Business Transformation through IT

CHAPTER 4- I'T THEORY: TOOLS, METHODS, AND
APPLICATIONS - II

4.1 Methods of Transformation (contd,)

In this chapter, I continue discussing the methods of transformation. | exarmine, in particular,
(1) the legacy application services including mugration, (2) product life cycle management
(PLM), (3) quality services, (4) system integration services, (5) enterpnse application
ntegration, [6) infrastructure related services, (7) testing services, (8) server onented

architecture (SOA), and (9) compliance.

411 LEGACY SYSTEMS AND DATA MIGRATION

Legacy systems are considered to be potentially problematic by many software engineers (Bishal,
1999). Legacy systems often run on obsolete (and usually slow) hardware, and sometimes spare
parts for such computers become increasingly ditficult to obtam. These systems are often hard
to mamntain, improve, and expand because there is a general lack of understanding of the
systemn. The designers of the system may have left the organization, leaving no one left to
explamn how 1t works. Such a lack of understanding can be exacerbated by inadequate
documentation or manuals getting lost over the years. Integration with newer systems may also

be difficult because new software may use completely different technologies.

Despite these problems, orgamzations can have compelling reasons for keepmg a legacy

systemn, such as:

® The costs of redesigning the system are prohibitive because it 1s large,

monoclithic, and/or complex.

* The system requires close to 100% availability, so it cannot be taken out of
service, and the cost of designing a new systern with a sumilar availability level 1s

high.

Umversity of Petroleum & Energy Studies Page 107

Business Transformation through IT

¢ The way the systern works 1s not well understood. Such a situation can occur
when the designers of the system have left the orgamzation and the systemn has

etther not been fully documented or such documentation has been lost.

¢ The user expects that the system can easily be replaced when this becomes

neces Sﬂfy.

® The system works Satisfactorﬂy, and the owner sees no reason for changing it; or
mn other words, re-learning a new system would have a prohibitive attendant cost

mn lost time and money.

If legacy software runs on only antiquated hardware, the cost of maintaining the system may
eventually outweigh the cost of replacing both the software and hardware unless some form of
ernulation or backward compatibility allows the software to run on new hardware. However,
many of these systems do still meet the basic needs of the orgamzation. The systemns to handle
custorners' accounts in banks are one example. Therelore the organization cannot afford to
stop them and yet some cannot afford to update them. A demand of extremely high
avaﬂability 18 commonly the case in computer reservation systems, air traffic control, energy
distribution (power gnds), nuclear power plants, rmulitary defense installations, and other
systems crtical to safety, secunty, traffic throughput, and/or economic profits. The change
being undertaken in some orgamizations 1s to switch to Autornated Business Process (ABP)
software which generates complete systerns. These systerms can then interface to the
orgamizations' legacy systems and use them as data repositories. This approach can provide a
number of significant benefits: the users are msulated from the metticiencies of their legacy

systerns, and the changes can be incorporated quickly and easily in the ABP software.

Note that "legacy"” has little to do with the size or even age of the system — mainframes run
64-bit Linux and Java, after all, right alongside 1960s vintage code. In fact, some of the
thorniest legacy problems organizations now face are 1 trying to leverage or replace existing
"fat client” Visual Basic code as customers demand reliable Web accessible systems. The term

legacy support 1s also often used with reference to obsolete or "legacy” computer hardware,

Umversity of Petroleum & Energy Studies Page 108

Business Transformation through IT

whether penpherals or core components. Operating systems with "legacy support” can detect

and use legacy hardware.

The temm 1s also used as a verb for what vendors do for products in legacy mode - they
"Support", or provide software mamntenance, for obsolete or "legacy" products. In some cases,
"legacy mode" refers more specifically to backward compatibility. The computer mainframe
era saw rmany applications runmng i legacy mode. In the modern business computing
environment, n-tier, or 3-tier architectures are more difficult to place into legacy mode as they
include many components making up a single system. Govemment regulatory changes must
also be considered in a system runming in legacy mode. Virtualization technology allows for a
resurgence of modern software applications entering legacy mode. As system complexity and
software costs increase, many computing users keep their current systerns perrnanenﬂy mn

legacy mode.

There 1s an alternate point of view - growing since the "Dot Com" bubble burst in 1999 - that
legacy systerns are sunply (and only) computer systerns that are both installed and working. In
other words, the term 1s not at all pejorative - quite the opposite. Perhaps the term "legacy” 1s
only an effort by computer mdustry salesmen to generate artificial chum in order to encourage
purchase of unneeded technology. I'T analysts estimate that the cost to replace business logic 15
about five times that of reuse, and that's not counting the nsks involved in wholesale
replacement. Shareholders and managers are mcreasmgly asking the reasons for so much
money being spent on new technology with so little to show for it. Ideally businesses would
never have to rewrite most core business logic. After all, debits must equal credits - they always
have, and they always will. Businesses and governments are also flinching at well-publicized
system failures and secunty breaches that all too commonly arnve with new software - faillures
which are utterly catastrophic in many cases. There's also a growing backlash agamnst large,
packaged software products (SAP, Oracle, PeopleSoft, and others) which were oversold and in

somne cases have proven too costly, mflexible, and pootly matched to business needs.

Increasingly the IT industry is responding to these understandable business concems. "Legacy
modernization™ and "legacy transformation” are now popular terms, and they mean reusing

and refactonng exasting, core business logic by providing new user mterfaces (typically Web

Umversity of Petroleum & Energy Studies Page 109

Business Transformation through IT

interfaces) and service-enabled access [e.g, through Web services). These techmiques allow
orgamzations to understand their existing code assets (using discovery tools), provide new user
and application mterfaces to existing code, improve workflow, contain costs, munimize nsk,
and enjoy classic qualities of service (near 100% uptime, security, scalability, etc.). Technology
companies involved in "enterpnse transformation” are growing and profiting by what many

people feel 1s a more rational approach toward legacy systems.

The re-exarmination of attitudes toward legacy systemns is also inviting more reflection on what
makes legacy systems as durable as they are. Technologists are relearnig the fact that sound
architecture, practiced up front, helps businesses avoid costly and nsky rewntes in the first
place. The most common legacy systems tend to be those which embraced well-known I'T
architectural principles, with careful planning and strict methodology duning implementation.
Poorly designed systems often don't last. Thus, many organizations are rediscovenng not only

the value in the legacy systems thernselves but also their philosophical underpinnings.

Data migration, on the other hand 1s the process of transferring data between storage types,
formats, or computer systems. Data migration 1s usually performed programmatically to
achieve an autornated migration, freeing up human resources from tedious tasks. [t 1s required
when orgamzations or individuals change computer systems or upgrade to new systerns. To
achieve an effective data migration procedure, data on the old system 1s mapped to the new
systen providing a design for data extraction and data loading. The design relates old data
formats to the new system's formats and requirements. Programmatic data migration may
involve many phases but it minimally includes data extraction where data 1s read from the old
systemn and data loading where data is wntten to the new system. After loading into the new
system, results are subjected to data verification to determine that data was accurately
translated, 1s complete, and supports processes in the new system. Dunng venfication, there
may be a need for a parallel run of both systems to identify areas of dispanty and forestall
erronecus data loss. Automnated and manual data cleansing 1s commonly performed in
migration to improve data quality, eliminate redundant or obsolete information, and match the
requirements of the new system. Data migration phases (design, extraction, cleansing, load,
vernfication) for applications of moderate to high complexity are commonly repeated several

tunes before the new system 1s activated.

Umversity of Petroleum & Energy Studies Page 110

Business Transformation through IT

4.1.1.1 Product Lifecycle Management
Product lifecycle management (PLM]) 1s the process of managing the entire lifecycle of a

product from its conception, through design and manufacture, to service and disposal
(CiMData, 2602). 1t 1s one of the four comerstones of a corporation's information technology
structure (Huans, 2004). All companies need to manage communications and mformation with
their customers (CRM-Customer Relationship Management) and their suppliers (SCM-Supply
Chain Management) and the resources within the enterpnise (ERP-Enterprise Resource
Planming). In addition, manufacturing enmneening comparies rmust also develop, descabe,

manage and cormmunicate information about their products (PLM).
Documented benefits include (Hi 2006):

1. Reduced time to market

2. Improved product quality

3. Reduced prototyping costs

4. Sawvings through the re-use of onginal data

5. A framework for product optimization

6. Reduced waste

7. Savings through the complete integration of engineenng workflows

Product Lifecycle Management (PLM) as depicted m diagram 4.1 1s more to do with managing
descriptions and properties of a product through its development and useful life, mainly from
a business/engineenng point of view; whereas Product life cycle management (PLCM) is to do
with the life of a product in the market with respect to business/commercial costs and sales

measures (Awusura, 2007),

Umversity of Petroleum & Energy Studies Page 111

Bawiness Transformation throngh IT

Dhagram 4.1 - Product Lifecyele Management

Businezs Dimension

= Portiodo decsions. y A
- Projoct g docttions \ o
= Resouis dlocaion deisinns §
= Projecd schedulng cersions
._____/ = Produst ad plactem soneesl deckcions

—

- Pmﬁuct Lifecycle Managamant
L i Faestect Derolpmetl. e ‘>
"""‘“)""““ > ﬂg:"‘":>w~w>mm > >WW#

) Operations Dimension)

f‘(‘n

Product lifecycle management (PL as depicted in diagram 41 is the title commenly applied
to a set of application software that enables the IMNew Product Development (INPD) business

process.

