CHAPTER-4
METHODOLOGY

49

The chapter describes the methodology used for system development. First
the reading and testing of flex sensor is done and controller is programmed
accordingly. To ensure the optimize solution to the problem statement for current
thesis two approaches are considered. First is implementation of designed system
with the selected components and check the performance with experimental set
up. Testing is performed on age group of 18-25 years during different time spam
of year, to check the variation in the output of sensor due to change in weather
conditions and system is found stable w.r.t to change in weather in Dehradun,
Uttrakhand, India where temperature variation is from 4°C- 40°C during winters
and summer season.

The complete system is analyzed with the help of specially designed
LabVIEW GUI. Two different GUI are designed one for analyzing the flex sensor
output values at helmet node and other for the complete system analysis for
ignition of vehicle which depends on flex sensors average value and RFID code.
Second approach is modelling of microcontroller chip for the proposed system
with required features and I/O pins to provide an optimize solution in form of
specially designed microcontroller. Two high speed microcontroller chips are
designed one for the helmet node and other for two-wheeler node.

By applying hypothesis on the statistical data collected from different
samples threshold value of flex sensors is calculated for setting the appropriate

level to ignite the vehicle.

4.1 Read the Flex Sensor

Flex sensor is used for sensing change strain exerted between head and
helmet, when driver wears it. Flex is a low cost sensor and it is simple to use it. It
is basically a variable resistor, value of which varies according to change in strain.
The value of resistance decreases with increase in change in angle of the sensor.
Fig.4.1 shows the arrangement for reading the flex sensor.

50

ANALOG OUT

Fig.4.1 Arrangement for reading flex sensor

Output voltage for flex is given as equation below-

flex(V) = flexADC « (1‘:;3)

lexR
st = (25 e

Vce

flex(V)—l)

flex(R) =R = (

R=47K

Here-

R = Resistance connected to flex
Flex(R)= Resistance by Flex sensor
Vcc = Input Voltage (V)

V = Analog output

51

Eq.4.1
Eq.4.2

Eq.4.3

4.1.1 Placement of the Flex Sensors

Helmet standards agencies identified four pressure points in the helmet
where maximum change in pressure exerts when an accident happens. As shown
in Fig.4.2 these points are B (front side of head), Z&X (right and left side of head
slightly above to ears) ,R (back side of head) [law.resource.org].

While wearing helmet three points B, Z, X exerts pressure, so these three
points are considered for placement of flex sensors, so that it can be verified that
driver is wearing helmet or not. While designing microcontroller chip four analog
sensor input pins are considered so that the same microcontroller can be used in

future to analyze accident impact on head.

Cantral vertical axis

Fig.4.2 Placement of flex sensors

4.2 RFID Code Extraction

To identify the authorized person, RFID tags are used with RFID reader
which is placed at two wheeler node. Each RFID tag has a unique twelve byte
code which needs to be extracted from the tag and same needs to write in the
program. Then controller has to identify predefined code when user swipes RFID

52

tag on the RFID reader. A small circuit needs to be developed for extracting the
code from RFID tag. The extracted code can be checked on software terminal
V1.9. Fig.4.3 shows the circuit diagram for code extraction of RFID tag with

Atmega microcontroller.

RFID TAG
1w
A
1 i
B g— 6L BT G
2 licigms
2 ik -2 "_HW Ul
E L pcamg iz -2 i
?— LTI ¢ Th ok |6
I pesml mmc L
2 L acamany ! LG Tour pit—
2 lpeimsc mamct -2 E A s fm 2 | = C4
mamIc3 |- Iy T B 1F
:; AR PHRICH —i S raur Fan [
9 jam LE o SAICS |
B oawm IS 15 Q Q
8 3 U Rt -2 5 L
E onocs ARRRRERD
g— ASOCHA FOTICK —; o o ‘
L2 1 Ao i - Gl
I wnges PRZARDNT? |- 1F []
PEmItOc |- T ¢ B e
5 T % '
MENOS) o
L i M) G
I gk —{ }—
RFID Reader i o

Fig.4.3 Circuit diagram for RFID code extraction

Circuit Diagram

Connections:

1. Connect 2 and 3 no. pins of DB9 connector to 14(R2-IN) and 13(T2-OUT) Pins
of MAX232 IC respectively.

2. Connect 11(T2-IN) pin of MAX232 to 15(TX) of Atmega32.

3. Connect capacitor between 1 and 3 of MAX232 where (+) terminal of capacitor
is connected to 1 no. pin and 3 with (-) terminal of capacitor.

