 0.195 0.722 

9 0.074 0.048 0.324 0.082 0.195 0.708 

10 0.062 0.044 0.326 0.085 0.191 0.685 

11 0.05 0.04 0.327 0.081 0.187 0.676 

12 0.051 0.036 0.332 0.065 0.192 0.67 

13 0.057 0.032 0.322 0.069 0.189 0.637 

14 0.061 0.028 0.307 0.072 0.168 0.624 

15 0.069 0.027 0.295 0.079 0.154 0.628 

16 0.074 0.026 0.291 0.089 0.147 0.621 

17 0.078 0.025 0.281 0.1 0.137 0.601 

18 0.074 0.023 0.279 0.091 0.133 0.622 

19 0.073 0.023 0.297 0.082 0.147 0.625 

20 0.068 0.022 0.311 0.065 0.158 0.616 

21 0.063 0.022 0.312 0.061 0.158 0.641 

22 0.058 0.023 0.35 0.06 0.15 0.671 

23 0.055 0.025 0.389 0.059 0.143 0.675 

24 0.049 0.025 0.41 0.062 0.129 0.663 

25 0.043 0.024 0.421 0.065 0.111 0.659 

26 0.041 0.024 0.437 0.057 0.1 0.612 

27 0.04 0.024 0.402 0.051 0.094 0.554 

28 0.038 0.027 0.357 0.045 0.086 0.571 

29 0.045 0.031 0.363 0.048 0.084 0.598 

30 0.052 0.037 0.376 0.051 0.082 0.618 

31 0.055 0.043 0.386 0.058 0.076 0.621 

32 0.055 0.042 0.393 0.058 0.073 0.675 

33 0.054 0.04 0.444 0.062 0.075 0.714 

34 0.048 0.04 0.493 0.057 0.076 0.738 

35 0.042 0.038 0.53 0.052 0.078 0.77 

36 0.036 0.031 0.574 0.046 0.083 0.824 

37 0.035 0.029 0.624 0.048 0.088 0.747 

38 0.033 0.025 0.566 0.041 0.083 0.722 

39 0.033 0.021 0.548 0.038 0.083 0.704 

40 0.034 0.017 0.534 0.036 0.083 0.685 

41 0.03 0.017 0.528 0.033 0.076 0.67 

42 0.03 0.02 0.519 0.033 0.067 0.756 

43 0.034 0.024 0.59 0.04 0.067 0.746 

44 0.033 0.027 0.586 0.04 0.06 0.725 

45 0.034 0.029 0.579 0.04 0.043 0.712 

46 0.041 0.03 0.569 0.041 0.031 0.713 

47 0.042 0.026 0.57 0.042 0.033 0.711 

48 0.043 0.022 0.57 0.043 0.033 0.716 

49 0.047 0.028 0.567 0.046 0.029 0.757 

50 0.048 0.048 0.577 0.05 0.035 0.786 

51 0.048 0.068 0.579 0.05 0.041 0.8 

52 0.045 0.089 0.584 0.048 0.033 0.827 
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The simulation results from HONN model in terms of RMSE, MSE and MAPE is 

show in Table 3.13, comparing the performances with different number of neurons in 

the hidden layer. The selection criteria for a better model are lower values of MAPE, 

MSE and RMSE. From simulation results, the best model was HONN with CSO 

having four neurons in the hidden layer. The performance indices shows that the best 

model is the HONN with CSO resulted in MAPE = 3.459%, MSE = 0.001, and RMSE 

= 0.035. In case of HONN with LSO, MAPE = 4.055% was achieved having 10 neural 

units in the hidden layer, and MAPE = 3.89% was achieved by HONN with QSO 

having 9 neurons in the hidden layer.  

Table 3.13.  Performance measure of HONNs using single lag1. 

Synaptic 

Operation 

Number 

of Hidden 

Layers 

Number 

of 

Neurons 

MSE RMSE MAPE (%) 

Mean SD Mean SD Mean SD 

Linear 

Synaptic 

Operation 

(LSO) 

1 

1 0.003 0.001 0.057 0.010 6.777 1.302 

2 0.003 0.001 0.054 0.011 5.954 1.181 

3 0.003 0.001 0.052 0.010 6.042 0.956 

4 0.002 0.000 0.047 0.004 5.425 0.489 

5 0.002 0.000 0.043 0.006 4.717 0.721 

6 0.002 0.000 0.044 0.004 5.041 0.599 

7 0.002 0.001 0.043 0.006 5.276 0.776 

8 0.002 0.001 0.049 0.006 5.979 0.799 

9 0.004 0.001 0.061 0.008 6.771 0.768 

10 0.002 0.000 0.041 0.004 4.055 0.620 

Quadratic 

Synaptic 

Operation 

(QSO) 

1 

1 0.003 0.001 0.055 0.008 6.610 0.711 

2 0.001 0.000 0.038 0.003 3.943 0.383 

3 0.003 0.001 0.050 0.008 5.464 0.902 

4 0.001 0.000 0.038 0.005 4.355 0.852 

5 0.003 0.001 0.051 0.012 5.248 1.454 

6 0.001 0.000 0.038 0.004 4.081 0.781 

7 0.002 0.001 0.044 0.006 5.268 0.822 

8 0.001 0.000 0.036 0.006 4.131 0.831 

9 0.002 0.001 0.041 0.010 3.898 0.590 

10 0.003 0.001 0.052 0.010 5.663 1.127 

Cubic 

Synaptic 

Operation 

(CSO) 

1 

1 0.003 0.001 0.056 0.005 6.517 0.481 

2 0.002 0.001 0.044 0.009 4.920 0.813 

3 0.002 0.001 0.047 0.006 5.368 0.981 

4 0.001 0.001 0.035 0.010 3.459 0.452 

5 0.003 0.001 0.050 0.007 5.758 1.001 

6 0.003 0.002 0.049 0.016 5.373 1.845 

7 0.002 0.000 0.041 0.003 4.044 0.741 

8 0.003 0.000 0.055 0.005 6.610 0.706 

9 0.001 0.001 0.033 0.009 3.634 0.930 

10 0.002 0.000 0.047 0.005 5.087 0.493 
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2) HONN using single Lag2 

In scenario 2, first 34 months data were used for training and next 17 months data for 

testing were selected applying single lag2 after pre-processing and the data are listed 

in Table 3.14. Here again, the first number in C6 has been advanced by 2 time steps.  

Table 3.14. The training, test and target data used to train HONN models for scenario 

2 (lag2). 

Months Input 1 Input-2 Input -3 Input -4 Input-5 Target 

1 0.111 0.072 0.309 0.09 0.237 0.775 

2 0.107 0.068 0.303 0.084 0.233 0.758 

3 0.106 0.065 0.299 0.081 0.224 0.752 

4 0.099 0.068 0.3 0.075 0.216 0.752 

5 0.099 0.064 0.304 0.074 0.211 0.745 

6 0.101 0.061 0.309 0.073 0.207 0.736 

7 0.091 0.059 0.319 0.074 0.202 0.722 

8 0.081 0.057 0.326 0.078 0.195 0.708 

9 0.074 0.048 0.324 0.082 0.195 0.685 

10 0.062 0.044 0.326 0.085 0.191 0.676 

11 0.05 0.04 0.327 0.081 0.187 0.67 

12 0.051 0.036 0.332 0.065 0.192 0.637 

13 0.057 0.032 0.322 0.069 0.189 0.624 

14 0.061 0.028 0.307 0.072 0.168 0.628 

15 0.069 0.027 0.295 0.079 0.154 0.621 

16 0.074 0.026 0.291 0.089 0.147 0.601 

17 0.078 0.025 0.281 0.1 0.137 0.622 

18 0.074 0.023 0.279 0.091 0.133 0.625 

19 0.073 0.023 0.297 0.082 0.147 0.616 

20 0.068 0.022 0.311 0.065 0.158 0.641 

21 0.063 0.022 0.312 0.061 0.158 0.671 

22 0.058 0.023 0.35 0.06 0.15 0.675 

23 0.055 0.025 0.389 0.059 0.143 0.663 

24 0.049 0.025 0.41 0.062 0.129 0.659 

25 0.043 0.024 0.421 0.065 0.111 0.612 

26 0.041 0.024 0.437 0.057 0.1 0.554 

27 0.04 0.024 0.402 0.051 0.094 0.571 

28 0.038 0.027 0.357 0.045 0.086 0.598 

29 0.045 0.031 0.363 0.048 0.084 0.618 

30 0.052 0.037 0.376 0.051 0.082 0.621 

31 0.055 0.043 0.386 0.058 0.076 0.675 

32 0.055 0.042 0.393 0.058 0.073 0.714 

33 0.054 0.04 0.444 0.062 0.075 0.738 

34 0.048 0.04 0.493 0.057 0.076 0.77 

35 0.042 0.038 0.53 0.052 0.078 0.824 

36 0.036 0.031 0.574 0.046 0.083 0.747 

37 0.035 0.029 0.624 0.048 0.088 0.722 

38 0.033 0.025 0.566 0.041 0.083 0.704 

39 0.033 0.021 0.548 0.038 0.083 0.685 

40 0.034 0.017 0.534 0.036 0.083 0.67 

41 0.03 0.017 0.528 0.033 0.076 0.756 

42 0.03 0.02 0.519 0.033 0.067 0.746 

43 0.034 0.024 0.59 0.04 0.067 0.725 

44 0.033 0.027 0.586 0.04 0.06 0.712 

45 0.034 0.029 0.579 0.04 0.043 0.713 

46 0.041 0.03 0.569 0.041 0.031 0.711 
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Months Input 1 Input-2 Input -3 Input -4 Input-5 Target 

47 0.042 0.026 0.57 0.042 0.033 0.716 

48 0.043 0.022 0.57 0.043 0.033 0.757 

49 0.047 0.028 0.567 0.046 0.029 0.786 

50 0.048 0.048 0.577 0.05 0.035 0.8 

51 0.048 0.068 0.579 0.05 0.041 0.827 

 

Table 3.15. lists the simulation results using single lag2 for HONN. The performance 

indices show that the best model is HONN with CSO resulting in MAPE = 4.882%, 

MSE = 0.002, and RMSE = 0.045 with two neurons in the hidden layer. HONN with 

QSO also resulted in low error having MAPE = 5.127, MSE = 0.002, RMSE = 0.043 

with seven neurons in the hidden layer. However, the HONNs LSO resulted in higher 

errors compared to CSO and QSO with single lag2. 

Table 3.15  Performance measure of HONNs using single lag2. 

Synaptic 

Operation 

Number 

of 

Hidden 

Layers 

Number 

of 

Neurons 

MSE RMSE MAPE (%) 

Mean SD Mean SD Mean SD 

Linear Synaptic 

Operation 

(LSO) 

1 

1 0.004 0.001 0.065 0.010 7.562 0.831 

2 0.003 0.001 0.058 0.006 6.392 0.894 

3 0.003 0.001 0.055 0.006 6.169 0.793 

4 0.005 0.001 0.070 0.004 7.695 0.210 

5 0.002 0.001 0.049 0.006 5.925 0.821 

6 0.004 0.001 0.060 0.005 6.473 0.382 

7 0.003 0.001 0.054 0.007 6.110 0.722 

8 0.003 0.001 0.058 0.006 6.702 0.740 

9 0.004 0.000 0.060 0.004 6.884 0.667 

10 0.003 0.001 0.057 0.008 6.242 0.919 

Quadratic 

Synaptic 

Operation 

(QSO) 

1 

1 0.003 0.001 0.057 0.007 6.220 0.699 

2 0.003 0.001 0.054 0.010 5.859 0.843 

3 0.002 0.001 0.047 0.011 5.216 1.057 

4 0.003 0.000 0.056 0.004 6.279 0.624 

5 0.003 0.001 0.051 0.008 5.358 1.124 

6 0.003 0.001 0.052 0.010 5.649 1.145 

7 0.002 0.000 0.043 0.004 5.127 0.694 

8 0.003 0.001 0.057 0.005 6.614 0.606 

9 0.002 0.001 0.049 0.008 5.445 1.431 

10 0.002 0.001 0.046 0.008 5.381 1.017 

Cubic Synaptic 

Operation 

(CSO) 

1 

1 0.002 0.001 0.049 0.005 5.650 0.761 

2 0.002 0.000 0.045 0.005 4.882 0.791 

3 0.002 0.000 0.048 0.005 5.665 0.978 

4 0.003 0.001 0.052 0.006 5.818 0.862 

5 0.002 0.001 0.048 0.009 5.413 1.369 

6 0.003 0.000 0.055 0.003 6.222 0.577 

7 0.003 0.002 0.057 0.016 6.573 2.033 

8 0.002 0.001 0.049 0.007 5.276 0.614 

9 0.004 0.001 0.060 0.008 6.623 1.030 

10 0.008 0.005 0.083 0.030 9.662 2.979 
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1)  HONN using accumulated Lag2 

In this scenario, the data were selected applying accumulated lag2 (lag1 and 

lag2), as shown in Table 3.16. The Input-1 to Input-5 in Table 3.16 correspond to oil 

production from Well-1 to Well-5 at time step single lag1, and Input-6 to Input-10 in 

the table corresponds to oil production from Well-1 to Well-5 at time step  single lag2 

. Hence, both single lag1 and lag2 are combined to form the training data for 

accumulated lag2. The simulation results from HONN models are presented in Table 

3.17 with their performance accuracy. The performance indices show that the best 

model is HONN with CSO having three neurons in the hidden layer which resulted in 

MAPE = 4.045%, MSE = 0.002, and RMSE = 0.039. 

Table 3.16. The training, test and target data used to train HONN models for scenario 

3 (accumulated lag2). 

Months Input 

-1 

Input 

-2  

Input 

-3 

Input 

-4 

Input 

-5 

Input 

-6  

Input 

-7 

Input 

-8 

Input 

-9 

Input 

-10 
Target 

1 0.107 0.068 0.303 0.084 0.233 0.111 0.072 0.309 0.09 0.237 0.775 

2 0.106 0.065 0.299 0.081 0.224 0.107 0.068 0.303 0.084 0.233 0.758 

3 0.099 0.068 0.3 0.075 0.216 0.106 0.065 0.299 0.081 0.224 0.752 

4 0.099 0.064 0.304 0.074 0.211 0.099 0.068 0.3 0.075 0.216 0.752 

5 0.101 0.061 0.309 0.073 0.207 0.099 0.064 0.304 0.074 0.211 0.745 

6 0.091 0.059 0.319 0.074 0.202 0.101 0.061 0.309 0.073 0.207 0.736 

7 0.081 0.057 0.326 0.078 0.195 0.091 0.059 0.319 0.074 0.202 0.722 

8 0.074 0.048 0.324 0.082 0.195 0.081 0.057 0.326 0.078 0.195 0.708 

9 0.062 0.044 0.326 0.085 0.191 0.074 0.048 0.324 0.082 0.195 0.685 

10 0.05 0.04 0.327 0.081 0.187 0.062 0.044 0.326 0.085 0.191 0.676 

11 0.051 0.036 0.332 0.065 0.192 0.05 0.04 0.327 0.081 0.187 0.67 

12 0.057 0.032 0.322 0.069 0.189 0.051 0.036 0.332 0.065 0.192 0.637 

13 0.061 0.028 0.307 0.072 0.168 0.057 0.032 0.322 0.069 0.189 0.624 

14 0.069 0.027 0.295 0.079 0.154 0.061 0.028 0.307 0.072 0.168 0.628 

15 0.074 0.026 0.291 0.089 0.147 0.069 0.027 0.295 0.079 0.154 0.621 

16 0.078 0.025 0.281 0.1 0.137 0.074 0.026 0.291 0.089 0.147 0.601 

17 0.074 0.023 0.279 0.091 0.133 0.078 0.025 0.281 0.1 0.137 0.622 

18 0.073 0.023 0.297 0.082 0.147 0.074 0.023 0.279 0.091 0.133 0.625 

19 0.068 0.022 0.311 0.065 0.158 0.073 0.023 0.297 0.082 0.147 0.616 

20 0.063 0.022 0.312 0.061 0.158 0.068 0.022 0.311 0.065 0.158 0.641 

21 0.058 0.023 0.35 0.06 0.15 0.063 0.022 0.312 0.061 0.158 0.671 

22 0.055 0.025 0.389 0.059 0.143 0.058 0.023 0.35 0.06 0.15 0.675 

23 0.049 0.025 0.41 0.062 0.129 0.055 0.025 0.389 0.059 0.143 0.663 

24 0.043 0.024 0.421 0.065 0.111 0.049 0.025 0.41 0.062 0.129 0.659 

25 0.041 0.024 0.437 0.057 0.1 0.043 0.024 0.421 0.065 0.111 0.612 

26 0.04 0.024 0.402 0.051 0.094 0.041 0.024 0.437 0.057 0.1 0.554 

27 0.038 0.027 0.357 0.045 0.086 0.04 0.024 0.402 0.051 0.094 0.571 

28 0.045 0.031 0.363 0.048 0.084 0.038 0.027 0.357 0.045 0.086 0.598 

29 0.052 0.037 0.376 0.051 0.082 0.045 0.031 0.363 0.048 0.084 0.618 

30 0.055 0.043 0.386 0.058 0.076 0.052 0.037 0.376 0.051 0.082 0.621 

31 0.055 0.042 0.393 0.058 0.073 0.055 0.043 0.386 0.058 0.076 0.675 

32 0.054 0.04 0.444 0.062 0.075 0.055 0.042 0.393 0.058 0.073 0.714 

33 0.048 0.04 0.493 0.057 0.076 0.054 0.04 0.444 0.062 0.075 0.738 

34 0.042 0.038 0.53 0.052 0.078 0.048 0.04 0.493 0.057 0.076 0.77 
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Months Input 

-1 

Input 

-2  

Input 

-3 

Input 

-4 

Input 

-5 

Input 

-6  

Input 

-7 

Input 

-8 

Input 

-9 

Input 

-10 
Target 

35 0.036 0.031 0.574 0.046 0.083 0.042 0.038 0.53 0.052 0.078 0.824 

36 0.035 0.029 0.624 0.048 0.088 0.036 0.031 0.574 0.046 0.083 0.747 

37 0.033 0.025 0.566 0.041 0.083 0.035 0.029 0.624 0.048 0.088 0.722 

38 0.033 0.021 0.548 0.038 0.083 0.033 0.025 0.566 0.041 0.083 0.704 

39 0.034 0.017 0.534 0.036 0.083 0.033 0.021 0.548 0.038 0.083 0.685 

40 0.03 0.017 0.528 0.033 0.076 0.034 0.017 0.534 0.036 0.083 0.67 

41 0.03 0.02 0.519 0.033 0.067 0.03 0.017 0.528 0.033 0.076 0.756 

42 0.034 0.024 0.59 0.04 0.067 0.03 0.02 0.519 0.033 0.067 0.746 

43 0.033 0.027 0.586 0.04 0.06 0.034 0.024 0.59 0.04 0.067 0.725 

44 0.034 0.029 0.579 0.04 0.043 0.033 0.027 0.586 0.04 0.06 0.712 

45 0.041 0.03 0.569 0.041 0.031 0.034 0.029 0.579 0.04 0.043 0.713 

46 0.042 0.026 0.57 0.042 0.033 0.041 0.03 0.569 0.041 0.031 0.711 

47 0.043 0.022 0.57 0.043 0.033 0.042 0.026 0.57 0.042 0.033 0.716 

48 0.047 0.028 0.567 0.046 0.029 0.043 0.022 0.57 0.043 0.033 0.757 

49 0.048 0.048 0.577 0.05 0.035 0.047 0.028 0.567 0.046 0.029 0.786 

50 0.048 0.068 0.579 0.05 0.041 0.048 0.048 0.577 0.05 0.035 0.8 

51 0.045 0.089 0.584 0.048 0.033 0.048 0.068 0.579 0.05 0.041 0.827 

Table 3.17.  Performance measure of HONNs using accumulated lag2. 