Within PLI there are four primary areas,

1 Produd and Portfolio Management (PTRD

2. Produd Desgn (CAx)

3. Manufacturing Planning (MPM)

4 Produc Diata Management (PR

Mote: While application softurare is not required for PLM processes, the business complexity

and rate of change requires organizations execote as rapidly a5 possible.

Product Drata Manapement is focused on captunng and maintaining information on products
and for services through its development and useful life. Produdt and Portfolio Management is

fomsed on managing resource allocation, tracking the progress vs. plan for projects in the new

Uniwersity of Petroleum & Energy 5 tudies Page 112

Business Transformation through IT

product development projects that are in process {or in a holding status). Portfolio
management 1s a tool that assists management m tracking progress on new products and
making: trade-off decisions when allocating scarce rescurces. The core of PLM (product
lifecycle management) s in the creation and central management of all product data and the
technology used to access this information and knowledge. PLM as a discipline emerged from
tools such as CAD, CAM and PDM, but can be viewed as the mtegration of these tools with
methods, people and the processes through all stages of a product’s life (Teresca, 2004). 1t 1s not

just about software technology but 1s also a business strategy (Stackpole, 2003).

For simplicity the stages described are shown in a traditional sequential engineering workflow.
The exact order of event and tasks will vary according to the product and industry in question

but the main processes are (Gould, 2002).

¢ Conceive
v’ Specification
V" Concept design
® Design
v Detailed design
v Validation and analysis (simulation)
v Tool design
® Realize
v Plan manufacturing
v" Manufacture
v Build/Assemble
v’ Test (quality check)
® Service
v Sell and Deliver
v Use
v" Maintain and Support
v" Dispose

Umversity of Petroleum & Energy Studies Page 113

Business Transformation through IT

The major key point events are:

a) Order
b) Idea
c) Kick-off

d) Design freeze

¢} Launch
The reality 1s however more complex, people and departments cannot perform these tasks in
isolation and one activity cannot sunply fish and the next activity start. Design 1s an iterative
process, often designs need to be modified due to manufactuning constramts or conflicting
requiremnents. Where exactly a customer order fits into the tine line depends on the industry
type, whether the products are for example Build to Order, Engineer to Order, or Assemble to
Order.

The Product Lifecycle has the following phases - Many software solutions have developed to
organize and mtegrate the different phases of a product’s lifecycle. PLM should not be seen as
a single software product but a collection of software tools and working methods integrated
together to address either single stages of the lifecycle or connect different tasks or manage the
whole process. Some software providers cover the whole PLM range while others a single
niche application. Some applications can span many fields of PLM with different modules
within the same data model. Here, we provide an overview of the fields within PLM. It should
be noted however that the simple classifications do not always fit exactly, many areas ovedap
and many software products cover more than one area or do not fit easily into one category. It
should also not be forgotten that one of the main goals of PLM i1s to collect knowledge that
can be reused for other projects and to coordmate simultaneous concurrent development of
many products. PLM is about busmess processes, people and methods as much as software
application solutions. Although PLM 1s mainly associated with engineenng tasks it also
mnvolves marketing activities such as Product Portfolio Management (PPM), particularly with

regards to New Product Introduction (INPL).

Umversity of Petroleum & Energy Studies Page 114

Business Transformation through IT

Phase I: Conceive —Imagine, Specify, Plan, Innovate

The first stage i idea 1s the definition of its requirements based on customer, company,
market and regulatory bodies” viewpomts. From this a specification of the products major
technical parameters can be defined. Although often this task 1s carmed out using standard
office software packages there are for the field of requirements management a number of

specialized software tools available.

Parallel to the requirements specification the initial concept design work 1s carned out defining
the visual aesthetics of the product together with its mam functional aspects. For the Industral
Design, Styling, work many different medias are used from pencil and paper, clay models to

3D CAID Computer-aided mdustnal design software.

Phase 2: Design — Describe, Define, Develop, Test, Analyze and Validate

Phase 2 is where the detailed design and development of the product’s form starts, progressing
to prototype testing, through pilot release to full product launch. It can also mvolve redesign
and ramp for unprovement to existing products as well as planned obsolescence. The main
tool used for design and development 1s CAD Computer-aided design. This can be sumple 2D
Drawing / Drafting or 3D Parametnc Feature Based Solid/Surface Modeling, Such software
includes technology such as Hybnd Modeling, Reverse Engineenng, KBE (Knowledge-Based

Engineenng), NDT (Non-destructive testing), and Assembly construction.

This step covers many engineenng disciplines including: Mechamcal, Electrical, Electronic,
Software (embedded), and domain-specific, such as Architectural, Aerospace, Automotive ...
Along with the actual creation of geometry there 1s the analysis of the components and
product assemblies. Simulation, validation and optimization tasks are carried out using CAE
(Computer-aided engineering) software etther integrated in the CAD package or stand-alone.
These are used to perform tasks such as:-- Stress analysis, FEA (Finite Element Analysis);
Kinematies; Comnputational flud dynamies (CFD); and mechanical event sumulation (MES).
CAQ (Computer-aided quality) is used for tasks such as Dimensional Telerance (engineering)
Analysis. Another task performed at thus stage 1s the sourcing of bought out components,

possibly with the aid of Procurement systems.

Umversity of Petroleum & Energy Studies Page 115

Business Transformation through IT

Phase 3: Realize — Manufacture, Make, Build, Procure, Produce, Sell and Deliver

Once the design of the product’s components 1s complete the method of manufacturing 1s
defined. This includes CAD tasks such as tool design; creation of CNC Machining mnstructions
for the product’s parts as well as tools to manufacture those parts, using mtegrated or separate
CAM Computer-aided manufactunng software. This will also involve analysis tools for process
stmulation for operations such as casting, molding, and die press forming. Once the
manufactunng method has been identified MPM — (Manufactunng Process Management)
comes mto play. This mvolves CAPE (Computer-aided Production Engineenng) or
CAP/CAPP — (Production Planning) tools for carrying out Factory, Plant and Facility Layout
and Production Stmulation. For example: Press-Line Stmulation; and Industnal Ergonomics;
as well as tool selection management. Once components are manufactured, their geometncal
torm and size can be checked against the onginal CAD data with the use of Computer Aided
Inspection equipment and software. Parallel to the engineenng tasks, sales product
configuration and marketing documentation work will be taking place. This could include
transfernng engineening data (geometry and part list data) to a web based sales configurator

and other Desktop Publishing systems.

Phase 4: Service — Use, Operate, Maintain, Support, Sustain, Phase-out, Retire,

Recydle and Disposal

The final phase of the lifecycle involves managing of in service information. Providing
customers and service engineers with support information for repair and maintenance, as well
as waste management/recycling information. This mnvolves using such tools as Mamtenance,

Repair and Operations Management (MRO) software.

All phases: product lifecycle — Communicate, Manage and Collaborate

None of the above phases can be seen in 1solation. In reality a project does not mun
sequentially or in 1solation of other product developmment projects. Information 1s flowing
between different people and systems. A major part of PLM is the co-ordination of and

management of product definiion data. This includes managing engineenng changes and

Umversity of Petroleum & Energy Studies Page 116

Business Transformation through IT

release status of components; configuration product varations; document management;

planmng project resources and tunescale and nsk assessment.

For these tasks graphical, text and metadata such as product BOMs (Bill of Materials) needs to
be managed. At the engineenng departments level this is the domain of PDM — (Product Data
Managerment) software, at the corporate level EDM (Enterprise Data Managerent) software,
these two defimtions tend to blur; however, 1t is typical to see two or more data managerment
systerns within an orgamzation. These systems are also linked to the other corporate systemns
such as SCM, CRM, and ERP. Associated with these systems are Project Management Systems

for Project/Program Planning.

This central role 1s covered by numerous Collaborative Product Development tools which run
throughout the whole lifecycle and across orpamzations. [t requires many technology tools in
the areas of Conferencing, Data Shanng and Data Translation. The field being Product
visualization which includes technologies such as DMU (Digital Mock-Up), Immersive Virtual
Digital prototyping (Virtual reality) and Photo realistic Imaging.

Product Development processes and rmethodologies

A number of established methodologies have been adopted by PLM and been further
advanced. Together with PLM digital engineenng techniques, they have been advanced to
meet company goals such as reduced tine to market and lower production costs. Reducing
lead times is a major factor as getting a product to market quicker than the competition will

help with higher revenue and profit margins and increase market share.

These techniques include:-

¢ Concurrent engineenng workflow

o Industrial Design

¢ Bottom-up design

o Top-down design

Umversity of Petroleum & Energy Studies Page 117

Business Transformation through IT

¢ Frontloading design workflow

¢ Desion in context

® DModular design

o NPD New product development

¢ Digital simulation engineenng

¢ Requirement driven design

¢ Specilication managed validation

Concurremt engineering workflow — This is a workflow that mstead of working sequentially
through stages carnes out a number of tasks in parallel. For example: starting tool design
before the detailed designs of the product are finished, or the engineer starting on detail design
solid models before the concept design surfaces models are complete. Although this does not
necessanly reduce the amount of manpower required for a project, it does drastically reduce
lead times and thus time to market. Feature based CAD systems have for many years allowed
the simultaneous work on 3D solid model and the 2D drawing by means of 2 separate files,
with the drawing locking at the data in the model; when the model changes the drawing will
associatively update. Sorne CAD packages also allow associative copying of geometry between
files. This allows, for example, the copymyg of a part design mto the files used by the tooling
designer. The manufactuning engineer can then start work on tools before the final design
freeze; when a design changes size or shape the tool geometry will then update. Concurrent
engineenng also has the added benefit of providing better and more immediate
communication between departments, reducing the chance of costly, late design changes. It
adopts a problem prevention method as compared to the problem solving and re-designing

method of traditional sequential engineering.