4. Connect capacitor between 4 and 5 of MAX232 where (+) terminal of capacitor
is connected to 4 no. pin and 5 with (-) terminal of capacitor.

5. Connect capacitor between 2 and 16 of MAX232 where (+) terminal of
capacitor is connected to 2 no. pin and 16 with (-) terminal of capacitor.

53

6. Connect capacitor between 6 and 15 of MAX232 where (+) terminal of
capacitor is connected to 6 no. pin and 15 with (=) terminal of capacitor.

7. Connect 7 no. pin (data) of RFID to 14(RX) no. of pin of Atmega32.

8. Connect 1 and 6 pin of RFID to Vcc(+5V) and 2 no. pin to Ground.

DB9 connector directly can be connected with PC/laptop to see the code
on Terminal V1.9, as shown in Fig.4.4.

\d Terminal v1.9b - 20041226 - by Brdy++

| COM Port Baud rate 1~ Diata bitsr) Pty — ~Stap bits ~Handshaking
|| R (" 600 {14400 O 57600 || 5 * none ol (¢ none
:I-Ieip i C 120 19200 115200 o " odd " RTSATS
= 3 C8 || C 2400 (28800 128000 r oeven || 18 || KONMXOFF
= R (" 4800 { 38400 { 256000 7 (" mark (" RTSACTS+R0NROFF
Qi |5 0| # %0 % Coason||F8 || Capae| T2 || O RTEmIK
Settings

Setfont [AutoDis/Connect [~ Time [Sheamlog tustomBR ReClear ASCHtable | Scrpling
[AutoStat Serpt [~ CR=LF [Stapon Top |SEUD P? _:J Graph | Remate

Receive

CLEAR] HesetCnunter1 & 3| Caunter=10 ?,:gé” gaz: v in Startlog | Stoplog

3530303039333231 3746 394435303030 363332 31 37463944 3530 30 30 33333231 3746 3944353030 3039 3332 11 37 4
B333231 37463944 353030303833 32 31 374639443530 3030393332531 37463944 3530 30 3030 33 32 1 37 46394435 3
3745394435303030 393332313746 3944353030 30303332 11 37 463944 3530 30303933 32 31374639 443530 30 30 39 3

Fig.4.4 Terminal v1.9 for data process from RFID tag

At the two-wheeler node AND operation is performed on the RFID value and
average value of flex sensors, if it matches to pre-defined values then only vehicle
will be ignited.

54

4.3 Program Functions for the System
Program functions are written for each section to develop the system.

4.3.1 Program Functions for the Helmet Node
The following are the functions written for the helmet node.

>>>setup() for HELMET NODE

void setup()

{
Icd.begin(20,4); // initialize 20*4 LCD in helmet node
Serial.begin(9600);// initialize serial communication in helmet node

k
>>>|oop() for HELMET NODE

void loop()

{
READ_FLEX_sensor_HN();
PRINT_FLEX_sensor_ HN_LCD();
Serial.print(FLEX_AVERAGE);

¥

Function to read flex sensors
READ_FLEX sensor_HN()

{
Flex1 Read BYTE = analogRead(Flex Pin_1=A0);// read flex sensor

connected at A0
Flex2 Read BYTE = analogRead(Flex Pin_1=A1); /I read flex sensor
connected at Al
Flex3_Read BYTE = analogRead(Flex Pin_1=A2); // read flex sensor

connected at A2

55

int flex] LEVEL= Flex1_Read BYTE ;// scale the voltage level of flex sensorl

int flex2_LEVEL = Flex2_Read BYTE; // scale the voltage level of flex sensor
2

int flex3_LEVEL= Flex3_Read_BYTE; // scale the voltage level of flex sensor 3
int FLEX_AVERAGE=((flex1 LEVEL+flex2 LEVEL+flex3_LEVEL)/3);/

average the flex sensor levels

¥

Function to printon LCD
PRINT_FLEX_sensor_HN_LCD()
{

Icd.setCursor(0,0);
Icd.print(flex1_LEVEL);
Icd.setCursor(0,1);
Icd.print(flex2_LEVEL);
Icd.setCursor(0,2);
Icd.print(flex3_LEVEL);
Icd.setCursor(0,3);
lcd.print(FLEX_AVERAGE);