Synaptic 

Operation 

Number of 

Hidden 

Layers 

Number 

of 

Neurons 

MSE RMSE MAPE (%) 

Mean SD Mean SD Mean SD 

Linear 

Synaptic 

Operation 

(LSO) 

1 

1 0.004 0.001 0.059 0.008 6.715 1.261 

2 0.004 0.001 0.063 0.008 7.134 0.563 

3 0.003 0.001 0.055 0.010 6.362 0.834 

4 0.004 0.001 0.059 0.010 6.670 1.081 

5 0.003 0.000 0.051 0.003 5.711 0.150 

6 0.003 0.000 0.054 0.004 6.266 0.565 

7 0.003 0.001 0.051 0.007 5.167 1.024 

8 0.002 0.000 0.042 0.003 4.748 0.802 

9 0.003 0.001 0.056 0.007 6.695 0.578 

10 0.002 0.001 0.047 0.005 5.134 0.671 

Quadratic 

Synaptic 

Operation 

(QSO) 

1 

1 0.003 0.000 0.055 0.004 6.583 0.534 

2 0.002 0.000 0.041 0.003 4.465 0.547 

3 0.002 0.000 0.040 0.003 4.320 0.407 

4 0.003 0.001 0.051 0.011 5.438 1.413 

5 0.002 0.001 0.045 0.006 5.184 0.717 

6 0.002 0.001 0.045 0.010 5.289 1.534 

7 0.002 0.001 0.047 0.009 4.984 0.847 

8 0.003 0.001 0.055 0.005 5.525 0.576 

9 0.003 0.001 0.054 0.007 6.199 1.087 

10 0.005 0.002 0.070 0.015 7.320 1.138 

Cubic 

Synaptic 

Operation 

(CSO) 

1 

1 0.003 0.000 0.056 0.003 6.456 0.516 

2 0.002 0.001 0.046 0.008 5.214 1.181 

3 0.002 0.000 0.039 0.003 4.045 0.462 

4 0.003 0.001 0.053 0.008 5.474 1.168 

5 0.003 0.001 0.058 0.009 6.141 1.016 

6 0.002 0.001 0.045 0.011 5.362 1.508 

7 0.004 0.001 0.063 0.007 7.013 0.853 

8 0.003 0.001 0.054 0.012 6.045 1.748 

9 0.004 0.001 0.063 0.008 7.293 0.901 

10 0.005 0.002 0.072 0.013 7.620 1.191 
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In case#2.a, overall,  the performance measure of HONN models show that HONN 

with CSO is the best model for forecasting cumulative oil production by yielding a 

stable value between the range of MSE = 0.002 ~ 0.005, RMSE = 0.039 ~ 0.072 and 

MAPE = 4 ~ 7.6 % with few neurons in the hidden layer.  

3.3.3 Case #2.b 

For this simulation study, monthly oil, gas and water production ratios from Well-

1,Well-2,Well-3,Well-4 and Well-5 for 63 months were used for forecasting of 

cumulative oil production. The production ratios used for this simulation were 

obtained by dividing the production of oil, gas and water with maximum cumulative 

productions (through 63 months) of oil, gas and water, approximately 9500 m
3
, 

275000 m
3
, and 5200 m

3
, respectively.  Table 3.18 presents the smoothed monthly oil, 

gas and water production data ratios of 5 wells for 63 months.  

This case study shows how additional input parameters (gas and water production) 

influence the efficiency of HONN model in forecasting cumulative oil production. The 

production data were preprocessed by applying smoothing process and cross-

correlation.  

Table 3.18. Ratios of smoothed monthly oil, gas and water production data for five 

wells. 

Months 

  

Well-1 Well-2 

Oil Gas  

(C2) 

Water Oil Gas Water 

(C1) (C3) (C4) (C5) (C6) 

1 0.111 0.107 0.184 0.072 0.05 0.203 

2 0.107 0.103 0.188 0.068 0.047 0.21 

3 0.106 0.107 0.19 0.065 0.045 0.215 

4 0.099 0.103 0.205 0.068 0.049 0.197 

5 0.099 0.106 0.21 0.064 0.047 0.195 

6 0.101 0.11 0.211 0.061 0.046 0.189 

7 0.091 0.098 0.196 0.059 0.046 0.162 

8 0.081 0.085 0.184 0.057 0.046 0.137 

9 0.074 0.078 0.155 0.048 0.039 0.133 

10 0.062 0.067 0.138 0.044 0.037 0.127 

11 0.05 0.054 0.123 0.04 0.034 0.121 

12 0.051 0.058 0.122 0.036 0.031 0.135 

13 0.057 0.065 0.144 0.032 0.029 0.142 

14 0.061 0.068 0.156 0.028 0.025 0.145 

15 0.069 0.076 0.182 0.027 0.025 0.142 

16 0.074 0.081 0.211 0.026 0.024 0.141 

17 0.078 0.086 0.242 0.025 0.023 0.14 

18 0.074 0.082 0.231 0.023 0.021 0.14 

19 0.073 0.082 0.234 0.023 0.022 0.145 

20 0.068 0.079 0.221 0.022 0.021 0.141 

21 0.063 0.076 0.203 0.022 0.021 0.134 



78 
 

 

Well-1 Well-2 

Months Oil (C1) Gas (C2) Water (C3) Oil Gas Water 

22 0.058 0.07 0.187 0.023 0.023 0.125 

23 0.055 0.067 0.191 0.025 0.024 0.122 

24 0.049 0.059 0.199 0.025 0.023 0.112 

25 0.043 0.05 0.207 0.024 0.022 0.101 

26 0.041 0.047 0.207 0.024 0.022 0.088 

27 0.04 0.046 0.2 0.024 0.023 0.074 

28 0.038 0.045 0.193 0.027 0.026 0.058 

29 0.045 0.052 0.184 0.031 0.029 0.065 

30 0.052 0.06 0.175 0.037 0.035 0.069 

31 0.055 0.064 0.178 0.043 0.04 0.078 

32 0.055 0.064 0.175 0.042 0.039 0.086 

33 0.054 0.062 0.179 0.04 0.038 0.084 

34 0.048 0.055 0.181 0.04 0.037 0.067 

35 0.042 0.047 0.185 0.038 0.034 0.054 

36 0.036 0.04 0.186 0.031 0.028 0.049 

37 0.035 0.039 0.192 0.029 0.026 0.057 

38 0.033 0.036 0.169 0.025 0.022 0.065 

39 0.033 0.038 0.163 0.021 0.019 0.084 

40 0.034 0.039 0.161 0.017 0.016 0.104 

41 0.03 0.036 0.167 0.017 0.017 0.116 

42 0.03 0.037 0.168 0.02 0.02 0.096 

43 0.034 0.042 0.182 0.024 0.024 0.093 

44 0.033 0.041 0.175 0.027 0.027 0.08 

45 0.034 0.041 0.171 0.029 0.029 0.065 

46 0.041 0.05 0.16 0.03 0.03 0.049 

47 0.042 0.051 0.154 0.026 0.026 0.05 

48 0.043 0.053 0.159 0.022 0.022 0.039 

49 0.047 0.058 0.159 0.028 0.028 0.03 

50 0.048 0.059 0.158 0.048 0.049 0.019 

51 0.048 0.06 0.153 0.068 0.069 0.012 

52 0.045 0.056 0.154 0.089 0.091 0.005 

53 0.041 0.051 0.154 0.111 0.112 0.01 

54 0.04 0.049 0.153 0.124 0.124 0.013 

55 0.037 0.046 0.155 0.142 0.142 0.022 

56 0.033 0.041 0.157 0.156 0.16 0.033 

57 0.032 0.039 0.156 0.167 0.165 0.04 

58 0.031 0.038 0.158 0.18 0.174 0.043 

59 0.027 0.032 0.168 0.188 0.177 0.049 

60 0.026 0.029 0.169 0.181 0.166 0.048 

61 0.021 0.022 0.147 0.171 0.147 0.045 

62 0.018 0.019 0.137 0.163 0.142 0.049 

63 0.003 0.003 0.046 0.14 0.13 0.054 

 

Well-3 Well-4 Well-5 
Cumulative  

oil 
Oil Gas Water Oil Gas Water Oil Gas Water 

(C7) (C8) (C9) (C10) (C11) (C12) (C13) (C14) (C15) 

0.309 0.256 0.029 0.09 0.047 0.21 0.237 0.217 0.08 0.82 

0.303 0.251 0.016 0.084 0.044 0.217 0.233 0.214 0.077 0.796 

0.299 0.248 0.012 0.081 0.042 0.229 0.224 0.205 0.072 0.775 

0.3 0.256 0.008 0.075 0.04 0.243 0.216 0.203 0.07 0.758 

0.304 0.266 0.006 0.074 0.041 0.261 0.211 0.204 0.067 0.752 

0.309 0.277 0.006 0.073 0.043 0.268 0.207 0.205 0.062 0.752 

0.319 0.295 0.007 0.074 0.046 0.287 0.202 0.206 0.059 0.745 

0.326 0.312 0.009 0.078 0.051 0.297 0.195 0.207 0.056 0.736 

0.324 0.314 0.012 0.082 0.055 0.3 0.195 0.21 0.048 0.722 
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Well-3 Well-4 Well-5 
 

Oil 

(C7) 

Gas 

(C8) 

Water 

(C9) 

Oil 

(C10) 

Gas 

(C11) 

Water 

(C12) 

Oil 

(C13) 

Gas 

(C14) 

Water 

(C15) 

Cumulative  

oil 

 0.326 0.323 0.015 0.085 0.056 0.302 0.191 0.21 0.041 0.708 

0.327 0.327 0.018 0.081 0.058 0.287 0.187 0.208 0.035 0.685 

0.332 0.33 0.015 0.065 0.048 0.222 0.192 0.215 0.026 0.676 

0.322 0.32 0.02 0.069 0.058 0.161 0.189 0.211 0.023 0.67 

0.307 0.302 0.022 0.072 0.067 0.106 0.168 0.187 0.049 0.637 

0.295 0.286 0.025 0.079 0.082 0.047 0.154 0.17 0.088 0.624 

0.291 0.281 0.033 0.089 0.093 0.041 0.147 0.163 0.121 0.628 

0.281 0.271 0.048 0.1 0.104 0.062 0.137 0.151 0.16 0.621 

0.279 0.271 0.053 0.091 0.095 0.082 0.133 0.147 0.189 0.601 

0.297 0.296 0.053 0.082 0.086 0.106 0.147 0.168 0.19 0.622 

0.311 0.321 0.048 0.065 0.07 0.128 0.158 0.187 0.178 0.625 

0.312 0.327 0.041 0.061 0.068 0.155 0.158 0.19 0.172 0.616 

0.35 0.366 0.039 0.06 0.067 0.162 0.15 0.182 0.188 0.641 

0.389 0.404 0.045 0.059 0.065 0.167 0.143 0.173 0.208 0.671 

0.41 0.42 0.049 0.062 0.069 0.163 0.129 0.154 0.238 0.675 

0.421 0.426 0.053 0.065 0.071 0.158 0.111 0.129 0.269 0.663 

0.437 0.44 0.057 0.057 0.062 0.13 0.1 0.115 0.287 0.659 

0.402 0.408 0.056 0.051 0.056 0.127 0.094 0.109 0.285 0.612 

0.357 0.366 0.053 0.045 0.05 0.119 0.086 0.101 0.289 0.554 

0.363 0.372 0.046 0.048 0.053 0.117 0.084 0.099 0.293 0.571 

0.376 0.382 0.045 0.051 0.056 0.114 0.082 0.095 0.294 0.598 

0.386 0.391 0.048 0.058 0.064 0.107 0.076 0.088 0.31 0.618 

0.393 0.398 0.04 0.058 0.063 0.102 0.073 0.084 0.306 0.621 

0.444 0.446 0.029 0.062 0.067 0.108 0.075 0.086 0.299 0.675 

0.493 0.484 0.033 0.057 0.061 0.114 0.076 0.086 0.288 0.714 

0.53 0.506 0.04 0.052 0.054 0.123 0.078 0.087 0.28 0.738 

0.574 0.533 0.042 0.046 0.048 0.129 0.083 0.092 0.261 0.77 

0.624 0.572 0.054 0.048 0.049 0.138 0.088 0.098 0.267 0.824 

0.566 0.515 0.059 0.041 0.042 0.121 0.083 0.093 0.241 0.747 

0.548 0.505 0.078 0.038 0.04 0.12 0.083 0.096 0.234 0.722 

0.534 0.504 0.101 0.036 0.039 0.121 0.083 0.099 0.232 0.704 

0.528 0.516 0.11 0.033 0.038 0.119 0.076 0.093 0.222 0.685 

0.519 0.517 0.111 0.033 0.038 0.119 0.067 0.084 0.206 0.67 

0.59 0.589 0.116 0.04 0.046 0.14 0.067 0.086 0.223 0.756 

0.586 0.587 0.106 0.04 0.046 0.143 0.06 0.077 0.218 0.746 

0.579 0.581 0.084 0.04 0.046 0.141 0.043 0.066 0.209 0.725 

0.569 0.569 0.079 0.041 0.047 0.139 0.031 0.066 0.213 0.712 

0.57 0.569 0.078 0.042 0.048 0.132 0.033 0.068 0.212 0.713 

0.57 0.57 0.082 0.043 0.049 0.124 0.033 0.068 0.206 0.711 

0.567 0.57 0.086 0.046 0.053 0.114 0.029 0.063 0.206 0.716 

0.577 0.584 0.087 0.05 0.058 0.106 0.035 0.059 0.207 0.757 

0.579 0.59 0.078 0.05 0.059 0.107 0.041 0.053 0.207 0.786 

0.584 0.596 0.062 0.048 0.057 0.108 0.033 0.043 0.21 0.8 

0.6 0.607 0.042 0.048 0.057 0.112 0.027 0.035 0.21 0.827 

0.602 0.604 0.033 0.046 0.053 0.118 0.027 0.034 0.193 0.837 

0.586 0.586 0.049 0.04 0.046 0.125 0.027 0.034 0.182 0.832 

0.555 0.563 0.076 0.037 0.043 0.127 0.028 0.035 0.176 0.808 

0.521 0.514 0.116 0.034 0.039 0.133 0.028 0.035 0.172 0.782 

0.482 0.467 0.166 0.031 0.034 0.138 0.027 0.033 0.172 0.75 

0.437 0.411 0.191 0.027 0.029 0.146 0.023 0.028 0.18 0.702 

0.407 0.372 0.192 0.026 0.028 0.147 0.017 0.02 0.145 0.657 

0.386 0.333 0.188 0.027 0.027 0.142 0.051 0.057 0.112 0.656 

0.35 0.304 0.163 0.026 0.026 0.14 0.073 0.082 0.063 0.631 

0.339 0.301 0.159 0.031 0.031 0.11 0.204 0.23 0.011 0.717 
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The smoothing process was carried out by a moving averaging filter with five 

sequence data points to reduce noise. Oil, gas and water production ratios of 5 

producing wells before and after smoothing are graphically represented in Figure 3.11. 

After that, the smoothed data were used to find correlation between the cumulative oil 

production and oil, gas, and water production from each well by cross-correlation 

function (CCF) as shown in Figure 3.12. 

 

(1a)  oil from well-1             (1b) water from well-1              (1c) gas from well-1 

 

(2a)  oil from well-2             (2b) water from well-2            (2c) gas from well-2 

 

(3a)  oil from well-3             (3b) water from well-3              (3c) gas from well-3 

 

(4a)  oil from well-4             (4b) water from well-4              (4c) gas from well-4 
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(5a)  oil from well-5             (5b) water from well-5              (5c) gas from well-5 

Figure 3.11.  Before and after smoothing process of oil, gas and water productions 

from 5 wells. 

The significant input variables were determined using the CCF plot. It is observed 

from the CCF plot (Figure 3.12) that the correlations between oil, gas, and water of 5 

producing wells are the most significant at lag0. Since lag0 does not represent step 

ahead, lag1 was selected as the highest cross-correlation. Also, since the CCF for two 

parameters were calculated twice (i.e., Cx-C16 and C16-Cx, x=1, 2,…, 16), one of 

them was dropped. C16-C16 CCF was also dropped because it represented auto-

correlation. 

 

Figure 3.12.  CCF of smoothed oil, gas and water production data. The dark circles on 

the plot indicate the highest correlation between two parameters. 

A closer look at Figure 3.12 showed that the water production from Well-3 was 

negatively correlated with cumulative oil production and hence C9 was dropped from 

HONN inputs. Thus, overall 14 input vectors were rearranged for HONN models as 

listed in Table 3.19.  Input1 to input 14 represents the correlation of oil, gas and water 

productions from each well at lag1 to the cumulative field oil production. First 35 

months data were used for training and next 17 months data for validation  
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Table 3.19 The training, test and target data sets used for training HONN model for 

case#2.b. 