Bottom-up design — Bottom-up design (CAD Centric) 1s where the definition of 3D models

ol a product starts with the construction of individual components. These are then virtually

Umversity of Petroleum & Energy Studies Page 118

Business Transformation through IT

brought together in sub-assemblies of more than one level until the full product is digitally
defined. This is sometimes known as the review structure showing what the product will look
like. The BOM contains all of the physical (solid) components; it may (but not also) contain
other items required for the final product BOM such as paint, glue, oil and other materials
commonly described as 'bulk items”. Bulk items typically have mass and quantities but are not

usually modeled with geometry.

Top-down design — Top-down design (Part Centne) follows closer the true design process.
This starts with a layout maodel, often a ssmple 21D sketch defining basic sizes and some major
defining parameters. Industrnial Design bnngs creative ideas to product development.
Geometry from this 1s associatively copied down to the next level, which represents different
sub-systems of the product. The geometry i the sub-systems 1s then used to define more
detail in levels below. Depending on the complexity of the product, a number of levels of this
assembly are created until the basic definition of components can be identified, such as
position and prncipal dimensions. This information 1s then associatively copted to component
files. In these files the components are detailed; this 1s where the classic bottorn-up assembly
starts. The top down assembly is sometime known as a control structure. If a single file 1s used

to define the layout and parameters for the review structure 1t 1s often known as a skeleton file.

Defense engineering traditionally develops the product structure from the top down. The
system engineenng process prescribes a functional decompasition of requirements and then
physical allocation of product structure to the functions. This top down approach would
normally have lower levels of the product structure developed from CAD data as a bottom up

structure or design.

Front loading design and workflow — Front loadmng 1s taking top-down design to the next
stage. The complete control structure and review structure, as well as downstrearn data such as
drawings, tooling development and CAM models, are constructed before the product has been
defined or a project kick-off has been authonzed. These assemblies of files constitute a
template from which a farmly of products can be constructed. When the decision has been
made to go with a new product, the parameters of the product are entered mto the termnplate

model and all the assoaated data 1s updated. Obviously, predefined assocative models wall not

Umversity of Petroleum & Energy Studies Page 119

Business Transformation through IT

be able to predict all possibilities and will require additional work. The assumption is that a lot
of the expenmental /investigative work has already been completed. A lot of knowledge 1s bualt
into these templates to be reused on new products. This does require additional resources “up
front” but can drastically reduce the time between project kick-off and launch. Such methods
do however require organizational changes, as considerable engineenng efforts are moved mto
“offline” development departments. It can be seen as an analopy to creating a concept car to
test new technology for future products, but in this case the work is directly used for the next

product generation.

Design in context — Individual components cannot be constructed m 1solation. CAD models
of components are designed within the context of part or the entire product being developed.
This 1s achieved using assembly modeling techmgques. Other components’ geometry can be
seen and referenced within the CAD tool being used. The other components within the sub-
assembly, may or may not have been constructed in the same systern, their geometry being
translated from other CPDD formats. Some assembly checking such as DMU is also carried out

using Product visualization software.

Major commercial players — Total spending on PLM software and services is estunated to be
above $15 billion a year but 1t 1s difficult to find any two market analysis reports that agree on
figures (CIMdata, Oct 2006), (Daratech, Mar 2006). Market growth estirnates are in the 10% area.
Looking at segment spht, currently most of the revenue generated 1s in the area of EDA and
high end MCAD (each above 15%), tollowed by AEC, low-end MCAD, and PDM (each
above 10%). The other notable segment 1s CAE at above 5%. It 1s however predicted that the

collaborative PDM and wvisualization areas will increase in dominance.

There are many comparues that supply software to support the PLM process; the largest by
revenue are mentioned here. Some companies such as Siemens PLM Software ($1.1B), Altair
Engmneenng Inc. ($0.15B), Dassault Systémes ($1.1B), Agile Software Corporation (recently
acquired by Oracle Corporation) and SotTech, Ine. (011B) prowvide software products that
cover most of the areas of PLM functionality; some like PTC ($0.8B) cover a number of
segments; other companies for example MSC Software ($0.3B) prowvide packages specializing

mn specfic topics. One company, Aras Corp olfers Microsolt-based open source enterprise

Umversity of Petroleum & Energy Studies Page 120

Business Transformation through IT

PLM sclutions (Stackpole, 2007) and another Arena Solutions, provides on-demand PLM
software. Additional unique offenngs include Selerant which specializes only in the process
industry and provides formulation optimization and regulatory management. Also, Ommify
Software's PLM incorporates traditionally disparate systems (quality, traming, corrective
action/preventive action) to augment support for regulatory compliance across all verticals ,
provides a web-based PLM sclution called XpressCommerce that mamly services apparel and
footwear retailers and brand manufacturers (Swain, Mar 2007). Independent PLM service
providers such as SIA Conseill, Accenture, Integware and Metafore deliver PLM consulting

services by prowviding information to help companies plan and implement PLM practices,

processes and technologes.

There are also companies whose main revenue is not from PLM but do attnbute some of their
income from PLM software, such as SAP ($11B), SSA Global , Oracle Corporation and
Autodesk ($1.5B). Other companies m this market, such as IBM ($88.9B), EDS ($19.8B),
Accenture, Infosys (INFY), geometricglobal.com, Tata Consultancy Services (T'CS) and, ['TC

Infotech provide outsourcing and consulting services sorne of which 1s in the field of PLM.

4.1.2 QUALITY SERVICES

In the context of software engineenng, software quality measures how well software is
designed (quality of design), and how well the software conforms to that design (quality of
conformance) (Presyman, 2005), although there are several different defimitions. Whereas quality
of conformance 1s concerned with implementation (see Software Quality Assurance), quality of

design measures how valid the design and requirements are in creating a worthwhile product

(Pressman, 2005).

A defimition 1n Steve McConnell's Code Complete similarly divides software into two pieces:
internal and external quality charactenstics. External quality charactenstics are those parts of a
product that face its users, where mteral quality characteristics are those that do not (MeConwel,
1993). Another definition by Dr. Tom DeMarco says "a product's quality 15 a function of how
much 1t changes the world for the better”" (DeMaro, 7299). This can be interpreted as meaning

that user satisfaction 1s more important than anything in deterrmining software quality. Another

Umversity of Petroleum & Energy Studies Page 121

Business Transformation through IT

definition, coined by Gerald Wemnberg in Quality Software Management: Systems Thinking 1s
"Quality 1s value to some person.” This definition stresses that quality is inherently subjective -
different people will experience the quality of the same software very differently. One strength
of this definition 1s the questions it invites software teams to consider, such as "Who are the

people we want to value our software?", and "What will be valuable to them?"

Software reliability 15 an important facet of software quality. It 1s defined as "the probability of
failure-free operation of a computer program 1n a specified environment for a specified time"
(Musa, 1987). One of reliability's distinguishing charactenistics 1s that 1t 1s objective, measurable,
and can be estimated, whereas much of software quality has subjective criterta. This distinction
1s especially important m the discipline of Software Quality Assurance. These measured criteria

are typiczlly called software metrics.

A software quality factor 1s a non-functional requirernent for a software program which is not
called up by the customer's contract, but nevertheless 1s a desirable requirement which

enhances the quality of the software program.

4.1.2.1 Quality Factors

There can be several quality factors. Some of these are elaborated below.

Understandability is the characteristic which a software product possesses 1f the purpose of
the product 1s clear. This goes further than just a statement of purpose - all of the design and
user documentation must be clearly wrtten so that it 1s easily understandable. This 1s obviously
subjective i that the user context must be taken mto account, 1.e. if the software product is to

be used by software engineers it 1s not required to be understandable to the layman.

A sofiware product possesses the characteristic completeness to the extent that all of its
parts are present and each of its parts 1s fully developed. This means that if the code calls a
sub-routine from an extemal library, the software package must provide reference to that

library and all required parameters must be passed. All required mput data must be available.

A software product possesses the characteristic conciseness to the extent that no

excessive nformation 1s present. This 1s important where memory capacity 1s limited, and it 1s

Umversity of Petroleum & Energy Studies Page 122

Business Transformation through IT

umportant to reduce lines of code to a mimmum. [t can be improved by replacing repeated
functionality by one sub-routine or function which achieves that functionality. It also applies to

documents.

A software product possesses the characteristic portability to the extent that it can be
operated easily and well on multiple computer configurations. Portability can rean both
between different hardware setups--such as runring on a Mac as well as a PC--and between

different operating systems--such as running on both Mac OS X and GNU/Linux.

A sofiware product possesses the characteristic consistency to the extent that it contains

uniform notation, symbology and terminology within itself.