¥

4.3.2 Program Functions for the Two-Wheeler Node
The following are the functions written for the two-wheeler node.

>>>setup() for two wheeler Node

#include <LiquidCrystal.n>//header of LCD

LiquidCrystal lcd(13, 12, 11, 10, 9, 8);// connect pins of Arduino to
RS,E,D4,D5,D6,D7 of LCD

#include<SoftwareSerial.h>// header of soft serial library

SoftwareSerial mySerial(9,10);//make pin 9 and 10 pins of Arduino as Rx and Tx

56

#define IGNITION_RELAY 7 //assign pin 7 to IGNITION_RELAY

void setup()

{

Icd.begin(20,4);// initialize 20*4 LCD

mySerial.begin(9600);// initialize the serial communication using Soft serial
library-9600-8-N-1

Serial.begin(9600);// initialize the serial communication-9600-8-N-1
inputString_serial_TWN.reserve(100);// reserve the 100 byte for
inputString_serial_TWN

pinMode(IGNITION_RELAY, OUTPUT);// set pin 7 as output

}

>>>loop() for Two -wheeler Node

void loop()

{

Receive_Data RFID_TWN();
Check _Data_RFID_TWNJ();
Access_Check RFID_TWN();
Serial_Event_serial TWN();

if (stringComplete_serial_ TWN)
{
Icd.setCursor(0,2)// set LCD cursor at column0 and Row?2
Icd.print(inputString_serial_TWN);//print inputString_serial_ TWN on LCD
Serial.printIn(inputString_serial_TWN);// send inputString_serial_TWN seial

if(inputString_serial_TWN [0]>="2)&&(inputString_serial_ TWN
[1]>=1)&&(

57

inputString_serial_TWN [1]>="2")

{

Icd.clear();// clear the previous contents from LCD

Icd.setCursor(0,3); //set LCD cursor at column0 and Row3

Icd.print("IGNITION VERIFIED ");//print string on LCD

digitalWrite(IGNITION_RELAY, HIGH); // make pin IGNITION_RELAY
HIGH

}

else
{
Icd.clear();//clear the previous contents from LCD
Icd.setCursor(0,3);// set LCD cursor at colun0 and Row3
Icd.print("IGNITION NOT VERIFIED "); print string on LCD
digitalWrite(IGNITION_RELAY,LOW):; // make pin IGNITION_RELAY
HIGH
}
inputString_serial_ TWN = "";// clear the previous contents from string
inputString_serial_TWN
stringComplete_serial TWN = false;
}

>>>Function to store the serial byte in defined string of two-wheeler node

SerialEvent occurs when a new data received at the hardware serial RX.
This routine is checked between each time loop() runs, so by using delay inside
loop response multiple bytes of data can be checked.

void serial_Event_ TWN()

{

while (Serial.available()>0)

58

{
Char serial _ BYTE= (char)Serial.read(); // record new byte

inputString_serial_ TWN+= serial_ BYTE; // add new byte with the
inputString_serial_TWN
if (serial_ BYTE == 0x0D) // if the incoming character is an
enter, then set a flag

{

stringComplete_serial _TWN-= true;// Boolean logic if True

¥

>>> Define RFID TAG twelve byte code to compare with received serial
TAG data
char RFID_TWN _Saved_Tags [3][12]={

{5''0'0'0,9,2",B"'E,9",'3"'E",'F},//12
Byte from RFID TAG1

{500,092 'E'A"'2,'C"'0'4}, /12
Byte from RFID TAG2

{5''0''0'0,9,3,2,'1,'7"'F,'9','D'} 1112
Byte from RFID TAG3

Y

>>> Function to receive 12 byte from RFID
void Receive_Data_RFID_TWN()

{
if(mySerial.available()>0)

{
Char RFID_serial_byte=mySerial.read();// read serial data

RFID_string_ TWNTJtotal _count_byte]= RFID_serial_byte;// store data in string

59

total_count_byte ++;// increment the counts

b}

>>> Function the check data from RFID
void Check_Data_ RFID_ TWN()
{
if (Total_ Count_ byte ==12)
{
entry_ control_ RFID_TWN= TRUE;
for (k=0; k<3; k++)
{
for (j=0; j<12; j++)
{
If (RFID_ TWN_ Saved_ Tags[k][j]== RFID_String _TWNJj])
{
Tag_ Check RFID_TWN= TRUE;