Months Input-1 Input-2 Input-3 Input-4 Input-5 Input-6 Input-7 

1 0.111 0.107 0.184 0.072 0.05 0.203 0.309 

2 0.107 0.103 0.188 0.068 0.047 0.21 0.303 

3 0.106 0.107 0.19 0.065 0.045 0.215 0.299 

4 0.099 0.103 0.205 0.068 0.049 0.197 0.3 

5 0.099 0.106 0.21 0.064 0.047 0.195 0.304 

6 0.101 0.11 0.211 0.061 0.046 0.189 0.309 

7 0.091 0.098 0.196 0.059 0.046 0.162 0.319 

8 0.081 0.085 0.184 0.057 0.046 0.137 0.326 

9 0.074 0.078 0.155 0.048 0.039 0.133 0.324 

10 0.062 0.067 0.138 0.044 0.037 0.127 0.326 

11 0.05 0.054 0.123 0.04 0.034 0.121 0.327 

12 0.051 0.058 0.122 0.036 0.031 0.135 0.332 

13 0.057 0.065 0.144 0.032 0.029 0.142 0.322 

14 0.061 0.068 0.156 0.028 0.025 0.145 0.307 

15 0.069 0.076 0.182 0.027 0.025 0.142 0.295 

16 0.074 0.081 0.211 0.026 0.024 0.141 0.291 

17 0.078 0.086 0.242 0.025 0.023 0.14 0.281 

18 0.074 0.082 0.231 0.023 0.021 0.14 0.279 

19 0.073 0.082 0.234 0.023 0.022 0.145 0.297 

20 0.068 0.079 0.221 0.022 0.021 0.141 0.311 

21 0.063 0.076 0.203 0.022 0.021 0.134 0.312 

22 0.058 0.07 0.187 0.023 0.023 0.125 0.35 

23 0.055 0.067 0.191 0.025 0.024 0.122 0.389 

24 0.049 0.059 0.199 0.025 0.023 0.112 0.41 

25 0.043 0.05 0.207 0.024 0.022 0.101 0.421 

26 0.041 0.047 0.207 0.024 0.022 0.088 0.437 

27 0.04 0.046 0.2 0.024 0.023 0.074 0.402 

28 0.038 0.045 0.193 0.027 0.026 0.058 0.357 

29 0.045 0.052 0.184 0.031 0.029 0.065 0.363 

30 0.052 0.06 0.175 0.037 0.035 0.069 0.376 

31 0.055 0.064 0.178 0.043 0.04 0.078 0.386 

32 0.055 0.064 0.175 0.042 0.039 0.086 0.393 

33 0.054 0.062 0.179 0.04 0.038 0.084 0.444 

34 0.048 0.055 0.181 0.04 0.037 0.067 0.493 

35 0.042 0.047 0.185 0.038 0.034 0.054 0.53 

36 0.036 0.04 0.186 0.031 0.028 0.049 0.574 

37 0.035 0.039 0.192 0.029 0.026 0.057 0.624 

38 0.033 0.036 0.169 0.025 0.022 0.065 0.566 

39 0.033 0.038 0.163 0.021 0.019 0.084 0.548 

40 0.034 0.039 0.161 0.017 0.016 0.104 0.534 

41 0.03 0.036 0.167 0.017 0.017 0.116 0.528 

42 0.03 0.037 0.168 0.02 0.02 0.096 0.519 

43 0.034 0.042 0.182 0.024 0.024 0.093 0.59 

44 0.033 0.041 0.175 0.027 0.027 0.08 0.586 

45 0.034 0.041 0.171 0.029 0.029 0.065 0.579 

46 0.041 0.05 0.16 0.03 0.03 0.049 0.569 

47 0.042 0.051 0.154 0.026 0.026 0.05 0.57 

48 0.043 0.053 0.159 0.022 0.022 0.039 0.57 

49 0.047 0.058 0.159 0.028 0.028 0.03 0.567 

50 0.048 0.059 0.158 0.048 0.049 0.019 0.577 

51 0.048 0.06 0.153 0.068 0.069 0.012 0.579 

52 0.045 0.056 0.154 0.089 0.091 0.005 0.584 
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Input-8 Input-9 Input-10 Input-11 Input-12 Input-13 Input-14 Target 

0.256 0.09 0.047 0.21 0.237 0.217 0.08 0.796 

0.251 0.084 0.044 0.217 0.233 0.214 0.077 0.775 

0.248 0.081 0.042 0.229 0.224 0.205 0.072 0.758 

0.256 0.075 0.04 0.243 0.216 0.203 0.07 0.752 

0.266 0.074 0.041 0.261 0.211 0.204 0.067 0.752 

0.277 0.073 0.043 0.268 0.207 0.205 0.062 0.745 

0.295 0.074 0.046 0.287 0.202 0.206 0.059 0.736 

0.312 0.078 0.051 0.297 0.195 0.207 0.056 0.722 

0.314 0.082 0.055 0.3 0.195 0.21 0.048 0.708 

0.323 0.085 0.056 0.302 0.191 0.21 0.041 0.685 

0.327 0.081 0.058 0.287 0.187 0.208 0.035 0.676 

0.33 0.065 0.048 0.222 0.192 0.215 0.026 0.67 

0.32 0.069 0.058 0.161 0.189 0.211 0.023 0.637 

0.302 0.072 0.067 0.106 0.168 0.187 0.049 0.624 

0.286 0.079 0.082 0.047 0.154 0.17 0.088 0.628 

0.281 0.089 0.093 0.041 0.147 0.163 0.121 0.621 

0.271 0.1 0.104 0.062 0.137 0.151 0.16 0.601 

0.271 0.091 0.095 0.082 0.133 0.147 0.189 0.622 

0.296 0.082 0.086 0.106 0.147 0.168 0.19 0.625 

0.321 0.065 0.07 0.128 0.158 0.187 0.178 0.616 

0.327 0.061 0.068 0.155 0.158 0.19 0.172 0.641 

0.366 0.06 0.067 0.162 0.15 0.182 0.188 0.671 

0.404 0.059 0.065 0.167 0.143 0.173 0.208 0.675 

0.42 0.062 0.069 0.163 0.129 0.154 0.238 0.663 

0.426 0.065 0.071 0.158 0.111 0.129 0.269 0.659 

0.44 0.057 0.062 0.13 0.1 0.115 0.287 0.612 

0.408 0.051 0.056 0.127 0.094 0.109 0.285 0.554 

0.366 0.045 0.05 0.119 0.086 0.101 0.289 0.571 

0.372 0.048 0.053 0.117 0.084 0.099 0.293 0.598 

0.382 0.051 0.056 0.114 0.082 0.095 0.294 0.618 

0.391 0.058 0.064 0.107 0.076 0.088 0.31 0.621 

0.398 0.058 0.063 0.102 0.073 0.084 0.306 0.675 

0.446 0.062 0.067 0.108 0.075 0.086 0.299 0.714 

0.484 0.057 0.061 0.114 0.076 0.086 0.288 0.738 

0.506 0.052 0.054 0.123 0.078 0.087 0.28 0.77 

0.533 0.046 0.048 0.129 0.083 0.092 0.261 0.824 

0.572 0.048 0.049 0.138 0.088 0.098 0.267 0.747 

0.515 0.041 0.042 0.121 0.083 0.093 0.241 0.722 

0.505 0.038 0.04 0.12 0.083 0.096 0.234 0.704 

0.504 0.036 0.039 0.121 0.083 0.099 0.232 0.685 

0.516 0.033 0.038 0.119 0.076 0.093 0.222 0.67 

0.517 0.033 0.038 0.119 0.067 0.084 0.206 0.756 

0.589 0.04 0.046 0.14 0.067 0.086 0.223 0.746 

0.587 0.04 0.046 0.143 0.06 0.077 0.218 0.725 

0.581 0.04 0.046 0.141 0.043 0.066 0.209 0.712 

0.569 0.041 0.047 0.139 0.031 0.066 0.213 0.713 

0.569 0.042 0.048 0.132 0.033 0.068 0.212 0.711 

0.57 0.043 0.049 0.124 0.033 0.068 0.206 0.716 

0.57 0.046 0.053 0.114 0.029 0.063 0.206 0.757 

0.584 0.05 0.058 0.106 0.035 0.059 0.207 0.786 

0.59 0.05 0.059 0.107 0.041 0.053 0.207 0.8 

0.596 0.048 0.057 0.108 0.033 0.043 0.21 0.827 

 

Table 3.20 presents the results from HONN models with their performance measure in 

terms of MSE, RMSE, and MAPE for different configurations of neurons in the 
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hidden layer and synaptic operation. In this case study, the best model resulted in 

MAPE = 3.990%, MSE = 0.001, RMSE = 0.036 by HONN with CSO having three 

neurons in the hidden layer.  

Table 3.20  Performance measure of HONN models for case#2.b. 

Synaptic 

Operation 

Number 

of 

Hidden 

Layers  

Number 

of 

Neurons 

MSE RMSE MAPE (%) 

Mean SD Mean SD Mean SD 

Linear 

Synaptic 

Operation  

1 

1 0.004 0.001 0.065 0.011 7.480 1.104 

2 0.004 0.001 0.060 0.008 6.687 1.008 

3 0.003 0.001 0.052 0.006 6.199 0.631 

4 0.002 0.001 0.048 0.009 5.562 0.748 

5 0.003 0.000 0.054 0.005 6.187 0.435 

Quadratic 

Synaptic 

Operation 

1 

1 0.002 0.001 0.046 0.006 5.147 0.734 

2 0.001 0.000 0.038 0.004 4.196 0.434 

3 0.003 0.001 0.054 0.008 6.004 0.964 

4 0.002 0.001 0.048 0.007 5.553 0.396 

5 0.003 0.001 0.054 0.005 6.046 0.855 

Cubic 

Synaptic 

Operation 

1 

1 0.003 0.001 0.050 0.007 5.359 0.874 

2 0.002 0.001 0.049 0.006 5.627 0.393 

3 0.001 0.000 0.036 0.004 3.990 0.450 

4 0.003 0.001 0.054 0.008 6.238 1.013 

5 0.002 0.001 0.044 0.010 4.568 0.961 

 

3.3.4 Discussions 

From the four case studies reported herein, it is clear that a single well production data 

are insufficient and the best MAPE that could be achieved was 13 to 15% (case #1.a 

and b). A major reason for this discrepancy was thought to be insufficient input data 

particularly with respect to well pressure and presence of other wells in the vicinity. 

The multiple well modeling discussed above confirmed this as shown by the results of 

case #2.a and b, where the MAPE has come down to the range of 3 to 4%. 

From the case#2.a and b, the performance evaluation criteria indicates that better 

cumulative oil production forecasting can be achieved from HONN with CSO using 

oil, gas and water production data or just oil production data for multiple wells. The 

simulation results from three different lag scenarios also presents that HONN with 

CSO gives best agreement between simulation results and observed data. In this study, 

the selection of lag time is an important factor that influences the forecasting results.  
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In case#2.a, cross-correlation function (CCF) indicates that the most significant lag for 

oil production forecasting with only oil production data from five producing well is 

lag1, and HONN with CSO yields the best forecasting cumulative oil production in 

this case. This can be explained by recalling that five input parameters (oil productions 

from five wells) generate complex correlation for target parameter (oil production to 

be predicted). Thus, in this case, nonlinear combination of synaptic operations could 

result in better prediction. The oil production forecasting from HONN with CSO with 

single lag1 for next ten months, from month 53 – 63, is compared with measurement 

production data in Figure 3.13. The figure indicates a good match between the 

measured production data and forecast results within the overall testing error of 0.025.  

 

Figure 3.13 Comparison between the measured cumulative oil production and the 

forecast results from HONN with CSO using single lag-1 for case#2.a. 

 

Figure 3.14.  Comparison between the measured cumulative oil production and the 

forecast results from HONN with CSO from case #2.b 

Figure 3.14 illustrates the comparison between the measured oil production data and 

the forecast results from HONN with CSO for ten months from month 53 to 63 within 

the overall testing error of 0.035. Again the match is reasonably satisfactory.  
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 Through these case studies, it is observed that the performance of HONN with 

CSO in the case#2.a shows less MAPE (3.46%) than that in the case#2.b (3.99%). The 

number of input parameters for training HONN in the case#2.b is higher than that in 

the case#2.a. It should be noted that for the application of HONN for forecasting, the 

number of input variables is one of the significant factors to determine the order of 

synaptic operation in the neuron. The results indicate that by increasing the order of 

combination of neural inputs, the capability of an HONN model increases; however, 

the uncertainty in input data also gets multiplied resulting in higher MAPE. The 

performance of HONN with HOSO is very susceptible to higher number of neurons in 

the hidden layer, which induces longer computational time. 
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CHAPTER 4 

FLOW THROUGH POROUS MEDIA—A SIMULATION 

APPROACH 

Before embarking into the aspects of simulation of multi-phase fluid flow through 

porous medium, let us glance through components required to construct the geological 

reservoir model. Reservoir modeling has two major parts; static model and the 

dynamic model. The static reservoir model provides the framework of structural and 

geological features of the reservoir obtained during petroleum exploration stage. The 

geologist maps the sedimentary rock layer outcrops to locate the subsurface structural 

traps like anticlines and domes. Petroleum geologist uses geological techniques such 

as 2D, 3D seismic surveys, sparse well log data, satellite images and borehole images 

for identifying the subsurface structure. The stratigraphy of the reservoir is recognized 

through wireline well logs (gamma, resistivity, neutron logs etc.,) and seismic surveys 

to trace the relation between the rock layers such as facies changes. The rock 

deformations such as faults or folding and tilting are identified from seismic 

interpretations. The reservoir boundary, sectoring and zonation are included in the 

geological modeling. The petrophysical rock properties such as porosity and 

permeability and their distributions at unsampled locations calculated using 

geostatistical method are defined in the geological model. The reservoir model 

become dynamic when the rock-fluid properties such as relative permeabilities, fluid 

saturations, connate water saturations and aquifer properties are included in the 

reservoir to understand the fluid movement within the system. Once the reservoir is 

modeled in all such details (some of them tentative such as rock static properties) one 

proceeds to calculate the movement of the reservoir fluids (oil, gas and water) under 

available driving force. This is called flow simulation.  

Reservoir flow simulation is an essential task for petroleum engineers to carry 

out performance prediction of the reservoir under study. The reservoir simulator 

consists of set of nonlinear partial differential equations with appropriate initial and 

boundary conditions that describe the hydrodynamical fluid flow behavior within the 
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reservoir over time. In this chapter, we briefly describe the formulation used for black 

oil reservoir modeling model. The black oil flow models do not consider changes in 

the composition of hydrocarbon liquid over time because of change in reservoir 

pressure. On the other hand, compositional flow models account for such change 

because of inter-phase mass transfer between liquid oil and gas as the pressure in the 

reservoir declines with time due to production of fluids. The main difference between 

the black oil flow model and  the compositional flow model is that; in case of the 

former, the fluid properties characterized by the PVT table that comprise of formation 

volume factors and solution gas-oil ratios vary as a function of pressure. While in 

compositional flow model, the PVT table additionally includes changes in the fluid 

compositions (oil and gas mole fractions) as a function of pressure.   The formulation 

of partial differential equations for reservoir modeling presented in this chapter is 

adapted from the textbooks of (Crichlow, 1977; Ertekin, et al., 2001; Chen, et al., 

2006). 

4.1 ROCK AND FLUID PROPERTIES 

This section provides the definitions of important rock and fluid properties 

involved in petroleum reservoir context. 

Porosity (φ): Rock porosity represents the void space in the porous media, where the 

fluids get accumulated. Porosity is defined as the ratio of pore volume to the total bulk 

volume of the rock. It is expressed either in fraction or percentage and is a 

dimensionless quantity. This property of the rock can be mathematically expressed as: 

  
           

            
      (4.1) 

Porosity is dependent on the fluid pressure if the rock is compressible. There are, 

primarily, two types of porosity, total and effective porosity. The total porosity 

represents the ratio of total volume of the pore space to the bulk volume, whereas, the 

effective porosity is the ratio of interconnected pore volume to the bulk volume. 

Permeability (k): The ability of a rock to transmit fluid through interconnected pore 

space is termed as permeability.  Mathematically, it is defined by Darcy’s law which 

states 

     
      

  
       (4.2) 
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where,    is the flow rate in   direction, 
  

 
 is the pressure gradient causing the flow,   

is the flow area and   is the fluid viscosity. It is expressed in Darcy or millidarcy 

(mD), though it has the dimension of m
2
 in SI- units and is obtained from well test, 

laboratory analysis, correlations and isoperm maps. When the reservoir rock is 100% 

saturated with a single phase fluid it is termed as absolute permeability. Effective 

permeability is the ability of the rock to transmit fluid in presence of other immiscible 

fluids. Permeability is also a rock property and therefore, varies at different locations 

and even at the same location with the flow directions. It is strongly correlated to 

porosity since the interconnections and orientations of pores are vital to fluid flow. 

Usually, for a reservoir rock the permeability values ranges from 1mD to 1000 mD.  

Fluid Saturation (S): Saturation is expressed as that fraction, or percent, of the pore 

volume occupied by a particular fluid phase (oil, gas, or water) in the void space. 

Saturation is mathematically defined as:  

  
                         

           
      (4.3) 

All saturation values are based on pore volume and not on the gross reservoir volume. 

The saturation of each individual phase ranges between 0 to 100%. For a three phase 

fluid flow of oil, gas and water, the sum of the saturations is 100%, i.e. 

                (4.4) 

where, So, Sg and Sw corresponds to fractional saturation of oil, gas and water 

respectively. 

Capillary Pressure (Pc): A discontinuity in pressure exists between the two fluids 

when two immiscible fluids are in contact, which depends upon the curvature of the 

interface separating the fluids. This pressure difference is referred as the capillary 

pressure and mathematically defined as Pc  

               (4.5) 

where Pnw is the pressure in nonwetting phase and Pw is the pressure in wetting phase. 

That is, the pressure excess in the nonwetting fluid is the capillary pressure, and is a 

function of saturation. 
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Relative Permeability (kr): When two or more fluids flow at the same time, at a 

specific saturation, the ratio of the effective permeability of the corresponding phase to 

the absolute permeability is termed as relative permeability of the corresponding 

phase. The relative permeability is affected by the pore geometry, wettability, fluid 

viscosity and saturation history. Relative permeability is dimensionless and varies 

between zero and one. 

   
                      

                     
      (4.6) 

When the reservoir displacement process is dominated by gravity, the relative 

permeabilities are functions of saturations, and its only essential to know the end-point 

saturations, the irreducible water saturations and residual oil saturations. The residual 

oil saturation is an important parameter used to determine the overall oil recovery. 

Mobility (λ): The mobility of fluid phase is defined as the ratio of the effective phase 

relative permeability to the phase viscosity. The mobility is expressed as 

  
                             

               
      (4.7) 

Phase: Phase is a homogeneous region of a fluid separated from another phase by an 

interface, e.g., oil, gas or water. Two phases are said to be immiscible if both the 

phases cannot be mixed in any proportion to form a homogeneous solution. 

Component: Component refers to a single chemical entity that may be present in a 

phase, e.g. aqueous phase contains components like water (H2O), sodium chloride 

(NaCl) and dissolved oxygen (O2). 

Compressibility (Cf): The change in volume (V) or density ( ) of the fluid with 

respect to the pressure (p) is termed as the compressibility of the fluid and is expressed 

as 

    
 

 
  (

  

  
)

 

 
 

 
 (

  

  
)

 

      (4.8) 

There are three types of basic governing equations that form the mathematical model 

of the fluid flow behavior in porous media. These equations are; conservation of mass, 

rate equation and the equations of state which along with appropriate initial and 
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boundary conditions. A brief description of the three governing equations for a black 

oil model can be found in the next sections. 

4.2 FORMULATION OF FLOW EQUATIONS THROUGH POROUS 

MEDIUM 

This section contains a brief discussion on the fundamental governing 

equations that describe the flow and transport through porous medium. The 

explanation of flow equation of single phase is presented in Section 4.2.1 and for three 

phase black-oil model is depicted in Section 4.2.2.  

4.2.1 General Equation for Single Phase Flow 

The equation governing single phase flow through porous medium is obtained 

by combining fundamental equations such as, conservation of mass; rate equation and 

equation of state. The conservation of mass equation or the continuity equation is a 

generalized material balance equation, which describes a relationship between the 

amount of all fluids entering, leaving and remaining in the reservoir. The conservation 

of mass equation can be generally stated as 

                                                          (4.9) 

For a petroleum reservoir, the principle of conservation of mass state that the 

amount of fluid (oil, gas, water) accumulated (remaining) in the reservoir after 

production is equal to the amount of fluid originally present in the reservoir minus the 

amount of fluid removed (produced), plus the amount of fluid added to the reservoir. 

Mathematically; 

     

  
   

  

  
   

     

(4.10) 

where   is the porosity,   is the fluid density,   is the superficial Darcy velocity and   

denotes either external source or sink. The magnitude of   is positive for sources and 

negative for sinks. The rate equation or the Darcy’s law relates flow velocity to the 

pressure gradient and is expressed as 
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    (4.11) 

where   is the absolute permeability in the direction of flow,   is the fluid viscosity 

and         is the pressure gradient. Substituting Eq 4.11 into Eq 4.0 gives: 

   
 
  

  
  

   

  
   

  

  
   

   (4.12) 

The equation of state expresses the fluid density as a function of pressure and can be 

represented by fluid compressibility    as 
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    (4.13) 

where   is the volume occupied by the fluid at reservoir conditions and    is the 

reservoir temperature. The Eq 4.12 can be simplified as follows by expanding left-

hand side; 
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      (4.14) 

Multiplying by (-1) and dividing by   on both sides of Eq 4.14 gives;  

 

 

   

   
   

 

 

  

  

  

  
      (4.15) 

Substituting Eq 4.13 into Eq 4.15 gives  

 

 

   

   
      

  

  
       (4.16) 

Thus the equation for the single phase flow through porous media in 1D is  

   

   
  

      

 
  
  

  
       (4.17) 

The above single phase flow equation can be developed in other coordinate 

systems such as radial, cylindrical and spherical, according to the type of reservoir 

under study. The detailed descriptions of this can be found in appropriate reservoir 

simulation books (Mattax and Dalton, 1990; Ertekin, et al., 2001; Chen, et al., 2006). 