A sofiware product possesses the charactenstic maintainability to the extent that it
facilitates updating to satisfy new requirernents. Thus the software product which is
mamntainable should be well-documented, not complex, and should have spare capacity for

memory usage and processor speed.

A sofiware product possesses the characteristic testability to the extent that it facilitates
the establishrment of acceptance cnteria and supports evaluation of its performance. Such a
charactenstic must be builtin during the design phase if the product is to be easily testable - a

complex design leads to poor testability.

A software product possesses the characteristic usability to the extent that i1t 1s convenient
and practicable to use. This 1s affected by such things as the human-computer interface. The
component of the software which has most impact on this 1s the user interface (UI), which for

best usability 1s usually graphical (1.e. 2 GUI).

A sofiware product possesses the characteristic refiability to the extent that it can be
expected to perform its mtended functions satisfactonly. This imphes a time factor in that a
reliable product 1s expected to perfomm correctly over a penod of time. It also encompasses
environmental considerations in that the product is required to perform correctly in whichever

conditions 1t finds itself - this 1s sometimes termed robustness.

Umversity of Petroleum & Energy Studies Page 123

Business Transformation through IT

A sofiware product possesses structuredness to the extent that it possesses a definite
pattemn of organisation 1n 1its constituent parts. A software product wntten m a block-

structured language such as Pascal will satisty this charactenistic.

A software product possesses the characteristic efficiency to the extent that it fulfills 1ts
purpose without waste of resources. This rmeans resources in the sense of mernory utilization

and processor speed.

A software product possesses the characteristic security to the extent that 1t 1s able to
protect data agamnst unauthorized access and to withstand malicious interference with its
operations. Besides presence of appropriate security mechanisms such as authentication, access
control and encryption, secunty also implies relability in the face of malicious, intelligent and

adaptive attackers.

4.1.2.2 Measurement of sofiware quality factors

There are vaned perspectives within the field on measurement. There are a great many
measures that are valued by some professionals, or m some contexts, that are decned as
harmful by others. Sorme believe that quantitative measures of software quality are essential.
Others believe that contexts where quantitative measures are useful are quite rare, and so
prefer qualitative measures. Several leaders in the field of software testing have wntten about

the difficulty of measuring what we truly want to measure well (Hoffman, 2000).

One example of a Popular metric 1s the number of faults encountered in the software.
Software that contains few [aults is considered by some to have higher quality than software
that contains many faults. Questions that can help deterrmune the usefulness of this metricin a

particular context include:

What constitutes ‘many faults'? Does this differ depending on the purpose of the software (e.g.
blogging soltware v. navigational software)? Does this take mto account the size and
complexity of the software? Does this account for the mmportance of the bugs (and the
unportance to the stakeholders of the people those bugs bug)? Does one try to weight this
measure by the seventy of the fault, or the incdence of the users 1t affects? If so, how? And 1f

not, how does one know that 100 faults discovered 1s better than 10002 If the count of faults

Umversity of Petroleum & Energy Studies Page 124

Business Transformation through IT

being discovered is shrnking, how does one know what that means? For example, does that
mean that the product is now higher quality than it was before? Or that this 1s a smaller/less
ambitious change than before? Or that less tester-hours have gone into the project than
before? Or that this project was tested by less skilled testers than before? Or that the team has

discovered that less faults reported 1s in their mterest?

This last question points to an especially difficult one to manage. All software quality metncs
are in some sense measures of human behavior, since humans create software. If a team
discovers that they will benefit from a drop 1 the number of reported bugs, there 1s a strong
tendency for the team to start reporting less defects. That may mean that email begins to
circumvent the bug tracking system, or that four or five bugs get lumped mto one bug report,
or that testers leam not to report minor ANnoyances. The difﬁculty 18 measuﬁng what we mean
to measure, without creating mcentives for software programmers and testers to consciously

or unconsciously "game” the measurements.

Software Quality Factors cannot be measured because of their vague descnption. Tt is
necessary to find measures, or metrics, which can be used to quantify them as non-functional
requiremnents. For example, reliability 1s a software quality factor, but cannot be evaluated in its
own right. However there are related attributes to reliability, which can indeed be measured.
Such attnbutes are mean tune to falure, rate of falure occurrence, availability of the system.

Similary, an attnbute of portability 1s the number of target dependent statements in a program.

A scheme which could be used for evaluating software quality factors is given below. For every
charactenstic, there are a set of questions which are relevant to that charactenstic. Some type
of sconng formula could be developed based on the answers to these questions, from which a

measure of the characteristic may be obtaned.

Understandability — Are variable names descriptive of the physical or functional property
represented? Do uniquely recognizable functions contamn adequate comments so that their
purpose is clear? Are deviations [rom forward logical flow adequately commented? Are all

elements of an array functionally related?

Completeness — Are all of 1ts parts present and each of them fully developed?

Umversity of Petroleum & Energy Studies Page 125

Business Transformation through IT

Conciseness — Are all the codes reachable? Is any code redundant? How many statements
within loops could be placed outside the loop, thus reducing computation time? Are branch

decisions too complex?

Poﬂabf]ityf Does the program depend upon system or library routines unique to a paf[icular
installation? Have machine-dependent statermnents been flagged and commented? Has
dependency on internal bit representation of alpha-numernc or special characters been
avoided? How much effort 1s required to transfer the program from one hardware/software

systermn environment to another?

Consistency — Is one varable name used to represent different physical entities in the
program? Does the program contam only one representation for physical or mathematical
constants? Are functionally similar anthmetic expressions similardy constructed? Is a consistent

scheme for indentation used?

Maintainability — Has some memory capacity been reserved for future expansion? Is the
design cohesive, 1.e., each module has recognizable functionality? Does the software allow fora
change in data structures [object-onented designs are mmore likely to allow for this)? If a
functionally-based design (rather than object-onented), 1s a change lkely to require

restructunng the main-program, or just a module?

Testability — Are complex structures employed i the code? Does the detailed design contain
clear pseudo-code? Is the pseudo-code at a higher level of abstraction than the code? If tasking

1s used m concurrent designs, are schemes available for providing adequate test cases?

Usability — 1s a GUI used? [s there adequate on-line help? Is a user manual provided? Are

meaningful error messages provided?

Reliability —Are loop mdexes range tested? Is input data checked for range errors? Is divide-
by-zero avoided? Is exception handling provided? What is the extent to which a program can

be expected to perform its mtended function with rescission?

Structuredness — Is a block-structured programming language used? Are modules limited in

sizer Have the rules for transfer of control between modules been established and followed?

Umversity of Petroleum & Energy Studies Page 126

Business Transformation through IT

Efficiency —Have functions been optimized for speed? Have repeatedly used blocks of code
been formed mto sub-routines? Checked for any memory leak, overflow? How much amount

of computing resources and codes 1s required by a program to perform its function?

Secuﬂ'lyf Does the software protect itself and 1ts data against unauthonzed access and use?
Does it allow its operator to enforce secunty policies? Are appropnate security mechanisms in
place? Are those secunty mecharusms implemented correctly? Can the software withstand
attacks that must be expected mn its intended environment? s the software free of errors that
would make it possible to circumvent its security mechamsms? Does the architecture lirmut the
impact of yet unknown errors? Security testing in any developed system 1s about finding loops

and weaknesses of the system.

User's perspective — In addition to the technical qualities of software, the end user's
expenence also determnines the quality of software. This aspect of software quality 1s called
usability. It 1s hard to quantify the usability of a given software product. Some important

questions to be asked are:

® Ts the user interface intuitive?

® [sit easy to perform easy operations?

8 Isit feasible to perform difficult operations?

. DOES the SOftWHIe giVE SeﬂSiblE error I’l"lEESSEigESS.D

* Do widgets behave as expected?

® [s the software well documented?

® Is the user interface self~explanatory/ self-documenting?

® [s the user interface responsive or too slow?

Umversity of Petroleum & Energy Studies Page 127

Business Transformation through IT

Last but not the least, the availability of (free or paid) support may determine the usability of
the software. This 1s espeaially important mn today’s context — where the open source software
(OSS) 1s gaining momentum with the advent of Linux. Entire companies have been formed
that specialize in providing support services to the otherwise free OS. IBM Global services, for
example, has given Linux its full backing. Likewise, the other consulting firms in this space also

have their specialization areas as well.

4.1.3 SYSTEMS INTEGRATION

Systern mtegration is the bringing together of the component subsystems into one system and
ensuring that the subsystems function together as a system. In infommation technology,
systerns integration 1s the process of hnking together different computing systems and
software applications physically or functionally. The system mtegrator brings together discrete
systerns utilizing a vanety of techmiques such as computer networking, enterprise application

integration, business process managernent or manual programming.,

A system 1s an aggregation of Subsysterns cooperating so that the system 1s able to deliver the
overall functionality. Systemn mtegration involves integrating existing (often disparate)
subsystems. The subsystems will have mterfaces. Integration involves joining the subsystems
together by “gluing” their interfaces together. If the mnterfaces don’t directly mterlock, the
“olue” between them can provide the required mappings. Systemn integration is about
determining the required “glue”. Systern integration is also about value-adding to the systern,

capabilities that are possible because of interactions between subsystems.

In today’s connected woild, the role of systemn mtegration engineers 1s becoming more and
more inportant: more and more systems are designed to connect together, both within the

systern under construction and to systerns that are already deployed.