¥

else
{
Tag_ Check_ RFID_TWN= FALSE;
break;

}
}
If (Tag_ Check RFID_TWN== TRUE)

{
Tag_ Status _RFID_TWIN=TRUE;

¥

}
RFID_ String _TWN =0;

¥

60

>>> Function to authenticate the data from RFID
void Access_ Check RFID_TWN()
{
if(Entry_ Control_RFID_TWN== TRUE)
{
if(Tag_ Status RFID_TWN== TRUE)
{
Icd.set Cursor(0,1); set LCD cursor at column0 and Row1
Icd.print ("ACCESS GRANTED FOR IGINTION"); // print string on LCD

}
else
{
Icd.set Cursor(0,1); set LCD cursor at column0 and Row1
Icd.print ("ACCESS DENIED FOR IGINTION");// print string on LCD
Icd.setCursor (0,3); set LCD cursor at colun0 and Row3
Icd.print ("NOT VERIFIED");// print string on LCD
}
entry_control_ RFID_TWN=FALSE;
Tag_ Status RFID_TWN= FALSE;
}
}

61

4.4 LabVIEW GUI
An intelligent helmet is designed for two-wheeler. The analysis process of
the system is done with the help of LabVIEW GUI. LabVIEW is used for analysis

of real time hardware interfacing with system by using virtual components.

Components used to design LabVIEW GUI

Visa Configure Serial port- This port is used initialize the serial port specified
by VISA resource name with required settings. Fig.4.5 shows the visa configure
serial port.

Enable Termins
termination char

Eiry LTy}
YISA resource name
baud rate (9AO00)

WISHA resource name ouk
data bits (5) === error out
parity (0:none)

errar in {no errord
stop bits {10: 1 bit)
Flows contral {0:none)

Fig.4.5 Visa Configure Serial port

VISA resource name (COM number)

Right click on it and select create then select control to choose appropriate COM
port.

Baud rate- ‘9600’

Data bits- ‘8 bits’

Parity- ‘none’

Stop Bit- < 1

Flow control — ‘none’

Visa resource name out- Connect this pin to Visa resource name of VISA
serial read block.

Error out-connect this pin to error pin of VISA serial read

VISA serial Read
It reads the identified number of bytes from the device or interface identified by
VISA resource name and sends the data in read buffer. It reads the data

available at serial port from the device linked.

62

¥ISA resource name G VISA resource name ouk
byte count - b >, read buffer
3 4 it
errar in (no errar) == rekurn count

error out

Fig.4.6 VISA serial Read

Byte Count- Right click on it and select create to the indicator to count the byte
at serial port.

Read Buffer - Right click on it and select create to the indicator to check the
string value at serial port.

Visa resource name out-Connect this pin to Visa resource name of VISA close
block

Error out- Connect this pin to error pin of VISA close.

Error in- connect this pin to error out pin of VISA configure serial port.

Match Pattern

It searches for expression in string beginning at offset, and when it get the string it

matches the string with predefined data.

string before substring
regular expression ~ | b ---Lw;"' match substring
offget [0] — =—= _l_ after substring
offzet pagt match

(i

Qi

Fig.4.7 Match Pattern

String-Connect this pin to read buffer pin of VISA read.

Regular expression- Right click on it and select create to the constant.

After substring-connect this pin to string of Decimal String to Number block
and create to constant.

Decimal String to Number- It converts the numeric characters in to the string,

start at offset, to a decimal integer and return it in number.

string

offset _'_.a o

offset past number
number

default (132 —

Fig.4.8 Decimal String to Number converter

63

Number- Connect this pin to the input of waveform chart.

VISA Close - Closes a device session or event object specified by VISA resource

name

YISA resource name (]

error in (no errar) C % error out

Fig.4.9 VISA Close

VISA Serial Write- It is used to write the data from the write buffer to the device

or interface identified by VISA resource name

VISA resource name
comi |G
Serial-Settings

baud rate N I
= [s600 Il M swop |
data bits
8 = '\I e
8 | 7

= | = [rp\
parity N i
=] hlons | BUTTON
stop bits

10 |
flow control

] . None I o

Fig.4.10 Defining VISA resource name

Visa Configure Serial port- It sets the serial port identified by VISA resource

name to the specified settings.