The flow equation (Eq 4.17) can be expanded for 3 dimensional single phase flow 

through porous medium as 
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       (4.18) 

4.2.2 Basic Flow Equations for a Black Oil Model 

A black oil model is used for modeling a petroleum reservoir, whose fluid 

Pressure-Volume-Temperature (PVT) properties are generated as functions of 

saturation and pressure. The model comprises of fluid components; oil, gas and water 

at standard conditions, which are distributed among three distinct fluid phases such as 

oil, gas and water respectively. In black oil model, oil and water are considered to be 

immiscible while gas may exist as solution gas or free gas. The black oil model relies 

on the assumption that the reservoir fluids are in thermodynamic equilibrium 

throughout the reservoir and maintain constant reservoir temperature (Ertekin, et al., 

2001).  

Similar to single phase fluid flow, the governing differential flow equations for 

3 phase black oil model are developed by combining conservation of mass, Darcy’s 

law and equation of state for each fluid phase. The partial differential equations for 

3D, 3-phase black oil flow model are expressed as 
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where,            represents the coordinates of 3D model;             are the cross 

sectional areas normal to           directions respectively; subscripts           

denotes oil phase, gas phase and water phase respectively;                are the 

relative permeabilities of the phases,             represent the formation volume 

factors;             are corresponding phase viscosities;              are the 

phase saturations;              are the production rates of the oil, gas and water 

respectively;   is the porosity;    is the solution gas oil ratio and    is the bulk 

volume. The fluid potentials             are expressed as 

             (4.22) 

           (4.23) 

           (4.24) 

where,             are the phase pressures;              represents the phase 

densities of oil, gas and water respectively,   is the acceleration due to gravity and   

is the hydraulic pressure head. 

The following additional constraint equations are necessary to complete the flow 

model. 

               (4.25) 

 
 

  
                 (4.26) 

The phase pressure is expressed in terms of capillary pressure as 

                     (4.27) 

and 

                     (4.28) 

Eq 4.19 through Eq 4.28 to describe the simultaneous flow of 3 phase fluids in a 3D 

porous medium using black oil model given the appropriate initial and boundary 

conditions. The above equations can be appropriately combined to give  
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    (4.29) 

where,   is the mobility of the fluid;    is the total mobility of oil, gas and water; 

    is gas/oil capillary pressure;      is oil/water capillary pressure;    are functions 

of PVT terms; and    are the production terms. 

4.2.3 Boundary Conditions 

The mathematical model described by the equations in the previous section is 

complete only if the necessary external boundary conditions and the initial state are 

specified over the reservoir model domain. Let,   denote the entire porous medium 

domain subjected to external boundary   , and let the subscript    represents the 

corresponding phase (oil, gas and water). Usually there are three kinds of boundary 

conditions boundary conditions that define the boundaries of the reservoir model and 

can be specified as: 

Dirichlet boundary condition (first kind): The pressure is defined as known 

function of position and time on   , and is expressed as 

             on          (4.30) 
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Neumann boundary condition (second kind):  When the total mass flux is known on  

 , given by 

                    on          (4.31) 

where   is the outward unit normal to    and      . For impervious boundaries 

        

Robin or Dankwerts boundary conditions (third/ mixed kind): when    is a 

semipervious boundary for the   phase, the mixed kind occurs as 

                                on          (4.32) 

where       ,      and      are given functions. The initial conditions are defined by 

the pressure over the entire porous medium domain at some initial state, generally at 

time      In black oil model the choice of primary unknowns depend on the 

reservoir states. Usually, for saturated reservoir state, the primary unknowns are 

              and for undersaturated reservoir,               are the primary 

unknowns. Hence depending on the initial states of the reservoir, initial conditions can 

be either  

                         
                 

                            (4.33) 

or 

                           
                   

                          (4.34) 

where   denotes the spatial variables (          ); and      is the bubble point 

pressure. 

4.2.4 Solution Procedure  

The governing equations that describe flow through porous medium, discussed 

in the previous text, are highly nonlinear partial differential equations (PDE) which 

relate the saturation and pressure changes in space and time throughout the medium. 

Solving these equations analytically is not practical and therefore, numerical solutions 

are sought. The numerical simulator transforms these continuous partial differential 

equations into finite difference equations; which provide the solutions at discrete 

points over space and time for the entire porous domain under consideration. The 

finite difference form of the partial differential equations is derived using the Taylor 
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Series expansion of a function at a given point in the neighbourhood and the 

derivatives are expressed in terms of finite differences given by Eq. 4.35 and Eq. 4.36.  

   and    are small in comparison to   and   in order that the linear approximation 

holds. This means that for solution purposes the entire reservoir is divided into three-

dimensional blocks which are small in comparison to the entire reservoir volume. Also 

integration on time scale is done in small time steps. 

      
  

  
  

            

  
    (4.35) 

      
  

  
  

            

  
    (4.36) 

The finite difference transforms the PDE into algebraic equations which are 

solved by matrix method. The system of equations for the simultaneous flow for all 

the fluid phases has to be solved for the unknown parameters; fluid pressure and 

saturations.  An example of the algebraic equations resulting from finite difference 

formulation for 3D model are given by Eq. 4.37. The simultaneous equations contain 

pressure term that has to be solved at different locations over time. The information 

(pressure value) at time;     is used to calculate the new pressure value at future 

time;        

                                                

                          

 

(4.37) 

There are different schemes for finite differences to form the approximation of PDE 

such as Explicit, Implicit, and Crank-Nicholsons schemes. The method of calculating 

new pressure value one at a time is the explicit scheme as shown in Figure 4.1. 

Knowing the value of   at     time step, the value at       time step, for 1D flow 

can be calculated using explicit method as 

  
      

 

  
 

    
     

      
 

   
    (4.38) 

In Eq 4.38, the time derivative is transformed using forward difference while pressure 

derivative by 2
nd

 order central differentiation to make the approximation linear.   
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Figure: 4.1 Explicit difference schemes 

On the other hand, all the new values are calculated simultaneously for a given time in 

the implicit scheme as shown in Figure 4.2. The implicit scheme involves the 

solutions of an       system of simultaneous linear equations. The value of   at 

      time step and     time step is solved simultaneously for ID fluid flow 

equation using implicit method as 

  
      

 

  
 

    
       

        
   

   
   (4.39) 

In Eq. 4.39, time derivative is transformed by backward difference and 2
nd

 order 

central difference transforms the pressure derivative for finite differentiation 

approximation of PDE. 

i-1 i i+1 i+2

t=n+1

t=n

Time Level
Implicit: 1D

 

Figure 4.2 Implicit difference schemes 

Implicit formulations are unconditionally stable but it may require large 

computational time while in case of explicit method it may be unstable and are solved 

for small time step. Some of the other solution procedures to solve the simulator 

equations of the reservoir model are fully implicit or IMPIS (implicit pressure and 

implicit saturation method); IMPES (implicit pressure and explicit saturation method) 

and AIM (adaptive implicit method).The IMPIS method calculates the phase 

saturations implicitly using capillary pressure relations. IMPIS is very stable and 

efficient method suited for complex reservoir problems allowing large timestep 
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simulation studies. IMPES method solves the pressure equations implicitly for the 

pressure distribution and saturations distributions are calculated explicitly for each 

point. The IMPES method may become quite unstable for large time step and hence 

less efficient as compared to the IMPIS procedure and is most suited for less 

complicated reservoir problems. The IMPES method is simpler and faster than the 

IMPIS method and is applied for small time step simulations. The AIM combines the 

advantages of both IMPIS and IMPES methods, to calculate saturation and pressure 

distribution. In several cases, grid cells in the difficult regions, which are limited in 

number are solved using IMPIS method, and for simpler region, IMPES method can 

be used.  The execution time required for simulation using AIM is larger than the 

IMPES and smaller than the IMPIS method, hence one can save the computational 

times from one third to one half.  

The linear equations resulting from finite difference transformation solved 

using matrix methods. The matrix has a tri-diagonal form: there are three diagonal 

elements; all other elements are zero. The set of simultaneous equations (Eq 4.37) for 

single phase can be written in triangular matrix notation as 

=
a

b

c

P d*

          

    

(4.40) 

The system of equations are solved for unknown pressure and saturations over 

time over the entire reservoir. The finite difference equations are formulated to solve 

for the dependent parameters over the gridded domain. The spatial domain (area of 

reservoir) is superimposed by some type of grid which splits the space into number of 

grids, cells or blocks. These grids are usually block centered or lattice type at which 

the dependent parameters are calculated. The spatial properties such as porosity, 

permeability need to be defined for each grid block in the domain. The dynamic 

properties; relative permeability, transmissibility, water saturations PVT properties are 

described such that equations can be solved numerically. Additionally, the fault 

locations, oil-water interface etc., need to be specified to find appropriate solutions. 
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4.3 RESERVOIR SIMULATOR DESCRIPTION  

There are many commercial numerical simulators available for modeling flow 

behavior of multiple phase fluids in porous medium. The simulation software used in 

this study is CMG
® 

(Computer Modeling Group Limited, Calgary). The reservoir 

simulation model was constructed using CMG Builder
®
 module by providing the 

available rock and fluid data.  In the present study, black-oil model is assumed to be 

applicable and therefore, CMG’s black oil simulator called IMEX
TM

 is utilized for 

simulation studies.  Adaptive Implicit Method (AIM) was used for solving the 

simultaneous flow equations, although IMEX
TM

 provide facility to execute in IMPES 

and IMPIS also. In CMG
®
 IMEX

TM
, AIM is set as the default mode. 

In this study, two distinct reservoirs were used for history matching. The first 

reservoir (Case#3) is a two phase (oil and gas), two dimensional synthetic reservoir, 

taken from 10
th

 SPE Comparative Solution Project. The second reservoir (Case#4) is a 

real 3D reservoir with all the three phases (oil, gas and water) flowing simultaneously. 

For both cases it was assumed that porosity distribution was fairly well established and 

known throughout the reservoirs. The relative permeability parameters were also taken 

to be known to keep the dimensions of the problem within manageable limits. The 

only parameter to be calculated for each grid block was the permeability which was 

focused in the least square sense by minimizing the sum of square of the error between 

field measured flow and the model calculated flow. Genetic algorithm was used for 

solving the optimization problem. 
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CHAPTER- 5 

HISTORY MATCHING USING GENETIC ALGORITHM:  

2D SYNTHETIC RESERVOIR 

5.1 INTRODUCTION 

History matching seeks to generate the geological models that are reasonably 

customized to available static (e.g., permeability; porosity etc) and dynamic (e.g., 

reservoir pressure; fluid production; injection data etc) parameters of the reservoir. 

Estimating the reservoir rock properties that provide a realistic history matched model 

is really an exhaustive work for reservoir engineers. The non-linear nature of the 

parameters and high dimensionality of the reservoir model makes this task complex. 

Generally, reservoir history matching is considered to be an inverse problem, where 

one seeks to back calculate system parameters from given system output. In the 

normal modeling exercise, the system parameters are known and our aim is to develop 

appropriate relationships so as to be able to predict system performance. In history 

matching, the reservoir production data are available but the reservoir static 

parameters (permeabilities and porosities) are unknown which need to be estimated. 

The spatial variation of these properties due to rock heterogeneity makes it an ill-

posed problem since a very large number of permeability maps may lead to the same 

output, where most of these may be unrealistic. There are many stochastic soft 

computing techniques available to solve this inverse problem. In this thesis, an 

evolutionary optimization technique, called the genetic algorithm (GA) has been 

employed to solve the history matching problem. This optimization technique usually 

involves minimizing the objective function that describes the mismatch between the 

available field historical data and reservoir simulator response. The simulator used 

was the CMG
®

- IMEX
TM

 algorithm from Computer Modeling Group LTD (Calgary, 

Canada) in the present work. Black-oil model was used which assumes the oil 

composition to remain constant with time. A simple GA (SGA) and an adaptive 

genetic algorithm (AGA) have been employed in this work under Case#3.a and 
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Case#3.b. The methodology was tested and validated by solving the history matching 

problem of a synthetic 2D reservoir (Chitralekha, et al., 2010). This algorithm was 

applied to a small real 3D, reservoir. The history matched model was, then, used for 

reservoir production forecasting. A comparison between the results from simple 

genetic algorithm (SGA) and adaptive genetic algorithm (AGA) in terms of their 

computational efficiency has been illustrated in this chapter.   

5.2 GENETIC ALGORITHM 

Genetic algorithm is one of the most popular and robust, stochastic search 

technique available for solving optimization problems. The technique resides on the 

Darwin’s principles of evolution theory. The following sections in the text describe the 

theoretical aspects of a simple genetic algorithm and an adaptive genetic algorithm 

used for reservoir history matching problem solution. 

5.2.1 Theoretical Aspects of GA/ SGA 

The GA or simple genetic algorithm (SGA) utilizes the computer logic to 

mimic the mechanism of natural selection and natural genetics. The concept of GA 

was envisaged by Professor John Holland of University of Michigan in 1975 (Holland, 

(1975). The procedure starts with a set of several initial solutions called the initial 

population within the problem constraints. Each solution of the population is called 

chromosome. These chromosomes evolve through consecutive iterations called 

generations based on the principles of natural selection, inheritance, crossover and 

mutation operations to generate new chromosomes, which have better fitness values as 

compared to the previous population. During each iteration, the chromosomes are 

evaluated based on their fitness to survive to next generation. The fitness of the 

chromosomes are analyzed through an objective function called the fitness function 

that characterizes the performance of individual chromosomes in the search space. The 

superior the fitness value of a chromosome, greater the chances of it being selected to 

the next generation. Some parents and the offspring chromosomes may get rejected to 

maintain a fixed population size during generations.  The algorithm converges to the 

best set of chromosomes after numerous iterations, which is considered as the 

potential set of solutions to the problem. 
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As mentioned earlier, the SGA method utilizes mainly three operators; 

selection, crossover (recombination) and mutation. The chromosomes which are 

selected from the population according to their fitness value, given by the objective 

function, are recombined through crossover and mutation operators to produce the 

next generation chromosomes. The performance of genetic algorithm is mainly 

powered by crossover and mutation operators. The crossover operator induces a 

randomized exchange of genetic material between a pair of chromosomes with an 

assumption that the good chromosomes produce better ones that are fitter closer to 

optimal solution. It is not essential that all the chromosomes in the population undergo 

crossover, few of them remain unchanged. The crossover operation is carried out with 

a probability, called crossover probability or crossover rate (Pc) on the chromosomes 

selected for recombination. The optimal values for Pc reported in literature ranges 

between 0.5 ~ 1.00 for SGA, which is usually predefined by the user. Some of the 

established crossover operators are; single point, two point, k-point crossover, uniform 

crossover operation etc. Further, the chromosomes are subjected to mutation operation 

with a probability, called the mutation probability or mutation rate (Pm). Usually, the 

Pm ranges between 0.001 ~ 0.05 for SGA. During mutation, the genetic material of 

chromosomes get modified to maintain genetic diversity. The mutation operation helps 

to recall the lost or uncharted genetic materials into the population, in order to avoid 

early convergence to local optimum solutions. Swap mutation, arithmetic mutation, 

jump mutation, uniform mutation and creep mutation are some of the well-known 

mutation operators. There are several publications available in the literature that 

describe various recombination operators used for GA process (Goldberg, 1989, Eiben 

and Smith, 2003; Schmitt, 2004; Sivanandam and Deepa, 2007; Picek, et al., 2012). 

This process of GA continues with the newly generated offsprings until a termination 

criterion is satisfied. More detailed description and mathematics of genetic algorithm 

can be found in the books of Goldberg, (1989); Deb, (1998) and from other GA 

literatures. The pseudo- code representation of simple genetic algorithm is presented 

in Figure 5.1. 
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Start

{

Initialize the population that has randomized solutions represented by chromosomes;

Evaluate population for its fitness;

While conditions not satisfied Do

{

Select chromosomes from population;

Execute crossover and mutation operation;

Evaluate population;

Select chromosomes for next population;

}

}

Figure 5.1 Pseudo-code for simple genetic algorithm  

The foremost parameters that control the performance and progress of SGA are 

Pc and Pm.. Determining the values of Pc and Pm is a crucial step, and there are no 

definite rules for choosing suitable values. In fact, the choice of optimal values for Pc 

and Pm depend on the problem under consideration (Srinivas and Patnaik, 1994). 

Various studies detailing the effect of Pc and Pm on the performance of GA have been 

attempted ( De Jong, 1988; Grefenstette, 1986; Schaffer and Morishma, 1987; 

Goldberg, 1989; Eiben, et al., 1999); Herrera and Lozano, (2003); Fernandez-Prieto, et 

al., 2010), and can serve as guide for choosing optimal values for Pc and Pm..   

The choice of inappropriate values for Pc and Pm   provoke imbalance in GA’s 

exploration and exploitation process.  This discrepancy may lead to premature 

convergence that has major effect on GA performance. Since there exists a complex 

relationship between the GA performance and the control parameters, selecting robust 

control parameter values is a nontrivial task (Herrera and Lozano, 2003). For instance, 

a higher value of Pc rapidly introduces new solutions into population, which may 

disrupt the optimal solutions. Increased value of Pm completely transforms GA into 

purely randomized search algorithm. At the same time, a small mutation is necessary 

to prevent premature convergence of GA.  Moreover, different sets of control 

parameters are required during evolutionary process of GA to maintain balanced 
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exploration and exploitation process, as different control parameters sets might be 

optimal at different phases of the GA process (Fernandez-Prieto, et al., 2010).  

The simple genetic algorithm employed in this work utilizes tournament 

selection operator for selecting the fittest solutions from the population to the mating 

pool. The uniform crossover operation and uniform mutation operations were utilized 

for the present study. Two chromosomes are combined to form two new chromosomes 

during recombination. 

In order to improve the performance of simple genetic algorithm and to lessen 

the burden of specifying the parameters values, adaptive operators were introduced. 

The adaptation of the values of genetic operators during the course of optimization has 

been investigated by Schaffer and Morishma, (1987); Whitley and Starkweather, 

(1990); Srinivas and Patnaik, (1994), and named as adaptive genetic algorithm (AGA). 

AGA has the ability to adjust the selected control parameters or the genetic operators 

dynamically during the evolution process so as to reach the optimal solutions in fewer 

iterations. 

5.2.2 Adaptive Genetic Algorithm (AGA) 

The adaptive genetic algorithm is an improved form of simple genetic 

algorithm in the sense that for AGA, the crossover and mutation probabilities are 

adjusted by the algorithm at each generation. The main difference between SGA and 

AGA is that, while the values of control parameters; Pc and Pm are predefined and 

remain constant for entire generations for SGA, in case of AGA, the initially assigned 

values of Pc and Pm are allowed to change adaptively according to the fitness function 

response of the solution generated in the subsequent generations.  The design of AGA 

proposed by Srinivas and Patnaik, (1994), adaptively tune the crossover and mutation 

probabilities between the maximum fitness and the average fitness value of the 

population to the fitness of the individual solution. In their design, the individual 

solutions with sub-average fitness are completely removed while retaining the high 

fitness solutions. This leads the algorithm to get stuck at local optimum solutions. 

Moreover, tuning Pc and Pm based on individual fitness solutions require large 

computation time (Wang and Shen, 2001). Several researchers Wang and Shen, 

(2001); Fernandez-Prieto, et al., (2010); Wang and Tang, (2011); Tang, (2012) have 
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subsequently improvised the adaptation mechanism leading in more efficient AGA 

algorithms.  