A systern integration engineer needs a broad range of skills and 1s likely to be defined by a
breadth of knowledge rather than a depth of knowledge. These skills are likely to include
software and hardware engineering, interface protacols, and general problem solving skills. It 1s

likely that the problerns to be solved have not been solved before except in the broadest sense.

Umversity of Petroleum & Energy Studies Page 128

Business Transformation through IT

They are likely to include new and challenging problems with an input from a broad range of
engineers where the System Integration engineer 'pulls it all together. The areas of
employment are many and vaned, with the increase in 'connectivity' the employment

opportunities are now across the board.

A major employer of the systemn integration engmeer is the defense industry — a major focus
area for these consulting companies; the military are driving the whole discipline of
'connectivity'. The need for information, or more usefully, 'wisdom' 1s an insatiable need.
Dufferent levels of mnformation are needed by different levels of military commanders, from
the broad strategic mformation needed by senior military commanders to the localized

knowledge needed by the front line soldier.

A major measure of the information 1s its 'currentness’, mformation more than a couple of
minutes old is often useless, not only 1s mformation needed about what 1s happening now,
information 1s needed about what 1s likely to happen at some point in the future. In recent
years the job descnption of 'System Integration Engineer’ has become very broad. Any system
that connects to another could be defined as a system that needs integration and, therefore, a
Systern Integration engineer. This trend 1s Likely to continue with the growth of the Intemet

and the utilities that use it.

4.1.3.1 Methods of integration
Vertical Integration 1s process of integrating subsystems according to their functionality by

creating functional entities also referred to as silos. The benefit of this method 1s that the
integration 1s performed fast and with involving only the necessary vendors, therefore, this
method 1s cheaper in short term. On the other hand, cost-of-ownership can be substantially
higher than seen in the other methods, since in case of new or enhanced functionality, the only
possible way to implement (scale the system) would be by implementing another silo. Reusing:

subsystems to create a different level of functionality 1s not possible.

Star Integration or also known as Spaghertti Integration 1s process of integration of the
systerns where each systemn is interconnected to each of the remairung subsysterns. When
observed from the perspective of the subsystermn which has been integrated, it rerninds one of a

star, but when the overall diagram of the system is presented, the connections look like

Umversity of Petroleum & Energy Studies Page 129

Business Transformation through IT

spaghetti, hence, the name of this method. The cost of this method of integration can vary
from the mterfaces which subsystems are exporting. In case m which the subsystems are
exporting vendor-specific mnterfaces, the integration cost can substantially rise. Time and costs
needed to integrate the systems exponentially nses by adding additional subsystems. From the
perspective of implementing new features, this method 1s preferable since it provides extreme

tflextbility to reuse the functionalities from existing subsystem into new system.

Horizontal Integration or Enterprise scrvice bus 1s a method m which a specalized
subsystem (BUS) 1s added to the system which 1s dedicated to communicate with other
subsystems. This allows cutting the number of connections (interfaces) to only one per
subsystem which connects directly to the BUS. The BUS 1s capable to translate the mterface
into another mterface. This allows cutting the costs of mtegration and provides extreme
flexibility. With systems mtegrated by this method, it 1s possible to completely replace one
subsystern with another subsystern which provides sumilar functionality but exports different
interfaces, all this completely transparent for the rest of the subsystems. The only required

thing 1s to implement the new interface between the BUS and the new subsystemn.

4.1.4 ENTERPRISE APPLICATION INTEGRATION

Enterpnse Application Integration (EAL) 1s defined as the uses of software and computer
systerns architectural poneciples to mtegrate a set of enterpnse computer applications. In
today’s competitive and dynamic business environment, applications such as Supply Chain
Management, Customer Relationship Management, Business Intelligence and Integrated
Collaboration environments have become imperative for orgamzations that need to maintain
their competitive advantage. Enterprise Application Integration (EAT) is the process of lnking
these applications and others in order to realize financial and operational competitive

advantages.

When different systems can’t share their data effectively, they create information bottlenecks
that require human intervention in the form of deaision making or data entry. With a propery
deployed EAI architecture, orpanizations are able to focus most of their efforts on their value-

creating core competencies instead of focusing on work flow managernent.

Umversity of Petroleum & Energy Studies Page 130

Business Transformation through IT

For generations, systems have been built that have served a single purpose for a single set of
users without sufficient thought to mtegrating these systemns mto larger systems and multiple
applications. EAI 1s the solution to the unanticipated outcome of generations of development
undertaken without a central vision or strategy. The demand of the enterprise 1s to share data
and processes without having to make sweeping changes to the applications or data structures.
Only by creating 2 method of accomplishing this mtegration can EAI be both functional and
cost-effective. One of the challenges facing modem organizations 1s giving all their workers
complete, transparent and real-time access to mformation. Many of the legacy applications stll
in use today were developed using arcane and propnetary technologies, thus creating
information silos across departmental lines within orgamizations. These systerns hampered
seamless movement of information from one application to the other. EAI, as a discipline,
aims to alleviate many of these problems, as well as create new paradigms for truly lean
proactive organizations. EAI mtends to transcend the simple goal of linking applications, and
attempts to enable new and mnnovative ways ofleveraging orgznizationzl knowledge to create

turther competitive advantages for the enterpnise.

EAI is a response to decades of creating distributed monolithie, single purpose applications
leveraging a hodgepodge of platforms and development approaches. EAI represents the
solution to a problemn that has existed since applications first moved from central processors.
Undoubtedly, there are a number of mstances of stovepipe systems i an enterpnse, such as
inventory control systems, sales automation systems, general ledger systems, and human
resource systems. These systems typically were custom-built with specific needs m nund,
utilhzing the technology-of-the-day. Many used non-standard data storage and application
development technology. There are some basic reasons for EAI in large orgamzations.
Enterpnse Application Integration has increased in importance because enterprise computing
often takes the form of islands of automation. This occurs when the value of individual
systemns are not maxirmized because of the partial or full 1solation. If integration is applied
without following a structured EAL approach, point-to-point connections grow across an
organization. Dependencies are added on an impromptu basts, resulting in a tangled mess that
1s difficult to mamtain. This i1s commonly referred to as spaghetti, an allusion to the

programming equivalent of spaghetti code. For example:

Umversity of Petroleum & Energy Studies Page 131

Business Transformation through IT

The number of n ewnnections needed to have a fully meshed point-to-point connections is

given by

n{n —1)
2

Thus, for 10 applications to be fully integrated point-to-point,

(10)(9)

9

et

or 45 pont-to-point connections are needed.

Howrever, EAT is not just about sharing data between applications;, it fomses on sharing both
business data and business process. Aftending to EAT inwolves locking at the system of
systems, which inwolves large scale inter-disciplinary problems =with multiple, heterogenecus,

distributed systems that are embedded in netarorks at multiple levels.
EAT can be used for different purposes:

1) Data {information) mtegration: ensuring that information in multiple systems is kept

condstent. This is dso known as EII (Enterprise Inform ation Integration),
by Process integration: linking business processes aaross applications.

<) Wendor independence: extracting business policies or riles from applications and
implementing them in the AT systemn, so that even if one of the business applications
is replaced with a different vendor's application, the business mles do not have to be

re-implemented.

d) Commen facade: An EAT system oould front-end a duster of applications, providing a
single consistent access interface to these applications and shielding users from having

to learn to interact with different applications.

Uniwversityof Petroleur & Energy 5 tudies Page 132

Business Transformation through IT

4.1.4.1 Integration Patterns
There are two pattems that EAI systerns imnplerent:

Medriation: Here, the EAL system acts as the go between or broker between (interface or
commumnicating) multiple applications. Whenever an interesting event occurs in an application
(e.g., new mlormation created, new transaction completed, ete.) an integration module in the
EAL systern 1s notified. The module then propagates the changes to other relevant

applications.

Federation: In this case, the EAI system acts as the overarching facade across multiple
applications. All accesses from the 'outside world' to any of the applications are front-ended by
the EAI systemn. The EAI systemn is configured to expose only the relevant information and
interfaces of the underlying applications to the outside world, and performs all interactions

with the undedying applications on behalf of the requester.

Both patterns are often used concurrently. The samne EAL systern could be keeping multiple
applications i sync (rmediation), while servicing requests from extemal users against these

applications (federation).

Access Patterns — EAL supports both asynchronous and synchronous access patterns, the

former being typical in the mediation case and the latter in the federation case.

Lifetime Patterns — An integration operation could be short-lived (e.g., keepimng data in sync
across two applications could be completed within a second) or long-lived (eg., one of the
steps could mnvolve the EAI system interacting with a human work flow application for

approval of a loan that takes hours or days to complete).

EAI Topologies — 'There are two major topologies: hub-and-spoke, and bus. Each has its
own advantages and disadvantages. In the hub-and-spoke model, the EAI systemn 1s at the
center (the hub), and interacts with the applications via the spokes. In the bus model, the EAI
system 1s the bus (or is implemented as a resident module in an already existing message bus or

message-orented rmddleware).

Umversity of Petroleum & Energy Studies Page 133

Business Transformation through IT

4.1.4.2 Technologies
Multiple technologies are used in unplementing each of the components of the EAT systemn:

Bus/hub: 'This 1s usually implemented by enhancing standard middleware products
(application server, message bus) or unplemented as a stand-alone program (1.e., does not use

any muddleware), acting as its own mmddleware.