Enable Termination Char (T}
termination char (Dxd = "in...
tirneaut {10sec)

VISA resource name [EEE] YISA resource name out

baud rate (3600) e

—

data hits (3) —| r frcccmocm gpror oub

parity (0:none)

errar in (no errar)
shop bits (10: 1 bit)

Flows contral (0:none)

Fig.4.11 Visa Configure Serial port

VISA resource name (COM number)- Right click on it select create and then
select control to choose appropriate COM port

Baud rate- ‘9600°

Data bits- ‘8 bits’

Parity- ‘none’

Stop Bit- ‘1’

Flow control — ‘none’

Visa resource name out- Connect this pin to Visa resource name of VISA
serial read block.

Error out-connect this pin to error pin of VISA serial read

VISA Serial Write- It writes the data from write buffer to the device or interface
stated by VISA resource name.

¥ISA resource name l-‘thﬂ WI54 resource name out
= E i
write buffer 05 return count
: e WIEL
Error in {no error) error out

Fig.4.12 VISA Serial Write

VISA resource name- Connect this pin to VISA resource name out pin of
VISA configure serial port.

Write Buffer - It comprises of the data to be written to the device.Right click on
it and select create to the constant to send string at serial port.

Visa resource name out-Connect this pin to Visa resource name of VISA close
block

Error out- Connect this pin to error pin of VISA close.

Error in- connect this pin to error out pin of VISA configure serial port.

VISA Close — It Close a device session or event object specified by VISA

resource name.

65

¥ISA resource name

Error in {no error) error out

Fig.4.13 VISA Close

4.5 LabVIEW Interfacing with Proteus Simulation Software

Before interfacing with actual hardware LabVIEW GUI can also be
checked by interfacing to Proteus Model Virtual Serial Port. VSPE needs to be
installed which creates the virtual bridge between the serial port with the
LabVIEW simulator. The real time data from the hardware or Proteus Model data
is taken through serial port of the system.

The system is first designed on Proteus simulation model and checked the
feasibility and interface Proteus model with LabVIEW VSPE software is used.

Virtual Serial Port Emulator (VSPE)
To set up the interfacing install VSPE software and open the window.
Click on device and create as shown in Fig.4.14. A pop will appear and select
‘pair’ as device type and click next, as shown in Fig.4.15. Then assign the COM
of COMPIM of Proteus and COM in LABVIEW as shown in Fig.4.16. Then click
add button on software it will paired and show the status in device manager.
Fig.4.17 shows the COMPIM configuration in Proteus to interface with
LABVIEW. Fig.4.18 shows the COMPIM and Arduino connection in Proteus.
The COMPIM model is a Physical Interface Model (PIM) of a serial port.
It receives serial data in buffer and assumed to the circuit as input signal. The data
from the CPU or UART model appears at the PC's physical COM port.
Fig. 4.14 shows the VSPE window which opens on clicking the software icon.

66

File View Language Emulgtion L Device | Help
& | n ¥ HC
= % Uy i
Title | Device | Status
|
W
Ready hittp: ffwww. eterlogic.com |

Fig.4.14 VSPE window

Fig. 4.15 shows the VSPE window for pairing the two virtual ports.

B Virtual Serial P{ Specify device type o
Fle View Lan B
Dievice type
= & |:ﬂ Pair _'_I
— 4 Connector -
Title Splitter
VIRTL VIRT2 - |
| apper
TepServer
B & [Teoen
Serial Redirector
UDP Manager
Bridge
Spy
g Mew serial port E Existing serial port Q Client application
< Back Next > Cancel | Help I
Ready ic.com A

Fig.4.15 VSPE window for pairing two virtual ports

67

Fig. 4.16 shows how to assign COM ports and then ‘Finish’ the pairing process.

W virtual Sen’a!j SpecHy device i

| an

= - Virtual serial port 1 Virtual serial port 2
= o _! jcom1 > |comz |
[. |

Title 2 coM2 !
coM3 =
COoM4
COMS
COMa
com7
coma
COM9
COoM10
COM11
Com12
CcomM13 It

Ready

Fig.4.16 VSPE window for assigning COM port number

Fig.4.17 shows the paired COM ports in VSPE. Let’s assume COMI1 is
with Proteus model and COM2 is with LabVIEW.