In the present work, an adaptive genetic algorithm was employed for history matching 

of petroleum reservoir by tuning the Pc and Pm according to the fitness of whole 

population during evolution rather than of individual solution fitness (Wang and Tang, 

2011). The following section describes the AGA methodology employed in this work. 

5.2.3 Details of Adaptive Genetic Algorithm  

This section describes the structure and design of a real coded GA algorithm 

that incorporates adaptivity in the genetic operators. The objective function, selection 

mechanism, formulation of adaptive operators used in the study are detailed here. 

5.2.3.1 Objective Function: The objective of history matching is to find those static 

parameters of the reservoir which minimizes the error between field observations and 

simulator predictions. In reservoir history matching, the objective function ( ) 

represents the minimization problem that minimizes the square of difference between 

the field historic production data with simulator response. As history matching is a 

minimization problem, the most fit model has the lowest numerical value associated 

with the objective function.  Since the GA code is written for minimization as fitness 

function, in the present case, objective function is same as fitness function. In general, 

the formulation of objective function used to find the optimal history matched models 

expressed as 

   ∑∑∑(
    

      
 

    
  )

   

 

  

 

  

 

      (5.1) 

where,   denotes the objective function,    is the observed data such as fluid 

production and injection rates; bottom hole flowing pressure etc;    is the 

corresponding simulator (CMG
®
)- IMEX

TM
 reservoir simulator) output. The 

summation indices           run over the production data types, number of wells and 

reported time steps with        and    being the corresponding number of samples. 

The optimization is carried over the static parameters (permeability and porosity) of 

the reservoir.  
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The objective function has been formulated based on the objectives of the case studies. 

For the 2D synthetic reservoir history matching problem (see section 5.4 for details), 

the objective function includes the quarterly oil and gas production data from one 

producing well. Hence,     ;     ; and       quarters over which data are 

available.  

5.2.3.2 Selection Mechanism: Selection or the reproduction operator selects the 

solutions from the population based on their fitness. A popular selection operator 

called the tournament selection has been applied in this work. The fitness of the 

solution represented by the objective function is calculated using Eq. 5.1.  The string 

with a lower fitness value has greater chance of being copied in the mating pool 

compared to the string with a higher fitness value. Strings with low fitness values may 

be copied more than once, whereas strings with high values may be left out thus 

leading to a pool of strings (chromosomes) with improved overall fitness but of the 

same size of population. 

5.2.3.3 Adaptive Crossover Operator (Pc): Crossover operation facilitates the 

transferring of genetic material between the individuals in the population. In this work, 

adaptive crossover operation has been designed to deal with the initial realizations of 

the reservoir. The breeding of two chromosomes from the population based on the 

crossover rate and chromosome length have been utilized to generate new 

chromosomes. The newly generated population inherits the properties of their parent 

population.  

The rate at which the solutions are subjected to crossover operations is controlled by 

crossover probability   . The formulation of    is mathematically expressed as 

     
 [       

(    )
 

             (    )
    ]      (5.2) 

where,   and   are the coefficient factors;   
  and    are the initial crossover 

probability and adaptive crossover probability.       ;     ; and      denote the 

average fitness, minimum fitness, and maximum fitness of the population in each 

generation respectively. The adaptive crossover operation implemented in this work is 

described in the following text. 
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 Let,   be a randomly generated positive number (0 ~ 1),     be the length of the 

chromosome, and    be the crossover probability for     generation,     is the number 

of locations in the chromosome that undergoes crossover.    is computed by 

multiplying length of the chromosome;   , by the crossover probability;    for the 

corresponding     generation. This is mathematically represented as 

                (5.3) 

Another random number between (      ) is generated    times to find cross-site 

randomly. Crossover is performed at any      location, if      and     , where    

and     are two more random numbers (      corresponding to the     location. For 

example, if                    then the corresponding number of crossover 

locations;       .  Figure. 5.2 illustrates an example of crossover operation 

implemented in this study. Let   be 0.4 and    and    as given in the figure 

corresponding to the locations of crossover for the two strings    and    participating 

in this operations. Figure 5.2 shows gene values of only crossover sites. Now check 

each of these locations, one at a time and affect a crossover of gene values if both    

and    are greater than   (=0.4). The first crossover site (from the right) has    

     and          Since both are greater than 0.4, the crossover takes place and 72 

and 8 from    and    are crossed in the new strings    and   . This process is 

continued for the remaining 49 locations to complete the operation between    and   . 

For the adaptive crossover operation presented here, the number of locations for 

crossover is controlled by the adaptive crossover probability (  ) generated at each 

generation. As the value of     increases the number of locations (  ) for crossover 

also increases.  

0.21 0.56 0.35 0.48 0.42 0.25 0.18 0.78R1

45 12 26 81 65 0.2 69 72C1

0.03 0.74 0.7 0.61 0.44 0.81 0.35 0.41R2

16 5.8 79 21 6.2 22 26 8
C2

45 5.8 26 21 6.2 0.2 69 8N1

16 12 79 81 65 22 26 72N2

Figure 5.2 Example of adaptive crossover operation 

Generation of new chromosomes because of the crossover operation increases the pool 

size and hence the population is doubled. One simple way to keep the population fixed 

is to discard all the parents and use only children in the new pool. However, a 
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preferred way is what is known as “elitism” in which the chromosome with lower 

fitness values are retained, be they from parents or from children and the rest are 

discarded keeping the population size constant. 

5.2.3.4 Adaptive Mutation Operator (Pm): The function of mutation operator is to 

maintain genetic diversity by introducing new genes randomly in the chromosomes. 

The rate at which the chromosomes are subjected to the mutation operation is 

controlled by the mutation probability (  ). Mathematically, the calculation of     at 

each iteration, is done according to, 

     
 [       

             (    )
 

               (    )
    ]      (5.4) 

where 

  (
         

    
)

 

      (5.5) 

where,   and   are the coefficient factors,    and   
  represent the adaptive mutation 

probability and initial mutation probability respectively,     ;     ; and      denote 

the average, minimum and maximum fitness of the population in each generation. 

If    is the length of the chromosome,    is the mutation probability at the i
th

 

generation and    is the number of locations in the chromosome that undergo 

mutation, then    is calculated as, 

               (5.6) 

A random number          is generated    times to locate the mutation sites. 

Then the mutation operator adds a randomly generated number (     to gene value at 

the mutation site of the chromosome. The number of location in the chromosome for 

mutation increases with the increase in adaptive mutation probability. 

The genetic algorithm is terminated at a specified number of generations. Then the 

quality of population is checked against the problem definition else the process 

continues until achieving a satisfactory solution. 
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5.3 WORKFLOW OF GENETIC ALGORITHM 

Figure 5.3 shows the workflow of the methodology adopted for history 

matching. SGA and AGA codes were developed in MATLAB
®
 environment for 

minimization. The code is available in Appendix-B. The GA code was interfaced with 

the CMG
®
- IMEX

TM
 reservoir simulator for forward simulations. The program 

initializes with a set of initial realizations of reservoir generated from geostatistical 

software (see next section for details). The fitness values of the initial chromosomes 

(set of initial solutions) are calculated using the CMG
®
 simulator along with Eq. 5.1. 

The initial population passes through the GA operators (selection, crossover and 

mutation). The selection operator selects the chromosomes to mating pool based on 

their fitness. The fitness of the realization is represented by objective function and is 

calculated by Eq.5.1. In fact, the objective function provides how good each 

realization is and honors the field historical data. The calculation of objective function 

of a realization comprises of one forward simulation by reservoir simulator. Hence, 

the number of forward simulations increase with number of realizations and the 

iterations. The selected realizations undergo crossover operations based on crossover 

probability given by Eq. 5.2 and followed by mutation operations based on mutation 

probability given by Eq. 5.4 and 5.5, to generate new reservoir realizations.  

While carrying out GA operations, it is necessary to recognize that the static 

parameters at well locations are observed values and hence cannot be allowed to 

change. This means that the permeabilities and porosities of the grid blocks which 

coincide with well locations should not take part in crossover and mutation operations. 

The value of chromosomes at well locations remain constant throughout the 

procedure. This completes one generation by the algorithm, and the process continues 

until satisfactory realizations are generated that represents the good history matched 

models. 
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Figure 5.3 Workflow of genetic algorithm 

5.3.1 Initial Population Generation 

An approximate set of solutions, called the initial population are utilized to 

initialize the genetic algorithm. In history matching context, the populations represent 

the reservoir realizations or the ensembles, which contains the reservoir rock 

properties such as permeability and porosity etc. In order to generate initial population 

or the initial ensembles, geostatistical methods (Deutsch and Journel, 1998; Deutsch, 

2002) are used. Several authors have reported the use of geostatistical methods in 

generating the initial ensembles that represent the prior knowledge of the distribution 

of static variables (permeability and porosity). These realizations are conditioned to 

honor the spatial correlation and variogram of the reservoir properties. A geostatistical 

method called, stochastic conditional simulation is used to generate the multiple 

equiprobable descriptions of reservoir parameters. The method is stochastic and 

conditional as the reservoir properties are generated by hybrid method which is 
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partially deterministic and partially random. The generated reservoir realizations 

honor the observations at the well locations (Romero and Carter, 2001).   

The initial realizations that are conditioned to available measurements from the 

well locations are generated by employing the algorithms presented in the 

geostatistical toolbox of MATLAB
®
, ‘mGstat’. In the present case study the initial 

realizations were generated using GSLIB’s VSIM and SGeMS geostatistical software 

packages using the ‘mGstat’ interface of MATLAB
®
.  

5.3.2 Inputs to the CMG
®
 Simulator 

Reservoir simulation model is build by integrating; geological model which 

describes the structure of the reservoir, area, shaliness, gross- thickness, reservoir rock 

properties (geostatistical properties) such as porosity and permeability distribution 

maps etc., description of simulation grid, fluid model (PVT properties),  rock fluid 

model (relative permeability, saturation), fluid contact, faulting, aquifer modeling, 

production and completion history.  

5.3.2.1. Geological Model: A proper geological framework should be planned before 

building a reservoir simulation model.  The framework consists of sandstone gross-

thickness map which establishes the reservoir bulk volume, structure maps that 

provides the orientation and extension of sedimentary bodies, net-pay thicknesses 

depth of fluid contacts, values of porosity and permeability obtained from core 

analysis, pressure-transient testing etc. The distributions of porosity and permeability 

map prepared by geostatistical software package that incorporates core log and 3D 

seismic data in a consistent and realistic manner. 

5.3.2.2 Grid Selection: The reservoir under investigation is divided into grid blocks 

for ease of computations using numerical integration of flow equations embedded in 

the CMG
®
 software. These grid blocks can be two or three-dimensional and grid type 

can be variable depth and thickness Cartesian, radial or cylindrical, orthogonal corner 

point, and non-orthogonal corner point grids depending on the reservoir. The size of 

each grid block depends on the size of the reservoir.  A larger number of grid blocks 

(or smaller size of each grid block) makes the algorithm slower by increasing 

computational load. On the other hand, if the physical size of each grid block is too 
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large, then the results become less accurate since it is assumed that throughout a single 

grid block, permeability and porosity (static parameters) are uniform. Grid selection is, 

therefore, problem dependent, and will, therefore, be discussed separately for the case 

studies investigated. 

5.3.2.3 Faulting: An important factor influencing the reservoir behavior is the 

distribution of faults within the reservoir. The fault affects the petrophysical properties 

of the fault rock and modify the connectivity in sedimentological flow units. The 

location of the fault in the reservoir is obtained from geological analysis. The effect of 

fault transmissibility such as sealing or non-sealing fault, must be inferred from 

special pressure testing (pulse and interference testing), analysis of production data, 

field pressure survey. 

5.4 HISTORY MATCHING OF A 2D SYNTHETIC RESERVOIR (CASE#3) 

Before embarking on a meaningful real field problem, it is important to 

validate the GA code, the problem formulation for history matching and the proposed 

scheme and, methodology of history matching. For this purpose, a 2D synthetic 

reservoir problem was chosen (Chitralekha, et al., 2010). The authors used Ensemble 

Kalman Filter for 2D synthetic history matching problem. Since the synthetic reservoir 

construction started with known permeability distribution, the problem suited our 

purpose well. The true permeability map is shown in Figure 5.4.  

5.4.1 The 2D Synthetic Reservoir under Study 

The synthetic reservoir presented here was taken from Chitralekha, et al., 

2010), which is a modified model of 10th SPE Comparative Solution project (Christie 

and Blunt, 2001).   The synthetic black oil reservoir is a simple 2-phase, 2D model 

consisting of 20 layers discretized in a Cartesian coordinate system. The reservoir 

model is discretized into 100 x 1 x 20 grid blocks, in which each grid block measures 

25ft x 25ft. The phases present in the reservoir are oil and gas. The reservoir model is 

considered to be fully saturated by oil initially (no connate water). There is no fault 

presence in the reservoir. There are 2 producers (Well-1 and Well-2) that are placed 

symmetrically on either side of 1 injector (I-1), which is located at the center of the 

reservoir (grid block, (50,1,1)). Wells, Well-1; Well-2 and I-1 are perforated through 
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all the 20 layers of the model reservoir. Figure 5.4, shows the aerial view of the 2D, 2-

phase, heterogeneous black oil reservoir model. The reservoir has a constant porosity 

of 0.2 throughout all the layers with varying permeabilities in   direction (see Figure 

5.5). The permeabilities in   and   directions are set equal to permeability values in   

direction. In addition, two core holes are considered to be drilled vertically through all 

layers and are located at grid block locations (25, 1) and (75, 1). The permeability 

values at the wells and core hole locations are assumed to be known. The problem is to 

find the permeability in reminder of the 2000 grid blocks so as to match the known 

fluid production history. 

 
Figure 5.4. 2D heterogeneous black oil reservoir model with 2 producing wells and 1 

injector well 

5.4.2 Selection of GA Parameters 

A 2D synthetic black-oil reservoir model history matching problem has been 

used for initial testing of the simple genetic algorithm (SGA) and adaptive genetic 

algorithm (AGA). The standard genetic operators such as reproduction, recombination 

and mutation operators were employed in this study.  

The genetic operators for SGA are; the tournament selection as the selection or 

reproduction operator for selecting the fittest member from the population to the 

mating pool. The crossover operation in the chromosomes are carried out by uniform 

k-point crossover. The mutation process in the chromosomes are induced by uniform 
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mutation operator to generate new population. The probabilities of control parameters 

for testing the SGA algorithm was assigned with crossover probability;        and 

mutation probability;   = 0.001 and 0.005, to produce optimal solutions for 2D 

synthetic history matching problem.  

The AGA methodology used the same three operators as used with SGA. 

However, the crossover and mutation probabilities were updated in every generation. 

The AGA for synthetic case study was assigned with initial crossover probability 

  
      and initial mutation probability   

        and       after several 

investigations. For calculating the adaptive crossover (  ) and adaptive mutation 

probability (  ) according to Eq. 5.2 and 5.4, and 5.5, the coefficient factors were 

preferred as;   = 0.02,   = 0.02 and   = 0.05. 

5.4.3 Input to CMG
®
 Simulator for Case#3 

Reservoir model properties 

Initial reservoir Pressure 100 psia 

Datum Depth 0.0 ft 

Porosity 
 

0.2 

PVT properties 

The pressure-volume-temperature data for the synthetic reservoir are given below. The 

fluids are assumed to be incompressible and immiscible. 

Initial Reservoir Pressure 100 psia 

Oil density 43.68 lb/ft
3
 

Gas density 0.0624 lb/ft
3
 

Oil Viscosity 1 cp 

Gas Viscosity 0.01 cp 

5.4.4 Grid Selection for 2D Reservoir 

A two dimensional grid, 100 x 20 was imposed on the reservoir which divided 

it in 2000 grid blocks measure of 25ft x 25ft. The porosity was constant throughout the 

reservoir. This meant that history matching exercise required to estimate only 



116 
 

permeability for each of the grid blocks given oil and gas production history.  Clearly, 

GA formulation will lead to chromosomes of string length 2000, each element 

representing unknown permeability of each grid block with the exception that at the 

well location, the permeability is known and must not be allowed to change during GA 

operations. A population size of 40 was chosen and hence 40 initial realizations were 

generated using conditional direct simulation in VISIM geostatistical software. Figure 

5.6 shows the initial realization generated using VISIM.  

5.4.5 Generation of Initial Population 

Conditional direct sequential simulation of VISIM geostatistical software was 

utilized to generate a population size of 40 initial realizations for 2D synthetic 

reservoir. The simulation of these realizations are conditioned to the well location and 

core hole data. The plausible variogram for generating realization is anisotropic 

variogram with a maximum correlation range of 75 grid blocks in   direction. The grid 

blocks of the reservoir were populated using known permeability values, which are 

assumed to be the true. The production data obtained from simulating the true 

reservoir is considered as the field historic data for history matching. The grid blocks 

permeability distribution of 2D heterogeneous reservoir in   direction, which is 

assumed to be true is shown in Figure 5.5. Figure 5.6 shows the initial realizations of 

permeability for 2D reservoir generated using VSIM. 

 

Figure 5.5 True grid block permeability distribution of 2D heterogeneous reservoir 
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The objective of this case study is to estimate the permeability values at each of the 

2000 grid blocks of the reservoir that honours the geological description and 

production history of the field. 

 

Figure 5.6 Initial permeability realizations (40 Nos.) of the model reservoir 

5.4.6 Objective Function 

The objective of the study is to produce valid history matched permeability map that is 

conditioned to the field observations and to prove the efficiency and robustness of the 

method towards history matching of petroleum reservoir. The results presented show a 

comparison between adaptive genetic algorithm (AGA) with the SGA for history 

matching of the 2D synthetic heterogeneous reservoir.  

The formulation of objective function for history matching of synthetic reservoir aims 

to minimize the mismatch between the quarterly oil production (bbl/day) and gas 

production (ft
3
/day) from Well-1and the simulator output. The objective function for 

the case study of 2D synthetic reservoir becomes; 
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where, the       
            

  are the quarterly observed oil and gas production data; 

       
   and       

  denote the corresponding simulator predictions and   is the time 

period, that represents 8 years (or 32 quarters) production history. The best matched 

reservoir model is validated by checking the mismatch between the model predicted 

quarterly oil and gas production and the corresponding field data.  

5.5 RESULTS AND DISCUSSION 

Table 5.1 shows the objective function values of the initial realizations of the reservoir 

calculated using Eq. 5.7.   The quarterly oil and gas productions from Well-1 from 40 

initial realizations of the reservoir (before history matching) are shown in Figure 5.7.  