Application connectivity: The bus/hub connects to applications through a set of adapters
(also referred to as connectors). These are programs that know how to interact with an
underlying business application. The adapter performs two-way communication, performing
requests from the hub against the application, and notifying the hub when an event of interest
oceurs in the application (a new record inserted, a transaction completed, ete.). Adapters can
be speaific to an application (e.g,, built against the application vendor's client libraries) or
specific to a class of applications (e.g., can interact with any application through a standard
communication protocol, such as SOAP or SMTP). The adapter could reside m the same
process space as the bus/hub or execute i a remote location and interact with the hub/bus
through industry standard protocols such as message queues, web services, or even use a
propaetary protocol. In the Java world, standards such as JCA allow adapters to be created in a

vendor-neutral manner.

Data format and transformation: To avoid every adapter having to convert data to/from
every other applications' formats, EAT systemns usually stipulate an application-independent (or
common) data format. The EAI system usually provides a data transformation service as well
to help convert between application-speaific and common formats. This 1s done in two steps:
the adapter converts information from the application's format to the bus's common format.
Then, semantic transformations are applied on this (converting zip codes to city names,
sphitting/merging objects from one application into objects in the other applications, and so

on).

Integration modulfes: An EAl system could be participating in multiple concurrent
integration operations at any given tirne, each type of integration being processed by a different
integration module. Integration modules subscribe to events of specific types and process

notifications that they recerve when these events occur. These modules are implemented in

Umversity of Petroleum & Energy Studies Page 134

Business Transformation through IT

different ways: on Java-based BEAI systems, these could be web applications or E]Bs or even
POJOs that conform to the EAI system's specifications.

Supporr for transactions: When used for process integration, the EAI system also provides
transactional consistency across applications by executing all mntegration operations across all
applications in a single overarching distnbuted transaction (using two-phase comrmit protocols

or compensating transactions).

4.1.4.3 Commumnication Architectiire

Currently, there 1s a lot of vanation of thought on what constitutes the best infrastructure,
component model, and standards structure for Enterprise application integration. There seems

to be consensus that four things are essential for modem enterprise application arclhutecture:

1) There mneeds to be a centralized broker that handles secunty, access, and
comumunication. This can be accomplished through integration servers (like the School
Interoperability Framework (SIF) Zone Integration Servers) or through sirmilar
software like the Enterprise service bus (ESB) model which acts as a SOAP-onented

services manager.

2) 'The use of an independent data model based on a standard data structure. It appears
that XML and the use of XML style sheets has become the de facto and m some cases

de jure standard.

3) A connector, or agent, rnodel where each vendor, application , or interface can build a

sigle component that can speak natively to that application and communicate with

the centralized broker.

4) A systern model that delines the APls, data flow and rules of engagement to the

systern such that components can be built to mterface with 1t in a standardized way.

Although other approaches like connecting at the database or user-interface level have been
explored, they have not been found to scale or be able to adjust. Individual applications can
publish messages to the centralized broker and subscribe to recetve certain messages from that

broker. Each application requires only one connection to the broker. This central control

Umversity of Petroleum & Energy Studies Page 135

Business Transformation through IT

approach can be extremely scalable and highly evolvable. Enterprise Application Integration 1s
related to the muddleware technologies such as message-onented muddleware (MOM), and data
representation technologies such as XML. Other EAI technologies inveolve using web services
as part of service-onented architecture as a means of integration. Enterprise Application
Integration tends to be data centric. In the near future, it will come to include content

integration and business processes.

4.1.5 INFRASTRUCTURE MANAGEMENT SERVICES

For an orpanization's information technology, infrastructure management (IM) 1s the
management of essential operation components, such as policies, processes, equipment, data,
human resources, and external contacts, for overall effectiveness. Infrastructure managernent 1s
sometimes divided into categornies of systems management, network management, and storage
managernent. Infrastructure management products are available from a number of vendors
ncluding Hewlett-Packard, IBM, CA and Microsoft. According to an IDC survey (DC, 2003)
of 105 enterprise business and technology professionals, centralized I'T operations and
technology standardization are growing as the pressure to align I'T with business processes
increases. Yet users continue to underestinate the time [rame for developing business
innovation from their technology investments. To avoid expensive project failures and
increase the success of managing business services, [IDC believes that mnfrastructure

managernent offers the greatest irnpact on revenue for businesses.

As I'T organizations change to become more service-centnc and move away from component
managernent, they must address technology archutecture changes, process adjustments, and
stafl training. It's clear, through the survey respondents, that these areas will be at the top of
mind for most I'T and business professionals dunng the next 5-10 years, as linking business
and technology processes grows i unportance and wnpact. To increase the success of both
technology mnvestments and new business services, IDC advises businesses to mcrease the
communications between ['T and business professionals, be flexable to necessary orgamzational
changes, and have a vision that 1s supported by C-level executives and propagated throughout

the vanous I'T groups.

Umversity of Petroleum & Energy Studies Page 136

Business Transformation through IT

4.1.6 TESTING SERVICES

Besides the testing methodologies mentioned and explained earlier that are normally
undertaken by the development house itself using a specialist tearn, automated testing services
are also provided by these consulting services. Test autormnation 1s the use of software to
control the execution of tests, the companson of actual outcormnes to predicted outcornes, the
seting up of test preconditions, and other test control and test reporting functions.
Commonly, test automation mvolves automating a manual process already in place that uses a

formalized testing process.

Over the past few years, tools that help programrmers quickly create applications with graphical
user interfaces (GUI) have dramatically improved programmer productivity. This has increased
the pressure on testers, who are often perceived as bottlenecks to the delivery of software
products. Testers are being asked to test more and more code i less and less time. Test
automation 1s one way to do thus, as manual testing 1s time consurnung. As different versions of
soltware are released, the new features will have to be tested manually tume and again. But,
now there are tocls available that help the testers in the automation of the GUI which reduce
the test tiune as well as the cost; other test automation tools support execution of performance
tests, Many test automation tools provide record and playback features that allow users to
record interactively user actions and replay 1t back any number of times, companng actual
results to those expected. However, rehance on these features poses major reliability and
mamtainability problems. Most successful automators use a software engineenng approach,
and as such most senous test automation 1s undertaken by people with development

experience.

A growing trend in software development is to use testing frameworks such as the xUnit
frameworks (for example, JUmt and NUmit) which allow the code to conduct umut tests to
determine whether vanous sections of the code are acting as expected i vanous
circumnstances. Test cases descrnbe tests that need to be run on the program to venfy that the
program runs as expected. All three aspects of testing can be autornated. Another imnportant
aspect of test autornation 1s the 1dea of partial test automation, or autornating parts but not all

of the software testing process. If, for example, an oracle cannot reasonably be created, or if

Umversity of Petroleum & Energy Studies Page 137

Business Transformation through IT

fully automated tests would be too difficult to maintain, then a software tools engineer can
mstead create testing tools to help human testers perfonm their jobs more efficiently. Testing
tools can help automate tasks such as product mstallation, test data creation, GUI interaction,
problem detection (consider parsing or polling agents equipped with oracles), defect logaing,

etc., without necessarily automating tests m an end-to-end fashion.

Test autornation 1s expensive and it 1s an addition, not a replacement, to manual testing. [t can
be made cost-effective in the longer term though, especially i regression testing. One way to
generate test cases automatically 1s model-based testing where a model of the system 1s used

for test case generation, but research continues mto a variety of methodologies for doing so.

4.1.7 SERVICE ORIENTED ARCHITECTURE

Service Onented Architecture (SOA) 1s an architectural style that guides all aspects of creating
and using business processes, packaged as services, throughout their hifecycle, as well as
defining and provisioning the IT infrastructure that allows different applications to exchange
data and participate in business processes regardless of the operating systems or programming
languages underdying those applications. SOA represents a model in which functionality 1s
decomposed mto small, distinct units (services), which can be distnbuted over a network and
can be combined together and reused to create business applications. These services
comrmunicate with each other by passing data from one service to another, or by coordinating
an activity between one or more services. [t 1s often seen as an evolution of distnbuted

computing and modular programmung.

Companies have long sought to integrate existing systems m order to mmplement information
technology (IT) support for business processes that cover all present and prospective systermns
requiremnents needed to run the business end-to-end. A varety of designs can be used to this
end, ranging from ngid point-to-point electronic data mterchange (EDI) interactions to Web
auctions. By updating older technologies, such as Intemet-enabling EDI-based systems,
comparies can make their IT systerns available to intemal or external custorners; but the
resulting systems have not proven to be flexible enough to meet business demands. A flexable,

standardized architecture 1s therefore required to better support the connection of various

Umversity of Petroleum & Energy Studies Page 138

Business Transformation through IT

applications and the sharing of data. SOA 1s one such architecture. It unifies business
processes by structunng large applications as an ad-hoc collection of smaller modules called
services. These applications can be used by different groups of people both inside and outside
the company, and new applications built from a mix of services from the global pool exhibit
greater flexibility and uniformity. One should not, for example, have to prowide redundantly
the same personal information to open an online checking, savings or IRA account, and
turther, the interfaces one interacts with should have the same look and feel and use the same
level and type of mnput data validation. Building all applications from the same pool of services
makes achieving this goal much easier and more deployable to affiliate companies. An example
of this mught be mnteracting with a rental car company's reservation system even though you

are doing so from an airline's reservation system.