-
! Virtual Serial Ports Emulator (Emulation started) == lﬁ

Fle View Language Emulation Device Help
s d > NGO

Title | Device | Status |

COM1 <=3 COMZ2 Fair Ready

{Monday, February 08, 2017} [COM1 <=> COMZ] Initialization...0E

Ready http: {fwww. eterlogic. com 4

Fig.4.17 VSPE window showing paired COM ports

68

Fig.4.18 shows how to interface COMPIM with controller in Proteus

model.

ARDA

A 1A
=180
2 :
_|
= g
-] | |

& n PR

EREE] L i

&] S

™ o

=t] [| g

: = | =1

. O error O . &

CONPIN o D

=TEXT= n | H-3

|] [B

] mg

m LY

| [N+

3

| ARDUINC UNG
TERT

Fig.4.18 COMPIM and Arduino connection in Proteus

Fig.4.19 shows how to configure the COMPIM in Proteus model. The edit
component POP up appears on right click on the COM port in the model.

| Edit Component 7 g
Component Reference: iF'1 Hidden: |
Component Value: [COMPIM Hidden: [|D |
i | wSM Modek: [ComPIM. DL |Hide e ~| e
B | Prwsical port: |COmM1 =] [Ridean =] |
i E Physical Baud Fate: 39500 _:_] |Hide All _V__j
ZE E Fhusical Data Bits: _:_] |Hide All _v__j
= A | Prysical Party: | [Hidear +]
|| itual Baud Rate: | [Hidean ~]
| wirtusl Data Bits: | [Hidean ~]
“irkual Parity: Li]Hide Al L]
E Advanced Properties:
| Physical Stop Bits = [Hidean ~]
3 _Ulher Froperties:
- | [Ewclude from Simulation [Attach hierarchy module
| E=clude from PCE Lavout [Hide common pi
| Edit all properties as bext
e)

Fig.4.19 Configure the COMPIM in Proteus to interface with LabVIEW

69

Fig.4.20 shows the Proteus Simulation Model displaying the sensor value

on virtual terminal after COM port pairing with VSPE.

TRANSMIT DATA

R |
LEE T
LAY b i
o2 =
ix u Lie
3

mmmmmm

Fig.4.20 Proteus Simulation Model showing sensor value at virtual terminal

4.5.1 Program Functions for LabVIEW GUI
The following functions are written for LabVIEW GUI.

>>> setup() for data logger
void setup()
{
Icd.begin(20,4); //initialize LCD in data logger
Serial.begin(9600); // initialize serial communication as 9600-8-N-1
Input String_ serial_datalogger.reserve(100); // reserve 100 bytes for the
inputString_serial_datalogger
}
>>>|oop() for data logger
void loop()

70

{
if (stringComplete_serial_datalogger) // print the string when a 0x0D(enter)

comes in inputString_serial
{
Icd. setCursor(0,0);// set the cursor at column 0 and row 0
Icd.print (inputString_serial_datalogger);//print an inputString_serial data on
LCD
Serial print(“STRING FOR _LABVIEW:”);//send serial label for LABVIEW
Serial.printin(inputString_serial_ datalogger);// print an inputString_serial data

serially

inputString _serial_datalogger= "";// make inputString _serial string blank
again
stringComplete_serial _datalogger= false;// Boolean logic if false
}
}

>>>>>>Function to store the serial byte in defined string of data logger
(SERVER)
The serial event occurs when a new data is received from the hardware

serial RX. This routine is run between each time loop() runs.

void serial_Event_datalogger()
{
while (Serial.available()>0)
{
Char serial _ BYTE= (char)Serial.read(); // record new byte
inputString_serial_datalogger += serial_ BYTE; /I add new byte with the
inputString_serial_

/[datalogger

71

if (serial_ BYTE == 0x0D) // if the incoming character is an

enter, then set a flag

{

stringComplete_serial _datalogger= true;// Boolean logic if True

¥

4.6 Programming Flow Chart for the System Development
Fig.4.21 shows the flow chart for all programming steps to program the

helmet node.