Table 5.1 The value of objective function ( ) for the initial realizations of the 

reservoir  

No: of 

Initial 

Realizations 

Objective 

function 

No: of 

Initial 

Realizations 

Objective 

function 

1 1.769 21 7.274 

2 1.801 22 8.188 

3 1.830 23 8.313 

4 1.903 24 8.537 

5 2.322 25 8.600 

6 2.510 26 8.637 

7 2.879 27 9.130 

8 2.985 28 9.221 

9 3.546 29 9.358 

10 4.039 30 9.541 

11 4.260 31 10.127 

12 4.627 32 11.869 

13 4.899 33 14.679 

14 5.164 34 14.312 

15 5.419 35 18.610 

16 5.640 36 20.420 

17 6.250 37 30.870 

18 6.278 38 56.246 

19 6.380 39 65.237 

20 6.423 40 68.127 
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Figure 5.7 Quarterly production data from Well-1 for 40 initial realizations (a) oil 

production data (b) gas production data 

5.5.1 Results from SGA for 2D synthetic reservoir (Case#3.a) 

The algorithm has been tested for history matching using crossover probability of 0.5 

and mutation probability of  0.001 and 0.005. Tables 5.2 and 5.3 show the results 

obtained from SGA for the two cases. From the tables, it is clear that the initial 

permeability realizations of the reservoir are moving towards the real map as number 

of iterations increases. The better history matched models have lower objective 

function values. It is assumed that all the realizations will converge to optimal 

solutions eventually with larger number of iterations. Figure 5.8 shows how average 

fitness of the population decreased with increasing number of iterations. Since the aim 

of the method is to acquire better history matched models, the best 10 realizations at 

400
th

 iteration are plotted in Figure 5.9. The best history matched model from SGA is 

compared with the measured values of oil and gas production in Figure 5.10. 
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Table 5.2 The objective function (   evaluation of 40 reservoir realizations resulting 

from SGA with         and          after every 50
 
iterations 

No: 

 of 

Realizations 

Iterations 

                                       

1 1.723 1.638 1.636 1.477 1.347 1.126 0.877 0.832 

2 2.138 2.015 2.001 1.928 1.576 1.738 1.306 1.127 

3 2.357 2.312 2.385 2.220 1.905 1.890 1.883 1.145 

4 2.510 2.793 2.638 2.511 2.510 2.985 2.510 2.430 

5 2.977 2.985 3.520 2.985 2.985 3.203 2.746 2.821 

6 2.985 3.112 4.174 3.314 3.788 4.031 2.985 2.960 

7 3.081 3.924 4.224 3.440 4.123 4.053 4.244 2.985 

8 3.949 4.056 4.341 3.508 4.467 4.265 4.378 3.541 

9 4.024 4.208 4.627 3.652 4.499 4.627 4.412 3.875 

10 4.468 4.212 4.783 4.260 4.627 4.742 4.627 3.904 

11 4.627 4.627 5.024 4.627 4.672 5.365 5.061 4.236 

12 5.069 4.833 5.043 4.845 4.971 5.599 5.239 4.627 

13 5.126 4.886 5.365 5.049 5.193 5.640 5.365 4.734 

14 5.365 5.365 5.599 5.163 5.269 5.641 5.599 4.993 

15 5.469 5.405 5.640 5.365 5.365 5.859 5.618 5.204 

16 5.599 5.599 5.647 5.599 5.493 6.134 5.640 5.365 

17 5.614 5.640 6.134 5.640 5.599 6.460 5.903 5.599 

18 5.640 6.134 6.478 6.066 5.640 6.478 6.134 5.640 

19 6.134 6.314 6.488 6.134 6.134 6.842 6.478 5.648 

20 6.459 6.478 6.842 6.149 6.478 7.039 6.842 6.083 

21 6.478 6.724 8.091 6.478 6.842 7.050 6.860 6.134 

22 7.644 6.842 8.327 6.609 7.526 7.319 6.928 6.478 

23 7.842 7.300 8.475 6.842 8.537 7.971 7.771 6.842 

24 8.321 8.088 8.537 6.842 8.874 8.436 8.010 7.403 

25 8.535 8.537 8.719 8.537 8.958 8.537 8.122 7.645 

26 8.537 8.958 8.958 8.646 8.965 8.697 8.238 7.856 

27 9.730 9.221 9.221 8.958 9.066 8.958 8.537 8.537 

28 9.958 10.068 9.435 9.221 9.221 9.221 8.734 8.958 

29 10.127 10.127 9.832 10.127 10.127 10.127 8.958 9.221 

30 10.869 10.869 10.127 10.869 10.869 10.869 9.221 9.336 

31 10.954 11.468 10.852 10.870 12.206 11.596 10.127 9.675 

32 11.366 12.225 10.869 11.717 12.225 12.225 10.827 10.127 

33 13.225 12.789 11.884 12.225 12.789 12.776 10.869 10.869 

34 14.752 12.976 12.225 12.789 12.976 12.789 11.015 12.225 

35 14.789 13.246 12.789 12.976 13.246 12.976 12.225 12.789 

36 18.976 13.959 12.976 13.246 13.959 13.179 12.323 12.976 

37 23.246 15.703 13.246 13.959 14.089 13.246 12.789 13.246 

38 30.959 17.773 13.959 15.160 14.464 13.959 12.976 13.959 

39 62.156 64.124 50.655 15.616 15.867 19.818 13.246 19.818 

40 68.013 66.148 60.517 56.166 46.680 23.355 23.355 23.355 
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Table 5.3 The objective function (   evaluation of 40 reservoir realizations resulting 

from SGA with         and          after every 50 iterations 

No: of 

Realizations 

Iterations 

                                       

1 1.501 1.501 1.501 1.244 1.233 1.209 0.856 0.691 

2 1.830 1.597 1.696 1.268 1.501 1.501 0.865 0.756 

3 2.087 1.623 1.830 1.501 1.830 1.789 1.501 0.876 

4 2.388 1.830 1.967 1.905 1.975 1.830 1.830 1.481 

5 2.510 2.510 2.510 1.830 2.510 2.378 2.056 2.055 

6 2.544 2.879 2.803 2.714 2.106 2.435 2.510 2.127 

7 2.804 2.985 2.879 2.879 2.510 2.510 2.659 2.751 

8 2.879 3.195 2.985 2.985 2.723 2.839 2.879 2.886 

9 2.985 4.227 3.290 3.536 2.879 2.879 2.969 2.985 

10 3.393 4.408 3.321 3.872 2.985 2.985 2.982 3.268 

11 3.782 4.627 4.426 4.026 3.015 3.050 2.985 3.510 

12 4.192 5.340 4.627 4.627 3.374 4.027 3.032 3.567 

13 4.261 5.640 4.654 5.486 3.578 4.627 3.896 3.571 

14 4.428 5.843 5.199 5.640 4.126 4.727 4.253 4.203 

15 4.627 5.962 5.640 5.679 4.513 4.814 4.267 4.227 

16 4.986 5.978 6.115 5.733 4.627 4.996 4.269 4.247 

17 5.306 6.382 6.423 6.423 4.741 5.111 4.627 4.515 

18 5.322 6.423 6.478 6.478 5.462 5.538 5.054 4.627 

19 5.640 6.478 6.842 6.524 5.474 5.583 5.451 5.184 

20 5.652 6.763 7.036 6.842 5.640 5.640 5.498 5.640 

21 6.423 6.842 7.194 7.091 6.079 5.731 5.640 5.898 

22 6.478 7.028 7.307 7.399 6.423 5.656 5.979 6.423 

23 6.842 7.077 7.456 7.715 6.478 6.445 6.423 6.478 

24 7.212 8.034 8.160 7.789 6.842 6.478 6.478 6.669 

25 8.188 8.159 8.188 8.188 7.624 6.692 6.842 6.804 

26 8.537 8.176 8.537 8.537 7.548 6.842 7.346 6.842 

27 8.566 8.188 8.563 8.637 7.665 7.647 8.188 6.909 

28 8.637 8.403 8.637 8.887 8.306 7.165 8.418 7.411 

29 8.641 8.537 9.032 9.032 8.325 8.637 8.434 8.139 

30 8.992 8.637 9.221 9.074 8.537 8.856 8.537 8.188 

31 9.032 9.032 9.349 9.221 8.637 8.917 8.637 8.537 

32 9.221 9.115 9.732 9.241 9.032 8.930 9.032 8.637 

33 10.127 9.221 10.127 9.523 9.221 9.032 9.221 9.032 

34 10.610 9.525 10.869 9.732 9.732 9.221 9.937 9.221 

35 10.869 10.127 10.918 10.127 9.466 9.466 10.127 10.127 

36 11.775 10.869 11.225 10.200 10.869 10.149 10.869 10.869 

37 13.469 11.225 12.442 10.869 10.826 11.155 11.565 11.430 

38 18.984 18.440 14.685 12.443 11.585 11.912 11.885 11.714 

39 21.420 19.420 17.420 16.167 15.929 15.279 15.279 15.056 

40 32.786 23.309 18.432 18.432 17.420 17.420 17.420 17.420 
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The objective function value of initial realizations reported in Table 5.1 are      

    ,            and           . The SGA with crossover probability; 

       and mutation probability           produced the objective function 

values;          ,             and           at 400
th

 iteration. The SGA 

with                      , resulted            ,             and      

     after 400 iterations. 

The average objective function values after every 50 iteration for SGA with       

                 and                        are presented in Figure 5.8 (a) 

and (b). The average objective function value for initial realization            have 

converged to           for SGA with                       at 400 iterations 

and           for SGA with                       at 400 iterations 
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Figure 5.8 Average objective function value versus iteration number (every 50 

iterations) (a)                       (b)                       
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Figure 5.9. History match for 10 best realizations resulting from SGA with    

                 (a) quarterly oil production rate (bbl/day) (b) quarterly gas 

production rate (ft
3
/day). 

As seen in Figure 5.9 the oil production history matches quite well with the actual 

(true) values. The match in gas production is also reasonable. 
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Figure 5.10. History match for the best realization resulting from SGA. (a) quarterly 

oil production (bbl/day), (b) quarterly gas production (ft
3
/day).  

5.5.2 Results from AGA for the 2D Synthetic Reservoir (Case#3.b) 

The adaptive genetic algorithm was subsequently used for the history matching of 2D 

synthetic reservoir. For AGA, the values of genetic operators are according to the 

value of objective function of the solution. The AGA method was tested by setting the 

parameters as, 

(1) Population size 40, initial crossover probability,   
        and initial 

mutation probability,   
       ; the coefficient factors   = 0.02,   = 0.02 

and        (refer to Eq. 5.2, 5.4 and 5.5) 

(2) Population size 40, initial crossover probability   
        and initial 

mutation probability,   
       ; the coefficient factors             

       and        

The values of coefficient factors   ,   and   can be chosen either through experiments 

or by ad-hoc method. In the present case, a few preliminary computations were carried 

to fix the above values. Tables 5.4 and 5.5, present the results obtained from AGA 

with   
            

       ; and   
            

         as the initial 

probability values respectively. Since the genetic operators are adaptive, the values of 

crossover probability and the mutation probability vary from the initially defined 

values according to the fitness of the realizations in subsequent generations.  
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For AGA with genetic parameters having initial values;   
        and    

     , 

the variation of    and    in subsequent iterations are shown in Figure 5.11 (a). The 

figure shows that the initial value of    have reached 0.75 and           at 174
th

 

iteration. In case of AGA with the initial probability values   
        and   

     , 

the value of probabilities have reached,         and           at 172
th

 iteration 

as shown in Figure 5.11 (b). The genetic operators of AGA with initial probabilities; 

  
        and   

     , generated the best permeability realizations at 172
th 

iterations with minimum objective function value,        . 
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Figure 5.11 Adaptive crossover and adaptive mutation probability versus iteration for 

(a)   
      and   

        (b)   
      and   
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Table 5.4. The objective function evaluation ( ) of 40 realizations of reservoir 

resulting from AGA with   
            

         as the initial values. 

No: of 

Realizations 

Iterations 
 

                                            

1 1.501 1.501 1.501 1.387 1.292 0.950 0.856 0.681 0.616 

2 1.830 1.728 1.797 1.797 1.501 1.501 1.501 0.846 0.753 

3 2.060 1.830 1.830 1.830 1.830 1.830 1.662 1.501 0.943 

4 2.510 2.282 2.281 2.073 2.004 2.004 1.830 1.830 1.402 

5 2.510 2.429 2.351 2.282 2.221 2.067 2.055 1.963 1.652 

6 2.866 2.510 2.510 2.510 2.510 2.185 2.123 2.055 1.754 

7 2.879 2.770 2.530 2.752 2.644 2.237 2.281 2.055 1.830 

8 2.985 2.855 2.707 2.879 2.879 2.360 2.510 2.533 2.510 

9 3.243 2.866 2.879 2.919 2.985 2.510 2.738 2.617 2.562 

10 3.530 2.879 2.985 2.985 3.155 2.879 2.879 2.879 2.644 

11 3.701 2.985 3.243 3.365 3.333 2.976 2.985 2.985 2.685 

12 4.002 3.701 4.025 3.936 3.383 2.985 3.021 3.156 2.879 

13 4.119 4.002 4.166 3.975 3.519 3.150 3.156 3.166 2.985 

14 4.166 4.107 4.188 4.149 3.645 3.166 3.166 3.485 3.025 

15 4.204 4.119 4.202 4.205 3.895 3.466 3.530 3.654 3.519 

16 4.627 4.247 4.251 4.244 3.947 3.487 3.639 3.660 3.645 

17 4.899 4.533 4.260 4.627 4.045 4.120 4.154 3.697 3.895 

18 5.078 4.627 4.627 4.722 4.627 4.165 4.899 3.784 3.941 

19 5.128 4.899 4.782 4.781 4.685 4.628 4.949 3.877 4.056 

20 5.553 5.049 4.899 4.897 4.899 4.704 5.456 5.340 4.156 

21 5.640 5.128 5.122 4.899 5.156 5.390 5.640 5.640 4.685 

22 5.987 5.553 5.640 4.899 5.612 5.620 5.849 5.689 5.057 

23 6.395 5.640 5.704 4.943 5.640 5.640 6.103 5.878 5.458 

24 6.423 5.979 5.987 5.640 5.658 5.656 6.395 5.986 5.612 

25 6.478 6.228 6.224 5.987 6.478 6.073 6.423 6.125 6.423 

26 6.842 6.423 6.423 6.141 6.627 6.389 6.431 6.307 6.478 

27 7.264 6.478 6.478 6.423 6.680 6.423 6.478 6.423 6.680 

28 7.429 6.842 6.842 6.478 6.842 6.478 6.842 6.478 6.842 

29 7.760 7.596 7.181 6.842 7.021 6.495 7.165 6.811 6.865 

30 8.188 8.188 8.188 8.161 7.702 6.842 7.264 6.842 7.165 

31 8.537 8.537 8.383 8.188 7.973 7.767 7.429 8.188 7.973 

32 8.637 8.637 8.537 8.537 8.181 8.188 7.760 8.212 8.181 

33 8.831 8.831 8.637 8.637 8.188 8.537 8.166 8.537 8.188 

34 10.072 9.072 9.221 9.221 8.537 8.637 8.537 8.637 8.537 

35 10.127 9.221 9.510 10.127 9.221 9.166 8.637 9.221 8.637 

36 10.221 10.127 10.127 10.127 9.352 9.221 9.487 10.127 9.221 

37 10.869 10.818 10.380 10.869 10.127 10.135 10.146 10.380 10.127 

38 12.225 12.462 11.255 11.886 10.898 12.225 10.869 10.546 10.456 

39 14.780 13.565 12.656 12.225 12.225 17.420 12.225 12.225 12.225 

40 18.420 18.420 18.475 17.420 17.420 17.420 17.420 17.420 17.420 
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Table 5.5. The objective function evaluation ( ) of 40 realizations of reservoir 

resulting from AGA with   
            

         as the initial values. 

No: of 

Realizations 

Iterations 

                                       

1 1.414 1.392 1.381 1.288 1.220 0.823 0.742 0.503 

2 1.481 1.433 1.501 1.243 1.288 0.931 0.946 0.691 

3 1.501 1.501 1.549 1.485 1.397 1.381 0.799 1.381 

4 2.486 1.549 1.691 1.501 1.501 1.501 1.055 1.501 

5 2.453 2.054 1.793 1.549 1.549 1.549 1.759 1.549 

6 2.174 2.076 1.802 1.895 1.631 1.802 1.945 1.948 

7 2.174 2.174 2.216 1.782 1.126 1.001 1.182 0.981 

8 2.330 2.417 2.257 2.417 1.054 1.122 1.269 0.781 

9 2.417 2.510 2.291 2.510 2.058 2.005 1.456 1.456 

10 2.510 2.628 2.307 2.724 2.510 2.106 2.830 1.015 

11 2.774 2.985 2.417 2.956 2.657 2.510 2.985 1.264 

12 2.945 3.004 2.510 2.985 2.745 2.740 2.045 2.008 

13 2.985 3.248 2.753 2.045 2.860 2.985 2.006 2.780 

14 3.737 3.307 2.985 3.402 2.951 2.105 3.007 2.895 

15 4.896 3.364 2.992 3.771 2.985 3.322 3.715 2.985 

16 4.165 4.009 3.671 3.751 3.263 3.595 3.913 3.036 

17 4.016 4.020 4.035 3.973 3.476 3.752 4.018 3.126 

18 4.022 4.218 4.212 4.240 3.005 3.005 4.129 3.290 

19 4.627 4.322 4.244 4.231 4.163 3.468 4.264 3.839 

20 5.061 4.563 4.355 4.285 4.627 4.411 4.459 3.867 

21 5.233 4.627 4.458 4.627 4.828 4.479 4.627 3.015 

22 5.302 4.699 4.627 4.740 4.007 4.627 4.695 4.627 

23 5.398 4.897 4.921 4.002 5.398 4.035 3.784 4.687 

24 5.640 5.398 5.398 5.254 5.636 5.054 4.213 4.741 

25 5.754 5.631 5.640 5.320 5.640 5.398 5.398 4.054 

26 5.796 5.640 5.868 5.398 5.868 5.640 5.640 5.640 

27 5.868 5.868 6.160 5.640 5.008 5.727 5.796 5.766 

28 6.895 6.033 6.478 5.868 6.478 5.868 5.809 5.868 

29 6.214 6.045 6.598 5.872 6.502 6.478 5.868 5.001 

30 6.416 7.798 6.842 6.478 6.584 6.590 5.002 6.478 

31 7.917 7.165 7.250 6.758 6.819 6.842 6.776 6.578 

32 7.490 7.057 7.612 6.842 6.842 6.872 6.817 6.783 

33 8.985 8.462 7.642 7.374 6.008 6.911 6.842 6.842 

34 8.013 8.013 8.013 8.013 8.013 7.183 7.465 7.887 

35 9.789 8.537 8.013 8.013 8.537 8.206 7.168 8.206 

36 9.654 9.221 8.537 8.537 8.588 8.537 8.537 8.537 

37 10.186 9.221 9.221 9.221 9.221 9.802 8.165 9.221 

38 10.127 10.127 10.127 10.127 10.127 9.513 9.155 9.044 

39 11.893 11.796 10.981 10.874 10.645 10.542 10.315 10.315 

40 13.921 12.416 12.225 12.225 12.225 12.225 12.225 12.225 
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The AGA with    
      and   

        have generated better reservoir realizations 

than the AGA with   
      and   

        as shown in Tables 5.4 and 5.5. The 

objective function values (          ,            and            ) of initial 

realizations generated using geostatistical models, converged to           ,  

           and            at 174
th

 iteration for   
        and to      

      ,            and            at 172th iteration for   
        

respectively. An increase in the initial adaptive mutation probability (  
         

enhanced the convergence rate and produced better results in fewer iterations 

compared to AGA with initial mutation probability;   
       . 
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Figure 5.12.  Average objective function values versus iteration number (every 20 

iterations) (a)   
      and   

        (b)   
      and   

       . 

The average objective function values after every 20 iteration for AGA with      
  

          
        and   

            
        are presented in Figure 5.12 (a) 

and (b).  
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Figure 5.13 History match for 10 best reservoir realizations resulting from AGA with 

  
      and       

        (a) quarterly oil production rate (bbl/day) (b) quarterly 

gas production rate (ft
3
/day). 