SOAs build applications out of software services. Services are relatively large, mtrnsically
unassociated units of functionality, which have no calls to each other embedded in them. They
typically implement functionalities most humans would recognize as a service, such as filling
out an online application for an account, viewing an online bank staternent, or placing an
online book or airline ticket order. Instead of services embedding calls to each other in their
source code, protocols are defined which descnibe how one or more services can talk to each
other. This architecture then relies on a business process expert to link and sequence services,

in a process known as orchestration, to meet a new or existing business system requirement.

Relative to earlier attempts to promote software reuse via modulanty of functions, or by use of
predefined groups of functions known as classes, SOA's atomuc level objects are 100 to 1,000
times larger, and are associated by an application designer or engmeer using orchestration. In
the process of orchestration, relatively large chunks of software functionality (services) are
associated in a non-hierarchical arrangement (in contrast to a class's hierarchies) by a software
engineer, Or process engireer, using a special software tool which contains an exhaustive list of
all of the services, their charactenistics, and a means to record the designer's choices which the

designer can manage and the software system can consume and use at run-tume.

Undertlying and enabling all of this 1s metadata which 1s sufficient to descnbe not only the

charactenstics of these services, but also the data that drnives them. XML has been used

Umversity of Petroleum & Energy Studies Page 139

Business Transformation through IT

extensively in SOA to create data which 1s wrapped in a nearly exhaustive description
contamer. Analogously, the services themselves are typically descobed by WSDL, and
communications protocols by SOAP. Whether these descnption languages are the best
possible for the job, and whether they will remain the favonites going forwards, 1s at present an
open question. What 1s certain is that SOA 1s utterly dependent on data and services that are
described usimng some implementation of metadata which meets two cnteria. The metadata
must be 1n a form which software systems can consume to dynamically configure to maintain
coherence and mntegnty, and in a form which systern designers can understand and use to

manage that metadata.

The goal of SOA is to allow fairly large chunks of functionality to be strung together to form
ad-hoc applications which are built almost entirely from existing software services. The larger
the chunks, the fewer the interface poimnts required to implement any given set of functionality;
however, very large chunks of functionality rmay not be granular enough to be easily reused.
Each interface brings with 1t some amount of processing overhead, so there 1s a performance
consideration in choosing the granulanty of services. The great promise of SOA 1s that the
margnal cost of creating the n-th application is zero, as all of the software required already
exists to satisfy the requirements of other applications. Only orchestration is required to

produce a new application.

The key 1s that there are no interactions between the chunks speafied within the chunks
themselves. Instead, the interaction of services (all of whom are unassociated peers) 1s
specified by humans i a relatively ad-hoc way with the mntent drven by newly emergent
business requirements. Thus the need for services to be much larger units of functionality than
traditional functions or classes, lest the sheer complexity of thousands of such granular objects

overwhelm the application designer. The services themselves are developed using traditional

languages like Java, CH#, C++, C or COBOL.

SOA services are loosely coupled, 1 contrast to the functions a linker binds together to form
an executable, a dynamucally linked library, or an assembly. SOA services alsc run m "safe”
wrappers such as Java or NET, which manage memory allocation and reclarnation, allow ad-

hoc and late binding, and provide some degree of indeterminate data typing.

Umversity of Petroleum & Energy Studies Page 140

Business Transformation through IT

Increasing numbers of third-party software comparues are offering software services for a fee.
In the future, SOA systems may consist of such third-party services combined with others
created m-house. This has the potential to spread costs over many customers, and customer
uses, and promotes standardization both in and across industres. In particular, the travel
industry now has a well-defined and documented set of both services and data, sufficient to
allow any reasonably competent software engineer to create travel agency software using
entirely off-the-shelf software services. Other industnes, such as the finance industry, are also

making significant progress in this direction.

SOA 1s an architecture that relies on service-onientation as 1ts fundamental design pnneciple. In
an SOA environment mdependent services can be accessed without knowledge of their

underlying platforrn implementaﬁon (LTagole, 2003).

Base requiremnents for an SOA — In order to efficiently use an SOA, one must meet the

following requirements:

a) Interoperability between different systems and programming languages provides the
basis for integration between applications on different platforms through a
communication protocol. One example of such communication 1s based on the
concept of messages. Using messages across defined message channels decreases the
complexaty of the end application thereby allowing the developer of the application to
focus on true application functionality instead of the intnecate needs of a

comimunication protocol.

b) Desire to create a federation of resources. Establish and mamtan data flow to a
federated data warehouse. This allows new functionality developed to reference a

common business format for each data element.

Web services can be used to implement a service-onented architecture. A major focus of Web
services 1s to make functional building blocks accessible over standard Internet protocols that
are independent from plattorms and programming languages. These services can be new

applications or just wrapped around existing legacy systemns to make them network-enabled.

Umversity of Petroleum & Energy Studies Page 141

Business Transformation through IT

Each SOA bulding black can play one or more of three roles:

1. Service provider — The service provider creates a Web service and possibly publishes
its interface and access information to the service registry. Each provider must decide
which services to expose, how to make trade-offs between Security and easy
availability, how to pnee the services, or, if they are free, how to exploit them for other
value. The provider also has to decide what category the service should be listed in for
a given broker service and what sort of trading partner agreements are required to use

the service.

2. Service broker — The service broker, also known as service registry, is responsible for
making the Web service interface and implementation access information available to
any potential service requestor. The implementer of the broker decides about the
scope of the broker. Public brokers are available through the Internet, while private
brokers are only accessible to a limuted audience, for example, users of a company
mtranet. Furthermore, the amount of the offered information has to be decided. Some
brokers specialize in many listings. Others offer high levels of trust m the listed
services. Some cover a broad landscape of services and others focus within an industry.
There are also brokers that catalog other brokers. Depending on the business rmodel,
brokers can attempt to maxirmize look-up requests, number of listings or accuracy of
the listings. The Universal Descnption Discovery and Integration (UDIDI)

specification defimes a way to publish and discover infonmation about Web services.

3. Service requestor — The service requestor or Web service client locates entries in the
broker registry using vanous find operations and then binds to the service provider in

order to invoke one of 1ts Web services.

Architecture 1s not tied to a specific technology (Erf 2005). It may be implemented using a wide
range of technologies, including SOAP, RPC, DCOM, CORBA, Web Services or WCF. SOA
can be implemented using one or more of these protocols and, for example, rmight use a file
systern mechanism to cormmmunicate data conforming to a defined mnterface specification

between processes conformng to the SOA coneept.

Umversity of Petroleum & Energy Studies Page 142

Business Transformation through IT

The key 15 independent services with defined interfaces that can be called to perform their
tasks 1 a standard way, without the service having foreknowledge of the calling application,
and without the application having or needing knowledge of how the service actually performs

its tasks.

SOA can also be regarded as a style of infonmation systems architecture that enables the
creation of applications that are built by combining loosely coupled and interoperable services.
These services inter-operate based on a formmal defimtion (or contract, e.g., WSDL) that 1s
independent of the underdying platform and programming language. The interface definition
hides the implementation ot the language-specific service. SOA-based systems can therefore
be independent of development technologies and platforms (such as Java, NET etc). Services
watten m CH munmng on NET platforms and services watten in Java munning on Java EE
plattorms, for example, can both be consumed by a common composite application (or client).
Applications runmng on either platform can also consume services runming on the other as
Web services, which facilitates reuse. Many COBOL legacy systems can also be wrapped by a
managed environment and presented as a software service. This has allowed the useful life of
many core legacy systems to be extended imndefinitely no matter what language they were

origin zlly written 1n.

SOA can support mntegration and conschdation activities within complex enterprise systerns,
but SOA does not speafy or provide a methodology or framework for documenting
capabilities or services. High-level languages such as BPEL and specifications such as WS-
CDL and WS-Coordination extend the service concept by providing a method of defining and
supporting orchestration of fine gramned services mto more coarse-grained business services,
which m turn can be incorporated into workflows and business processes implemented in
composite applications or portals. The use ol Service component architecture (SCA) to

implement SOA 1s a current area of research.

Enterpnse architects believe that SOA can help businesses respond more quickly and cost-
effectively to chznging market conditions [7] This Style of architecture prornotes reuse at the
macro (service) level rather than micro (classes) level. It can also simplify interconnection to -

and usage of exasting I'T (legacy) assets.

Umversity of Petroleum & Energy Studies Page 143

Business Transformation through IT

In some respects, SOA can be considered an architectural evolution rather than a revolution
and captures many of the best practices of previous software architectures. In commumcations
systems, for example, there has been little development of sclutions that use truly static
bindings to talk to other equipment in the network. By formally embracing an SOA approach,
such systems are better positioned to stress the importance of well-defined, highly inter-

operable interfaces.

It may be asked whether SOA 1s just a revival of modular programming (1970s), event-
onented design (1980s) or interface/component-based design (1990s). SCA promotes the goal
of separating users (consumers) from the service implementations. Services can therefore be
run on varous distnbuted platforms and be accessed across networks. This can also masxanuize
reuse of services. SAP 1s doing a lot of work in this area and have designed their current ERP

release (mpSAP 2005) around SOA.