START

Initialize LCD 20*4
Initialize serial communication-9600-8-N-1

Flexl_LEVEL=Flex1_Read_Byte
Flex2_LEVEL=Flex2_Read_Byte
Flex3_LEVEL=Flex3_Read_Byte

v

FLEX_AVERAGE=Flex1 LEVEL+Flex2 LEVEL+Flex3_LEVEL/3

Y

Display the FLEX_AVERAGE, Flex1 LEVEL,Flex2_LEVELand Flex3_LEVEL
value on LCD20*4

Send serial the values of FLEX_AVERAGE, Flexl LEVEL,Flex2 LEVELand
Flex3_LEVEL

Fig.4.21 Flow chart for helmet node

72

The functions for LCD and serial communication are initialized. After the
initialization the system will wait for the signals from three flex sensors placed in
helmet. Average value of the three sensor outputs is taken, which is displayed on
LCD for experiment purpose and sent to the two wheeler node through serial
communication at baud rate 9600 bps. To send data on cloud server node MCU is

connected to Arduino UNO and receive the data on www.thingspeak.com .

START

Initialize LCD 20*4
Initialize serial communication-9600-8-N-1
Initialize soft serial communication-9600-8-N-1
Y
Check serial_event_TWN function();
receive_Data_RFID_TWNQ();
check_Data_RFID_TWNY();

NO

If(StringComplete_serial_TWN)

YES

IGNITION_RELAY=0OFF

If((inputString_serial_ TWN=>212)&
&(Acess_check RFID_TWN==0K))

Display LCD IGNITION VERIFIRD

N

IGNITION_RELAY=ON

Fig.4.22 Flow chart for two-wheeler node

73

http://www.thingspeak.com

Fig.4.22 shows the flow chart for two-wheeler node. The functions for
LCD and serial communication are initialized. After the initialization the system
will receive RFID data when card is swiped on RFID reader and checks it by
comparing the received data with pre-defined code in the program. If it matches
with predefined code then a check is performed on average value of flex sensors
received from helmet node and RFID tag code, if both matches with predefined

values then vehicle will be ignited otherwise not.

START

Initialize LCD 20*4
Initialize serial communication-9600-8-N-1

Check serial_event_datalogger function to
receive serial data

If(stringComplete_serial_datalogger)
NO

Print the value on LCD20*4

Send the value to LABVIEW GUI

Fig.4.23 Flow chart for LabVIEW GUI

74

Fig.4.23 shows the flow chart for LabVIEW GUI program. The functions
for LCD and serial communication are initialized. Then a check is performed for
serial event to receive data, if a complete string is received then it will be printed
on LCD and sent to the LabVIEW GUI otherwise the system will again check for

valid serial data.

4.7 Experimental Research

Experimental research for the system is done to ensure the selection of
appropriate experimental design. It involves following steps-

» Define and state the problem

» Develop a hypothesis

» Design and conduct experiments to test the hypothesis

* Collect data

» Analyze the data

* Interpret the data

= Conclude about the hypothesis

Concept of hypothesis

A hypothesis is a proportion, a tentative assumption which a researcher
wants to test for its logical or empirical consequences. In problem oriented
research, it is necessary to formulate a hypothesis. In such researcher hypothesis
are generally concerned with the causes of a certain phenomenon or a relationship

between two or more variables under investigation.

Hypothesis testing
Steps involved in testing a hypothesis-
» Formulate a ‘hypothesis’
= Set up a suitable significance level
* Choose a ‘test criterion’
= Compute the statistic from the samples

75

= Make the decision

If a hypothesis is of the type 1 =pno, then it is called specific hypothesis but if
it is of the type p > Hpo, U < Mno then it is called composite or nonspecific
hypothesis.

If results do not support null hypothesis which means something else is true,
then it is known as alternative hypothesis.

‘t’-test
‘t’- test can be performed on the samples with less than thirty samples of
same type. For that null hypothesis is to be defined first and following the

formulas for T-test conclusion can be made.

;_/UHO
t=——7F Eq.4.4
o, /\Jn
With degree of freedom = (n-1)
Where
Z(xi —?)2
O, =\———— Eq.4.5
n-1

Samples are collected from the people of age group 18-25 years and using
null hypothesis, on the basis of statistical data and its analysis threshold level is
calculated.

4.8 Chapter Summary

The chapter describes the reading and placement of the flex sensors used
for system development as per the pre-defined standards. RFID tag extraction and
LabVIEW GUI are explained with the help of flow charts and basic function used
in the programming. Also the concept of hypothesis is discussed which for the
analysis of statistical data collected from the samples and help to calculate the

threshold value of flex sensors, which is explained in result analysis.

76