The history match of the best 10 realizations of the reservoir resulting from 

AGA with   
      and   

        are shown in Figure 5.13 (a) and (b). It is 

observed from these figures that the AGA was able to achieve a satisfactory history 

match for quarterly oil production data and a reasonable match of quarterly gas 

production for Well-1.  Figure 5.14 (a) and (b) presents the history match of the best 

realization produced from AGA with   
      and   

       , which confirm a 

reasonable history match for quarterly oil and gas productions rates from Well-1.  
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Figure 5.14. History match for the best reservoir realization resulting from AGA with 

  
      and   

       (a) quarterly oil production (bbl/day), (b) quarterly gas 

production (ft
3
/day).  

The permeability distribution of 2D heterogeneous reservoir obtained from the 

history matched model which is conditioned to quarterly oil and gas production data 

acquired from the AGA with   
      and   

        is shown in Figure 5.15 (b). 

Figure 5.15 (a) shows the true permeability map and has been juxtaposed for 

comparison. The permeability colour code is same as Figure 5.5. 

(a) (b)  

Figure 5.15.  Permeability distribution of 2D synthetic reservoir (a) True reservoir 

map (10
th

 SPE comparative project) (b) Realization of best history matched reservoir 

from AGA 
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5.6 Comparison between SGA and AGA 

A comparison between the results from SGA and AGA shows that AGA was 

able to converge to optimal reservoir realizations much faster than the SGA. Table 5.6 

demonstrates a comparison between the results obtained from SGA and AGA and in 

terms of minimum objective function value at different iterations.  

Table 5.6 Comparison of results from SGA and AGA 

SGA 
 

AGA 

Iterations 

Minimum 

Objective 

Function (      

Iterations 

Minimum 

Objective 

Function       

50 1.5014 50 1.4139 

100 1.5014 100 1.3924 

150 1.5014 150 1.3812 

200 1.2439 155 1.2877 

250 1.2325 160 1.22 

300 1.2093 165 0.8226 

350 0.8562 170 0.7418 

400 0.6912 172 0.5027 

 

It is observed from the table (Table 5.6) that the AGA evolved to optimum solution in 

fewer number of iterations when compared to SGA. This is due to the fact that the 

adaptive capability of the genetic operators adjusts the crossover and mutation 

probability according the objective function value of the realization generated at each 

iteration. However, SGA may also result in equally good realization, if the algorithm 

evolves for more number of iterations or optimized values of crossover and mutation 

probability are used. 

5.7 CONCLUDING REMARKS 

History matching using GA methodology has been successfully validated for 

2D synthetic model reservoir. The GA technique showed its capability in producing 

history match for oil and gas production which are conditioned to observations from 

Well-1.  The history match for oil and gas production from Well-1 obtained through 

the GA technique  shows equally good match as presented by Chitralekha, et al., 

(2010) using Ensemble Kalman Filter for history matching of the same reservoir. The 

permeability map generated by AGA showed similarity to true permeability map 
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hidden from algorithm. The permeability distribution map would have perhaps 

replicated the same if the history match for Well-2 was included in the objective 

function calculation. Since the objective of the synthetic case study was to validate the 

GA code and methodology developed for history matching, the study was restricted to 

match the history for productions from Well-1 only.  

The time taken for history match for the synthetic reservoir using AGA was 30 

to 40 minutes. Although the actual computation time was much less but since the 

marriage between CMG program and the GA was not perfect and permeability data 

file from MATLAB to CMG had to be moved manually after every generation, the 

total time increased. The time taken for the real reservoirs, to be discussed in the next 

chapter, was of the order of 60 to 90 minutes since the number of grid blocks for that 

problem were about four times that of the above case.  
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CHAPTER- 6 

HISTORY MATCHING USING GENETIC ALGORITHM: 

A REAL 3D RESERVOIR  

6.1 INTRODUCTION 

This chapter describes the application of SGA and AGA to history matching of 

a real field reservoir situated in the Cambay Basin in Gujarat. The details of the 

structure and parameters of the reservoir are described in the next section.  The total 

pressure drop over its entire production history (2000~ 2009) is less than 10% of the 

initial pressure, it was sufficient to use the “black-oil” model for flow simulation. Two 

case studies; Case#4.a and Case#4.b present the application of SGA and AGA to 

automate the real field history matching problem. The history matching model was 

then used to predict the performance of the reservoir for next three years and also 

predict productions from two new wells drilled in the same field. 

6.2 THE REAL FIELD RESERVOIR UNDER STUDY 

The oil field is located in the south-western part of Cambay Basin and to the 

west of Cambay Gas Field in Gujarat, India. The field was discovered in July 1999. 

The field consists of a total of 8 oil producing wells. The oil producing sandstone has 

varying thickness up to 25 m and the sandstone is divided into three layers; Layer-1, 

Layer-2 and Layer-3.The sandstone layers are separated by thin shales that vary 1 to 2 

m in thickness.  The structure of the field trends NNW-SSE in direction and is 

bounded by a fault on either side, which separates the structure from the adjoining 

lows. The reservoir structure is controlled by East-West trending normal fault in the 

north, and it narrows down towards south. The fault surrounding the reservoir is non-

communicating and hence it is assumed that there is no hydrodynamical flow between 

the reservoir and the remaining area.  

The initial reservoir pressure was recorded as 144 kg/cm
2
 at 1397m. The quantity of 

reserved oil inplace was 2.47MMt, and the cumulative oil production until September 

2009 was 0.72MMt which is 29.1% of the inplace reserve and 64.5% of ultimate 

reserve. The marginal drop in reservoir pressure against cumulative oil production of 
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0.72MMt indicates that the reservoir is operating under active water drive. The 

presence of two aquifers towards the N-W side and towards the narrow region of the 

reservoir in Layer-3 has been reported.   Most of the wells are producing gas to oil 

ratio (GOR) in the range of 30-35 v/v as producing wells are flowing above the bubble 

point pressure. Hence the model shows constant producing GOR.  The grid bottom 

structure 3D real reservoir is shown in Figure 6.1. 

 

Fig 6.1. 3D view of grid bottom structure of real reservoir  

The field started producing through the wells Well-1, and Well-2 from February, 2000 

and December, 2000 respectively. The initial reservoir pressure recorded at Well-1 

was 144.6 kg/cm
2
 at 1385m. The cumulative productions of oil, gas and water from 

Well-1 till September 2009 are 0.156MMt, 8.1MMm
3
, and 7.2 MMm

3
, respectively. 

Subsequently, the other wells (Well-3 - Well-8) were drilled and put on production in 

different years until 2009. The producing wells; Well- 3 and Well- 5 are perforated in 

Layer- 1 and Layer- 2; while Well- 1; Well-2; Well- 4; and Well- 6 are perforated 

through Layer-2 and Layer-3. 

The case studies carried out here consider six oil producing wells (Well-1 – Well-6) 

from the total of 8 oil producing wells. The historical production is available for a 

period of 9 years. For the case studies, 70 months’ historical productions for the period 

of 2000 – 2005 were used for history matching using GA methodology and remaining 

(m) 
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data till 2009 were used for validating the model and the technique. Well-7 and Well-8 

were put on production in January 2009. 

6.2.1 Inputs to CMG
®
- Builder

TM
 suit 

The reservoir model is constructed by amalgamating many parameters such as 

petrophysical data, geological structure (structural contour map, pay-sand thickness 

map etc.,),  grid definition (size and type), PVT properties, reservoir fluid properties, 

well completion data, initial conditions etc.,. The reservoir rock, fluid, PVT 

parameters and initial conditions used to built a reservoir model through CMG
®
-

Builder
TM

 are produced in Tables 6.1 and 6.2. 

Table 6.1 Reservoir Model Parameters 

Initial reservoir Pressure 144 kg/cm
2
 

Datum Depth 1400 m 

Porosity 

Layer-1 0.21 

Layer-2 0.22 

Layer-3 0.23 

Depth of Water Oil 

Contact 

Layer-1 1397 m 

Layer-2 1401 m 

Layer-3 1402 m 

The relative permeability data have been generated using Corey’s correlation. 

The measured permeability values at the well locations are given in Table 6.3. The 

other data required for model building are included in Appendix-C. 

Table 6.2 Reservoir PVT Properties 

Initial Reservoir Pressure 144 kg/cm
2
 

Bubble Point Pressure 82 kg/cm
2
 

Reservoir Temperature 96.8 C 

Oil density 0.85 gm/cc 

Gas gravity 0.95 

Oil Viscosity 0.98 cp 

Initial solution GOR 32 v/v 

Oil formation volume factor* 1.2  

                         *Reservoir barrels/ stock tank barrel 
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Table 6.3 Permeability (k) values at well locations 

Layer 1 

Well Name X Cord (m) Y Cord (m) k (mD) 

Well-3 2921.478 2608.444 300.000 

Well-5 2469.090 3727.096 300.000 

 Layer 2 

Well-8 2020.866 5101.895 533.200 

Well-2 2516.858 4935.464 732.700 

Well-4  2181.874 4702.655 412.700 

Well-7 1764.404 4607.200 394.100 

Well-6 2569.139 4357.980 329.700 

Well-5 2468.298 3735.591 420.000 

Well-1 2793.034 3191.109 446.800 

Well-3  2915.995 2620.678 446.700 

Layer 3 

Well-8 2025.845 5091.209 533.200 

Well-2 2511.532 4924.293 732.700 

Well-4  2181.381 4692.627 412.700 

Well-7 1767.349 4603.087 394.100 

Well-6 2564.105 4350.277 329.700 

Well-1 2790.579 3187.187 446.800 

The reservoir model consists of 3 layers and 6 producing wells. The three 

layers have different porosities but remain constant within each layer.  Layer-1 of the 

reservoir has a homogeneous permeability of 300mD whereas Layer-2 and Layer-3 

have heterogeneous permeability distributions. The production wells; Well-1, Well-2, 

Well-4, and Well-6 have penetrated through Layer-2 -3 while Well-3, Well-5 have 

penetrated through Layer-1-2.  

6.2.2 Grid Selection  

For the numerical integration of flow equations using finite difference method, the 

CMG
®
 simulator uses a 50m x 50m size block grid on the reservoir which for the 

present case will result in 100 x 120x 3 grid blocks. However, in the present study, a 

coarse scale grid was used to limit the dimensionality of the GA variables and hence a 

100m x 100m size was used for each block resulting in 50 x 60 x 3 grid blocks. 
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Figure 6.2. Layer-2 grid bottom structure of coarse scaled reservoir in 2D view 

6.3 WORKFLOW OF GENETIC ALGORITHM FOR HISTORY MATCHING 

The workflow of history matching of real field reservoir follows the same 

methodology as described in Chapter-5. The algorithm starts with a set of initial 

population of feasible solutions (realizations) which undergo genetic operations such 

as; selection, recombination and mutation, through generations to evolve to the 

optimal solution.  The genetic operations such as crossover and mutation are applied 

on the active grid blocks of the reservoir, except for the grid blocks that represents the 

well locations, from where the measured data are available. The rock permeabilities 

(gene value) at the well location remain unchanged throughout the genetic evolutions 

so as to ensure the newly generated realizations honor the field measurements.  For the 

real reservoir shown in Figure 6.3, region highlighted in yellow shade represents the 

active grid blocks, while region highlighted in green shade denotes the inactive grid 

blocks. In the figure, the grid blocks highlighted in red represents the well locations. 

The genetic operators are programmed such that it operators on the region highlighted 

in yellow shade. 
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(a)  (b)  

Figure 6.3 Graphical view of active (yellow shade) and inactive grid blocks (green 

shade) of real reservoir for (a) Layer-2 (b) Layer-3 

The Layer-1 of the reservoir has homogeneous permeability distribution of 

300mD for all the grid blocks. The objective of the present study is to estimate the 

active grid block permeability distributions in Layer-2 and Layer-3, since both the 

layers are highly heterogeneous.  

6.3.1 Generation of Initial Population 

The initial population was generated using geostatistical toolbox of 

MATLAB
®
, mGstat, which is interfaced to the SGeMS (geostatistical modeling 

software by GSLIB). The sequential gaussian simulation (SGSIM) method has been 

employed for generating initial realizations which honor the spatial variations and 

histogram of the real reservoir. The sequential gaussian simulation determines each 

distribution of petrophysical properties under the multivariate gaussian model. 

 

Figure 6.4 3D view of few initial realizations generated using SGeMS for Layer-2 and 

Layer-3 of the reservoir 
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A Gaussian variogram model having correlation range of 20 grid blocks and 

with a sill value of 1 were used to estimate the permeability of each grid block in the 

realizations. The population size of 30 was chosen and hence a set of 30 initial 

realizations representing the permeability distributions were generated using Gaussian 

simulations that honor the permeability values at the well locations in the reservoir. 

Figure 6.4 shows some of the initial permeability distributions generated by SGSIM.  

6.3.2 Selection of GA parameters  

The history matching of real field reservoir using reservoir parameterization 

was tested using simple genetic algorithm (SGA) and adaptive genetic algorithm 

(AGA). For SGA and AGA, the tournament selection operator was employed for 

selecting the fittest members from the population to the mating pool. In case of SGA, a 

uniform k-point crossover and uniform mutation operator were used as the other 

genetic operators with crossover probability;   = 0.5 and mutation probability;   = 

0.005. In case of AGA, the same operators were used except with initial crossover 

probability,   
  = 0.5 and initial mutation probability   

  = 0.005. The coefficient 

factors;   = 0.02,   = 0.02 and   = 0.05 were chosen for calculating adaptive 

crossover and mutation probabilities during evolutions according to the fitness of the 

population (see Eqs 5.2, 5.4 and 5.5 in Chapter-5). 

6.4 HISTORY MATCHING 

The present study intends to accomplish the automatic history match of the real 

reservoir by applying GA methodology. The GA procedure updates the initial 

solutions of permeability distributions called the initial realizations through 

generations to achieve a match between the field observations and the simulator output 

in terms of oil production rates, gas-oil ratio (GOR), water cut (WC) and bottom hole 

flowing pressure (BHP).  In this study, the most sensitive parameter, the field 

permeability distribution that has significant impact on field performance (production 

rates and flowing bottom hole pressure) was the only control variable. There are other 

uncertain parameters such as transmissibility, connate water saturation, depth of 

water-oil contact (DWOC) and aquifer properties which are sensitive to field 

observations. These uncertain parameters were not included in the objective function 



140 
 

for estimation because of the computational constraints. However, some these are 

adjusted manually as required. 

6.4.1 Objective Function 

The objective of this study to find the optimal field permeability distribution in 

Layer-2 and 3 that minimizes the difference between the field observations and the 

simulator output. The objective function is formulated based on Eq. 5.1 taking into 

account the type of field observations, number of wells, and time period etc. In this 

case study the field data comprises oil production rate, GOR, water cut and BHP from 

all 6 producing wells over a period of 6 years (70 months) of production history (Mar, 

2000 ~ Dec, 2005). Hence the objective function    is expressed as   

     ∑ ∑ (
        

          
 

        
  )

  

   

 

   

 

 (
        

          
 

        
  )

 

 (
       

         
 

       
  )

 

 (
        

          
 

        
  )

 

  

     (6.1) 

where subscripts     denote the number of wells and time period respectively;      
  

and      
 are the field observations and corresponding CMG

®
 simulator outputs in 

terms of monthly oil production rate, GOR, WC and BHP.    was minimized using 

GA and search was terminated when successive iterations produced essentially same 

values of the objective function. 

6.5 RESULTS AND DISCUSSION 

 The objective function values of the initial realizations representing the field 

permeability distributions are presented in Table 6.4. The minimum and maximum 

objective function value ranges between 24.58 ~ 68.19 with the average value for 

      being 35.096. The oil production rates (m
3
/day), water cut -%, GOR (m

3
/m

3
) 

and BHP (kg/cm
2
) for the entire field resulted from the initial realizations is shown in 

Figure 6.5. Also included in this figure are field observations for comparison. 
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Table 6.4 Objective function ( ) values of 30 initial realizations of the real reservoir 

No: of Initial 

Realizations 

 

Objective 

Function (   

 

No: of Initial 

Realizations 

Objective 

Function (   

 

1 24.578 16 28.543 

2 24.603 17 28.621 

3 24.734 18 28.991 

4 25.529 19 29.485 

5 25.832 20 30.12 

6 26.27 21 30.942 

7 26.631 22 31.081 

8 26.932 23 31.095 

9 27.129 24 35.561 

10 27.523 25 55.467 

11 27.604 26 59.874 

12 27.91 27 63.634 

13 28.173 28 64.381 

14 28.413 29 66.596 

15 28.428 30 68.193 

As seen in figures 6.5 (a) and (c) the oil production rate and GOR appear to match 

well for all the 30 initial guesses of the permeability distributions but water cut and 

bottom hole pressures show significant variations. This is due to the fact that the 

reservoir is producing under strong water drive mechanism provided by the two 

aquifers, which maintains near constant reservoir pressure for oil and gas productions, 

and there is no free gas cap.  
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Figure 6.5. Comparison between the field observations and the simulator output 

generated from 30 initial realizations (a) Oil production rate SC (m3/day) (b) GOR 

(m3/m3) (c) Water cut SC- % (d) BHP (kg/cm2) 

6.5.1 Results from SGA (Case#4.a)   

The objective function values of the realizations resulting from SGA for the real 

reservoir after every 40 iterations are presented in Table 6.5.  The SGA search was 

terminated after 240 iterations which resulted in an average value for             

minimum value of      = 19.98 (range 19.98 ~ 54.34). The objective function values 

resulting from SGA do not appear to be very small when compared to the initial 

realizations    values. However, the water cut and BHP showed better match with the 

field data. The variation of      with iterations numbers is shown in Figure 6.6. The 

comparison between the observed and simulator output from the 30 realizations 

resulted from SGA in terms of WC and BHP is shown in Figure 6.7.  
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Figure 6.6. Average value for objective functions versus number of iterations from 

SGA. 
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Figure 6.7. Comparison between the field observations and the simulator output 

generated from 30 realizations resulted from SGA (a) Water cut SC- % (b) BHP 

(kg/cm2) 
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Table 6.5. Objective function (          of 30 reservoir realizations resulting from 

SGA after every 40 iterations 

No: of 

Realizations 

  Iterations   

                             

1 24.553 23.545 22.351 21.351 20.447 19.984 

2 24.573 23.598 23.355 22.406 21.198 20.159 

3 24.607 24.502 24.459 22.459 21.859 20.473 

4 25.511 24.565 24.522 22.521 21.945 20.498 

5 25.702 25.693 24.912 22.855 22.351 20.907 

6 25.702 25.693 25.458 23.35 22.476 21.351 

7 25.897 25.889 25.61 24.358 23.54 21.736 

8 25.965 25.955 25.65 24.38 23.543 21.942 

9 26.36 25.983 25.65 25.409 23.58 21.958 

10 26.612 26.352 25.689 25.65 23.65 22.118 

11 26.663 26.602 25.846 25.688 24.008 22.349 

12 26.993 26.654 25.94 25.845 24.354 23.357 

13 27.193 26.732 26.308 25.869 24.658 23.366 

14 27.742 26.982 26.761 25.927 24.727 23.426 

15 27.799 27.184 26.846 26.308 24.909 23.542 

16 27.814 27.789 26.869 26.398 25.358 24.352 

17 27.816 27.804 26.898 26.461 25.396 24.637 

18 27.877 27.809 26.927 26.545 25.459 24.666 

19 27.899 27.867 26.939 26.745 25.741 24.715 

20 27.922 27.889 27.141 26.824 25.969 24.781 

21 27.991 27.912 27.351 26.939 26.093 24.851 

22 28.951 27.941 27.745 27.141 26.778 24.869 

23 28.953 27.971 27.765 27.35 26.885 25.47 

24 28.98 28.945 27.824 27.485 27.157 25.867 

25 29.537 29.528 28.485 28.765 28.565 27.098 

26 33.839 33.831 32.788 31.691 29.395 28.348 

27 38.314 36.306 34.263 33.263 30.763 30.742 

28 44.503 41.495 36.452 34.452 34.344 34.043 

29 49.24 49.233 46.189 45.389 44.317 44.229 

30 59.399 59.391 56.348 55.524 54.444 54.343 

6.5.2 Results from AGA (Case#4.b)   

Table 6.6 presents the objective function values of the 30 realizations resulting from 

the application of AGA after every 20 iterations. The minimum and maximum 

objective function values after 120 iteration are             and             

with the average value,            . As mentioned earlier, the high values of the 

objective function is due to large error in predictions of water cut.  