The following guiding principles define the ground rules for development, maimntenance, and

usage of SOA (Baker, 2004)

* Reuse, granularity, modulanty, composability, componentization, and interoperability

® Complance to standards (both common and industry-specific)

® Services identification and categonzation, provisioming and delivery, and momitonng

and trackin g

The following specific architectural prneiples for design and service definition focus on

speafic themes that mnfluence the intonsic behavior of a system and the style of its design:

® Service Encapsulation - A lot of existing web-services are consolidated to be used
under the SOA Architecture. Many a times, such services have not been planned to be

under SOA.

* SeriCEE LOOSG COLlpliI'lg = SeriCGS maintain a relationship thﬂt I’l’]iﬂiﬁ']_iZES dependencies

and only requires that they maimntain an awareness of each other

Umversity of Petroleum & Energy Studies Page 144

Business Transformation through IT

® Service contract - Services adhere to a comrnunications agreernent, as delined

collectively by one or more service descnption documents

¢ Service abstraction - Beyond what 1s descobed in the service contract, services hide

logic tfrom the cutside world

® Service reusability - Logic 1s divided into services wath the mtention of promoting reuse

® Service composability - Collections of services can be coordinated and assembled to

form composite services

® Service autonomy — Services have control over the logic they encapsulate

® Service optimization — All else equal, high-quality services are generally considered

preferable to low-quality ones

® Service discoverability — Services are designed to be outwardly descriptive so that they

can be fOUIld B_I'Id H.SSESSGCI Viﬂ. available diSCOVEfy I’HeChHIliSI’IlS

In addition, the following factors should also be taken into account when defining an SOA

implementation:

® SOA Reference Architecture covers the SOA Reference Architecture, which
provides a worked design of an enterprise-wide SOA mmplementation with detailed
architecture diagrams, component descriptions, detailed requirements, design
patterns, opinions about standards, patterns on regulation compliance, standards

templates etc.
P

® [ife cycle management SOA Practitioners Guide Part 3: Introduction to Services
Lifecycle introduces the Services Lifecycle and provides a detailed process for
services management though the service lifecyde, from inception through to

retirement or repurposing of the services. It also contains an appendix that

Umversity of Petroleum & Energy Studies Page 145

Business Transformation through IT

ncludes organization and governance best practices, templates, comments on key

SOA standards, and recommended links for more information.

® [Dfficient use of system resources

® Service matunty and perfommance

» [FAI Enterpnise Application Integration

There are also some challenges SOA faces. One obvious and common challenge faced 1s
managing services metadata. SOA-based environments can include many services which
exchange messages to perform tasks. Depending on the design, a single application may
generate millions of messages. Managing and providing information on how services interact 1s
a complicated task. Another challenge is providing appropnate levels of secunty. Secunty
model buit into an application may no longer be appropriate when the capabilities of the
application are exposed as services that can be used by other applications. That 1s, application-
managed secunty is not the right model for securing services. A number of new technologies
and standards are emerging to provide more appropnate models for secunty in SOA. As SOA
and the WS-* specifications are constantly being expanded, updated and refined, there 1s a
shortage of skilled people to work on SOA based systems, including the integration of services

and construction of services infrastructure.

Interoperability 1s another important aspect m the SOA implementations. The WS-I
organization has developed Basic Profile (BP) and Basic Secunty Profile (BSP) to enforce
compatibility. Testing tools have been designed by WS-I to help assess whether web services
are conformant with WS-I profile guidelimes. Additionally, another Charter has been
established to work on the Reliable Secure Profile. There is significant vendor hype concerning
SOA that can create expectations that may not be fulfilled. Product stacks are still evolving as
early adopters test the development and runtime products with real world problems. SOA
does not guarantee reduced IT costs, improved systems agility or faster time to market.
Successful SOA implementations may realize some or all of these benefits depending on the

quality and relevance of the systemn architecture and design (Computernorid, July 2006).

Umversity of Petroleum & Energy Studies Page 146

Business Transformation through IT

SOA has also been cnticized on several fronts. Some criticisms of SOA are based on the
assumption that SOA 1s just another teom for Web Services. For example, some cntics claum
SOA results in the addition of XML layers introducing XML parsing and composition. In the
absence of native or binary forms of Remote Procedure Call (RPC) applications could run
slower and require more processing power, increasing costs. Most implementations do incur
these overheads, but SOA can be implemented using technologies (for example, Java Business
Integration (JBI})) which do not depend on remote procedure calls or translation through
HXML. At the same tirne, there are emergping, open-source XML parsing technologies, such as
VTD-XML, and wvarious XML-compatible binary formats that promise to significantly

unprove the SOA performance.

Stateful services require both the consumer and the prowvider to share the same consumer-
specific context, which 1s either included in or referenced by messages exchanged between the
provider and the consurner. The drawback of this constraint 1s that it could reduce the overall
scalability of the service provider because it might need to remember the shared context for
each consurner. [t also increases the coupling between a service provider and a consumer and
makes switching service providers more difficult. Another concem 1s that WS-* standards and
products are still evolving (e.g., transaction, secunty), and SOA can thus mtroduce new nsks
unless properly managed and estimated with additional budget and contingency for additional
proof of concept work. An mfonmal survey by Network Computing placed SOA as the most
despised buzzword (November 2006). Some cntics feel SOA 1s merely an obwvious evolution of

currently well-deployed architectures (open interfaces, etc).

SOA architecture 1s the first stage of representing the system components that mterconnect
tor the benefit of the business. At this level a SOA is just an evolution of an existing
architecture and business functions. SOAs are nonmally assoaiated with interconnecting back
end transactional systems that are accessed wvia web services. The real 1ssue with any IT
"architecture” 15 how one defines the information management model and operations around
it that deal with information prvacy, reflect the business's products and services, enable
services to be delivered to the customers, allow for self care, preferences and entitlements and
at the same time embrace identity management and agility. On this last point, systermn

modification (agility) 1s a cnitical 1ssue which 1s normally ormutted from I'T system design. Many

Umversity of Petroleum & Energy Studies Page 147

Business Transformation through IT

systerns, mcluding SOAs, hard code the operations, goods and services of the orpanization
thus restncting their online service and busimness agility in the global market place. Adopting
SOAs 1s therefore just the first (diagrammatic) step 1 defining a real business system. The next
step 1n the design process is the definition of a Service Delivery Platform (SDP) and its
implementation. It is in the SDP design phase where one defines the business information
models, identity management, products, content, devices, and the end user service
charactenistics, as well as how agile the system 1s so that it can deal with the evolution of the

business and its customers.

One area where SOA has been gaining ground 1s in its power as a mechanism for defining
business services (Jones 2006) and operating models and thus providing a structure for IT to
deliver against the actual business requirements and adapt in a similar way to the business. The
purpose of using SOA as a business mapping tool 15 to ensure that the services created
adequately represent the business view and are not just what technologists think the business
services should be. At the heart of SOA planning 1s the process of defining architectures for
the use of information in support of the business, and the plan for unplementing those
architectures (Enterprise Avchitecture Planning by Steven Spewak and Steven Hilf) Enterprise Business
Architecture should always represent the highest and most doeminant architecture. Every
service should be created with the intent to bnng value to the business i some way and must

be traceable back to the business architecture.

Within this area, SOMA (Service-Ortented Modeling and Architecture) was announced by
IBM as the first publicly announced SOA-related methodology in 2004. Since then, efforts
have been made to move towards greater standardization and the involvement of business
objectives, particularly within the OASIS standards group and specifically the SOA Adoption
Blueprints group. All of these approaches take a fundamentally structured approach to SOA,
focusing on the Services and Architecture elements and leaving implementation to the more

techmieally focused standards.

Umversity of Petroleum & Energy Studies Page 148

Business Transformmation through IT

4.1.8 COMPLIANCE

This is one of the current emerging areas worldwide that is getting more widely adopted as
well as matured in terms of standards and specifications. Common sets of compliance
wotldwide a3z shown in Table 4.1 indude;

Table 4.1 - Commen sets of comphance wotldunde

Global & Emerging Regulations
- USA: SOX

= Japan: J-50X

* UK: Combined Code

" France: LSF

- Italy: 231 & 262

® sSweden: Corporate Code

® Switzerland: Swiss Code

5 EU: 4th 7th § 8 Directives

" PBrazil: Governanca Corportiva
" Russia: Order No. 04-1245

" India: Clause 49

® China: SASAC Directive

® Australia: CLERP 9

- Global: BASEL Il

etc.

Reference:
Emst & Young LLP, 2006, Leveraging Value from internal Controls, Ernst & Young EYGM Limited,

There are 2 myriad of technologies and wendors to support an organization’s quest for
achieving compliance. These range from products in data storage to security and identity based
access. It is the domain of these consulting companies to select an sppropriate product {or

combination of products) and technology to enable their clients to get results.

To recapitulate, in chapter three and four, I hawe explained and examined IT tools,
technologes and methodologies that the consulting companies have deweloped practices in the
different areas of Information Technology. In the following chapter, I cover the target clientele
of these companies in the Energy and allied sectors, and examine, through a series of cases the
benefits that have acaued to these companies’ clients by wirtue of their efforts and proper

mmplementation of the IT tools and methodologies.

Untversity of Petroleum & Energy 3 tudies Page 149