The average objective function values        of the realizations resulting from AGA 

after every 20 iterations are shown in Figure 6.8. As seen in this figure,      

decreased rapidly up to 20 iterations and then gradually to the final value. The figure 
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also shows that             for initial realizations have converged to      

       after 120 iterations. 
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Figure 6.8 Average value of objective functions versus iteration number from AGA. 

Figure 6.9 shows the variation of crossover probability and adaptive mutation 

probability with every 20 iterations. After 120 iterations, the values of  the 

probabilities were          and            A comparison of AGA results with 

those of SGA clearly establishes the superiority of AGA over SGA.  The converged 

range and average values of the objective functions in case of AGA are lower than the 

corresponding numbers for SGA, achieved in half the number of iterations. 
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Table 6.6 Objective function (          of 30 reservoir realizations resulting from 

AGA after every 20 iterations 

  
Iterations 

 
No: of 

Realizations 
                           

1 20.135 20.102 19.867 19.86 19.618 19.606 

2 20.193 20.143 19.871 19.868 19.64 19.613 

3 20.274 20.151 19.927 19.889 19.644 19.624 

4 20.332 20.199 19.939 19.913 19.722 19.629 

5 20.413 20.212 19.939 19.939 19.722 19.64 

6 20.446 20.221 20.04 19.939 19.772 19.652 

7 20.478 20.285 20.096 19.9 19.819 19.66 

8 20.514 20.293 20.141 20.068 19.827 19.7 

9 20.52 20.316 20.148 20.125 19.889 19.81 

10 21.471 20.355 20.17 20.141 19.931 19.816 

11 21.505 20.377 20.225 20.206 19.947 19.817 

12 21.516 20.43 20.289 20.273 20.018 19.867 

13 21.52 20.44 20.325 20.312 20.053 19.921 

14 21.521 21.001 20.353 20.342 20.07 19.935 

15 21.547 21.05 20.353 20.35 20.101 19.985 

16 22.103 21.104 20.357 20.351 20.137 20.014 

17 22.552 21.12 20.358 20.351 20.14 20.018 

18 22.565 21.12 20.358 20.353 20.14 20.026 

19 23.574 21.33 20.362 20.354 20.141 20.03 

20 23.574 22.476 20.415 20.379 20.143 20.107 

21 23.716 22.602 21.799 20.747 20.382 20.141 

22 24.136 22.974 21.305 21.235 20.831 20.143 

23 24.62 23.098 22.943 21.852 21.371 20.382 

24 25.269 24.969 22.804 22.691 22.148 20.831 

25 26.364 25.148 23.967 23.828 23.202 21.002 

26 28.136 27.858 25.642 25.472 24.726 22.226 

27 29.807 28.451 28.158 27.095 27.038 24.018 

28 36.972 33.371 32.026 31.012 30.575 27.075 

29 38.869 37.215 36.98 35.486 35.248 33.148 

30 49.827 46.843 45.202 43.805 42.385 40.018 

The history match resulting from best 10 permeability maps are shown in Figure 6.10. 

Included in this figure are the field observation data for comparison. GA methodology 

appears to be working satisfactory in finding a reasonable match. The simulator 

predictions using the best permeability map obtained from application of AGA are 

compared with the field data in Figure 6.11.  As seen in this figure, the oil production 

and GOR continue to show good match. The initial high values of GOR in the first 

year cannot be predicted from the model for reasons not well understand. It is, 

however, possible that the calculations of PVT properties may be in error which was 

fixed at a later date. The water cut match also reasonable barring some period around 

2003. The reason for the mismatch during this period is not clear and must perhaps be 
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related to some unusual event. Also a course grid of 100m x 100m was used in the 

present case but one can expect better match if a finer grid say 25m x 25m or a normal 

grid, 50 m x 50m was used. This was not attempted since that would have increased 

GA variables to 16 or 4 times making simulation calculation very lengthy. Usually it is 

difficult to match everything over the entire time period owing to inhomogeneities and 

structural complexities of actual reservoirs, no matter which history matching 

technique is used. The bottom hole pressure, however, shows a much better match in 

the entire range, validating the history matching procedure developed in this study.  
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Figure 6.10. History match for entire field from best 10 permeability realizations 

resulting from AGA (a) oil production rate (m3/day) (b) Water cut -% (c) GOR 

(m3/m3) (d) BHP (kg/cm2) 
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Figure 6.11. History match for entire field from the best permeability realization 

generated by AGA (a) oil production rate (m3/day) (b) Water cut -% (c) GOR 

(m3/m3) (d) BHP (kg/cm2). 

6.5.3 Validation of the Reservoir Model 

The history matched reservoir permeability map based on data from 6 wells for a 

period March, 2000 ~ December, 2005, with CMG
®
- IMEX

TM
 simulator was used to 

predict the reservoir performance over the next three years (January, 2006 ~ 

December, 2008).  The model predicted values were compared with field data 

available for this period but not used for model development (history matching). These 

comparisons are shown in Figure 6.12 which also includes the data for the period; 

March, 2000 ~ December, 2005 which were used in GA methodology. A very good 

match, during 2006 ~ 2008, between simulator results and field data lends support to 

the technique of extracting reservoir properties using GA optimization. 

Two new wells (Well-7 and Well-8) were drilled in 2009, their locations are marked in 

Figure 6.1. The production from these wells was included in the cumulative 

production data (from all the 8 wells) for the period January ~ September, 2009. For 

this period, the validated model was used to predict the productions profile and Figure 

6.12 includes these comparisons for the said period. This further confirms the GA 

calculated permeability map is indeed realistic and capable of future predictions as 

well as field development by way of drilling new wells.  
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Figure 6.12. Production forecast of using history matched model from 6 wells (2006 ~ 

2008) and 8 wells (2009) (a) oil production rate (m3/day) (b) Water cut -% (c) GOR 

(m3/m3) (d) BHP (kg/cm2). 
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Figure 6.13. History match and production forecast of individual wells in terms of (a) 

oil production rate (b) GOR (c) WC and (d) BHP. (1) Well-1 (2) Well-2 (3) Well-3 (4) 

Well-4 (5) Well-5 (6) Well-6 (7) Well-7 (8) Well-8. 

Figure 6.13 shows a match between model predictions and field production data 

including bottom hole flowing pressure for individual wells (Well-1 to Well-8), for the 

entire period from 2000 to 2009. For Well-7 and Well-8, the field data are available 

for a few months only. For these wells the bottom hole pressure (BHP) predictions 

have been made for the entire duration which for the period between 2000 ~ 2008, 

simply means what the pressure profile would have been if these wells existed at these 

locations. 
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CHAPTER-7 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter discusses the contributions from the present work, the extent of success 

achieved from the developed methodologies for forecasting oil production and history 

matching. Few recommendations for further research directions have also been 

included in this chapter. 

7.1 CONCLUSIONS  

 The developed higher order neural network (HONN) model has proved to be 

an effective and successful tool for petroleum reservoir production forecasting. The 

prediction of cumulative oil production, using higher order neural network was 

successfully accomplished with mean absolute error of less than 5% when used on a 

real reservoir. Second and third order networks required fewer neurons in the hidden 

layer and converged faster with smaller prediction error compared to linear or first 

order networks (ANN). Production forecasting for a single well using HONN showed 

a much larger error because of interference from the presence of other producing wells 

in the vicinity. Preprocessing the input data, which included production from 

individual wells, was found to be important in reducing noise and thereby improving 

network learning rate. A simple low pass moving average filter was found to be 

effective in reducing measurement noise. Another important factor was the selection 

of input parameters.  Autocorrelation function (ACF) and cross-correlation function 

(CCF) provided valuable information regarding time lags which helped in the choice 

of input variables optimally. 

 The successful application of genetic algorithm in extracting a realistic 

permeability map of a 2D synthetic reservoir showed the technique as a promising 

optimization tool towards automatic history matching. The history matched model 

when used with CMG flow simulator was able to predict production of oil and gas 

which was in good agreement with actual productions. The results were comparable to 
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those reported by Chitralekha, et al., (2010) for the same 2D reservoir using Ensemble 

Kalman Filtering technique.  Adaptive genetic algorithm (AGA), in which crossover 

and mutation probabilities are dynamically adjusted according to the population 

fitness through generations outperformed simple GA (SGA). AGA required less than 

half the iterations and resulted in smaller fitness function values as compared to SGA. 

This validated history matching methodology using GA as optimization tool was then 

applied to a real 3D petroleum reservoir. The results showed good match for oil 

production rate, gas-oil ratio (GOR), bottom hole flowing pressure (BHP) and 

reasonable match for water cut (WC). The WC mismatch during the period around 

2003 and initial high value for GOR production may be due to unusual events and 

perhaps error in the PVT calculations. The coarse grid size, with each block measures 

100m x 100m, used in the present investigation may have contributed to higher error 

in certain wells. AGA was found to be more efficient and accurate as compared to 

SGA for the real 3D reservoir also. Successful match of historic production of oil, 

water and gas and satisfactory future predictions from existing and new wells drilled at 

later date in the reservoir established the power and efficacy of the technique. 

7.2 RECOMMENDATIONS 

 The following aspects based on the discussion through the chapters of this 

thesis can be considered for further extension of this research work.  

 It may be possible to extend the HONN methodology into making a tool for 

reservoir characterization (finding porosity and permeability distribution 

maps), which can correlate the rock properties with the seismic and well log 

data as inputs. 

 In the present study, history matching using GA was attempted only with 

permeability distribution map characterization. The GA technique can be 

further extended to include other parameters such as porosity, transmissibility, 

aquifer properties, initial depth of water-oil contact and connate water 

saturation in the search vector to improve the efficacy of history match. 

 The current study is based on history matching of simple 3D black-oil 

reservoir having 8 wells only. GA code can be extended further to handle more 

complex and large reservoirs having large number of wells.  
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 The coarse grid block size used in the present study may have introduced some 

error by not properly accounting for spatial variations in rock properties. The 

GA code could be extended to use smaller grid block size for greater accuracy. 
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APPENDICES 

APPENDIX—A: Source Code of HONN for reservoir production 

forecasting that has inbuilt smoother, ACF, CCF for choosing optimal 

neural inputs 

Available with the authors 

APPENDIX—B: Source Code of GA for History Matching 

Available with the authors 

APPENDIX—C: Data Used for Modeling of Real Reservoir  

This section presents the relative permeability data used for real field modeling and 

the field historic data such as fluid production rate and bottom hole flowing pressure 

(BHP) used to compare the reservoir simulator response. 

 

1. Relative Permeability Data 

Layer-1 Layer-2 Layer-3 

Total Water Saturation 

(SWT) 

Total Water Saturation 

(SWT) 

Total Water Saturation 

(SWT) 

Sw 0.39 Sw 0.47 Sw 0.45 

Soirw 0.24 Soirw 0.21 Soirw 0.22 

Kro 0.984 Kro 0.984 Kro 0.984 

Krw 0.084 Krw 0.051 Krw 0.061 

Total Liquid Saturation 

(SLT) 

Total  Liquid  Saturation 

(SLT) 

Total  Liquid  Saturation 

(SLT) 

Sgc 0.01 

 

Sgc 0.03 

 

Sgc 0.05 

 Krog 0.984 

 

Krog 0.984 

 

Krog 0.984 

 
Krg 0.776 

at 

Swc+Soir 
Krg 0.669 

at 

Swc+Soir 
Krg 0.698 

at 

Swc+Soir 
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2. Production Field History of Entire Reservoir 

Date 
Oil  

(m
3
/day) 

Gas 

(m
3
/day) 

Water 

(m
3
/day) 

Date 
Oil  

(m
3
/day) 

Gas 

(m
3
/day) 

Water 

(m
3
/day) 

2/1/2000 0 0 0 7/1/2003 183.814 6433.49 54.5738 

3/1/2000 62.1497 6517.52 1.56897 8/1/2003 181.586 6355.48 55.9333 

4/1/2000 107.442 9645.42 1.46774 9/1/2003 189.578 6635.13 56.066 

5/1/2000 111.597 9966.93 0 10/1/2003 206.843 7239.54 45.6506 

6/1/2000 108.435 9684.74 0 11/1/2003 220.352 7712.53 57.2029 

7/1/2000 109.557 9782.03 0 12/1/2003 216.12 7564.32 62.541 

8/1/2000 108.506 9690.06 0 1/1/2004 250.824 8778.88 95.2039 

9/1/2000 103.887 9275.94 0 2/1/2004 296.624 7267.27 108.429 

10/1/2000 108.773 9711.83 0 3/1/2004 283.882 6728.68 106.816 

11/1/2000 108.149 9655.9 0 4/1/2004 265.315 6359.96 126.685 

12/1/2000 110.889 9899.4 0 5/1/2004 255.698 6132.48 121.604 

1/1/2001 133.642 9669.61 0 6/1/2004 243.967 5879.24 128.468 

2/1/2001 180.365 10043.7 0 7/1/2004 233.499 5603.97 125.461 

3/1/2001 191.274 7146.52 0 8/1/2004 228.186 5702.04 124.525 

4/1/2001 193.902 7250.77 0 9/1/2004 233.58 6381.66 126.972 

5/1/2001 191.05 7153.51 0 10/1/2004 242.384 6589.96 131.526 

6/1/2001 187.749 7008.74 0 11/1/2004 253.107 6915.03 132.418 

7/1/2001 188.678 7053.61 0 12/1/2004 233.179 6344.1 105.199 

8/1/2001 185.097 6973.93 4.63645 1/1/2005 229.004 6467.09 104.346 

9/1/2001 173.889 6933.1 9.29734 2/1/2005 232.116 6820.24 123.619 

10/1/2001 178.851 6646.36 8.70581 3/1/2005 222.603 6505.29 115.333 

11/1/2001 176.982 6556.4 12.841 4/1/2005 217.207 6471.31 90.0152 

12/1/2001 178.487 6572.58 23.0107 5/1/2005 214.53 6342.84 51.2416 

1/1/2002 171.804 6312.74 23.0594 6/1/2005 229.553 6812.2 91.8411 

2/1/2002 175.783 6511.82 14.6479 7/1/2005 165.925 4919.58 93.1678 

3/1/2002 129.809 4806.06 6.85033 8/1/2005 201.852 5990.94 120.797 

4/1/2002 171.152 6387.83 5.598 9/1/2005 212.351 6285.24 154.727 

5/1/2002 174.97 6525.48 11.3071 10/1/2005 191.695 5615.46 138.519 

6/1/2002 169.451 6316.63 20.6673 11/1/2005 180.717 5498.93 114.775 

7/1/2002 149.668 5685.32 31.9361 12/1/2005 185.979 6230.58 110.793 

8/1/2002 179.549 7082.78 49.6548 1/1/2006 204.587 7043.97 108.779 

9/1/2002 216.43 8163.57 57.4403 2/1/2006 209.229 6782.32 140.979 

10/1/2002 229.096 8401.83 47.5858 3/1/2006 234.787 6933.28 134.35 

11/1/2002 225.021 9037.6 49.0133 4/1/2006 228.956 6711.37 142.127 

12/1/2002 217.92 8687.33 52.5122 5/1/2006 191.814 5838.32 134.106 

1/1/2003 212.093 8240.19 82.2704 6/1/2006 189.096 5947.5 132.649 

2/1/2003 188.402 6996.47 102.113 7/1/2006 184.06 5621.8 110.957 

3/1/2003 188.965 6969 53.5991 8/1/2006 0 0 0 

4/1/2003 194.626 6789 71.4166 9/1/2006 135.953 4126.07 115.48 

5/1/2003 179.186 6260.74 42.5709 10/1/2006 218.896 6670.16 128.454 

6/1/2003 176.9 6191.5 57.6167 11/1/2006 230.89 6989.07 124.959 
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Pressure Field History of Entire 

Reservoir 

Date 
Oil 

(m
3
/day) 

Gas 

(m
3
/day) 

Water 

(m
3
/day) 

 

Date 
BHP 

kg/cm
2
 

Date 
BHP 

kg/cm
2
 

12/1/2006 215.21 6410.45 131.966 

 

2/21/2000 143.871 9/21/2006 136.375 

1/1/2007 162.644 4923.68 100.823 

 

5/29/2000 141.658 2/22/2007 136.275 

2/1/2007 237.712 6913.25 115.706 

 

8/3/2000 142.045 3/28/2007 136.175 

3/1/2007 278.696 7684.38 114.911 

 

1/11/2001 141.344 7/30/2007 88.975 

4/1/2007 268.754 7282.33 123.534 

 

3/8/2001 142.283 8/14/2007 137.450 

5/1/2007 263.666 6938.74 119.886 

 

9/27/2001 142.002 3/20/2008 142.125 

6/1/2007 253.401 7027.77 139.545 

 

3/6/2002 142.485 5/24/2008 132.095 

7/1/2007 97.2281 2908 60.2178 

 

8/17/2002 140.768 6/18/2008 132.200 

8/1/2007 240.976 7242.03 135.956 

 

9/19/2002 140.960 11/19/2008 135.765 

9/1/2007 241.322 7280.04 157.591 

 

10/9/2002 141.583 12/10/2008 136.100 

10/1/2007 233.87 7057.17 131.802 

 

12/19/2002 137.307 2/6/2009 132.520 

11/1/2007 232.301 7008.53 130.749 

 

2/21/2003 134.288 2/11/2009 132.080 

12/1/2007 232.836 7018.49 130.377 

 

3/13/2003 139.194 8/6/2009 134.410 

1/1/2008 228.755 6920.19 132.445 

 

6/2/2003 137.688 

  2/1/2008 215.96 6947.18 140.806 

 

7/18/2003 139.113 

  3/1/2008 217.336 7030.61 130.861 

 

12/31/2003 138.607 

  4/1/2008 233.52 7033.43 121.515 

 

1/6/2004 137.557 

  5/1/2008 228.714 6943.23 116.645 

 

2/4/2004 140.553 

  6/1/2008 242.173 7516.13 118.878 

 

4/16/2004 137.130 

  7/1/2008 261.729 8069.48 116.208 

 

7/5/2004 134.410 

  8/1/2008 259.151 7905.29 111.054 

 

8/6/2004 114.189 

  9/1/2008 252.88 7506.84 105.908 

 

9/2/2004 137.117 

  10/1/2008 269.16 7752.16 105.669 

 

9/2/2004 138.233 

  11/1/2008 257.732 7665.13 102.308 

 

1/17/2005 136.056 

  12/1/2008 254.287 7600.1 140.242 

 

3/17/2005 136.079 

  1/1/2009 252.638 7454.74 156.956 

 

5/18/2005 136.079 

  2/1/2009 356.793 5486.72 158.804 

 

6/2/2005 134.657 

  3/1/2009 363.142 5794.17 159.431 

 

7/19/2005 136.574 

  4/1/2009 359.788 10509.1 161.253 

 

8/23/2005 138.233 

  5/1/2009 347.608 10673 119.22 

 

9/15/2005 135.185 

  6/1/2009 372.242 11277.9 100.284 

 
12/21/2005 132.526 

  7/1/2009 412.729 12316.5 83.1067 

 
2/16/2006 138.050 
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