List of figures

Figure 1-1 Elementary (open-loop) Control System	16
Figure 1-2 Feedback control system block diagram	16
Figure 1-3 Fuzzy logic based control system – block diagram [3]	24
Figure 2-1 PD type fuzzy controller	31
Figure 2-2 PID type fuzzy controller	32
Figure 2-3 (a) Crisp set vs. FS (b) A typical FS with set parameters [2]	20]33
Figure 2-4 Triangular fuzzy MF [20]	34
Figure 2-5 Trapezoidal MF [20]	35
Figure 2-6 Gaussian MF [20]	35
Figure 2-7 Probability density function based MF [35]	36
Figure 2-8 S-function fuzzy membership function [43]	36
Figure 2-9 MFs obtained for different confidence levels [35]	39
Figure 2-10 Effect of changing single control point. (a) before chang	ge (b) after
change [43]	44
Figure 2-11 Predefined MFs [55]	45
Figure 2-12 optimized MFs [55]	46
Figure 2-13 Membership function (a) before optimization,	(b) after
optimization [57]	48
Figure 2-14 left-hand s-curve membership function	53
Figure 2-15 Normal triangular MF	56
Figure 2-16 Predefined triangular MFs	57
Figure 2-17 Displaced MF	58
Figure 2-18 Flowchart for GA based optimization	61
Figure 3-1 (a) Forces acting on pendulum system and (b) Computer of	control for
real-time DPCS [93]	66
Figure 3-2 Real-time DPCS system available in Control theory and s	simulation
lab, UPES	67
Figure 3-3 Fuzzy logic control for DPCS	68
Figure 3-4 FS for error in pendulum angular position	68
Figure 3-5 Displaced FS "Zero"	69
Figure 3-6 Simulation model for inverted pendulum system	

Figure 3-7 Parameters for simulation model71
Figure 3-8 Real-time PID control for DPCS [93]72
Figure 3-9 Pendulum angle for PID controller
Figure 3-10 Cart position for PID controller
Figure 3-11 Control force for PID controller
Figure 3-12 Pendulum angle for fuzzy logic controller75
Figure 3-13 Cart position for fuzzy logic controller75
Figure 3-14 Control force for fuzzy logic controller
Figure 3-15 Pendulum angle for optimized fuzzy logic controller77
Figure 3-16 Cart position for optimized fuzzy logic controller78
Figure 3-17 Control force for optimized fuzzy logic controller
Figure 3-18 Pendulum angle response comparison for PID, FLC and
optimized FLC79
Figure 3-19 cart position comparison for PID, FLC and optimized FLC80
Figure 3-20 control force comparison for PID, FLC and optimized FLC \dots 81
Figure 3-21 Swing up stabilization response (a) Precup's controller [94] (b)
proposed controller response
Figure 3-22 Swing up stabilization comparison of (a) Takagi-Sugeno FLC
based on Lypaunov's direct method [95] (b) proposed controller response84
Figure 3-23 Swing up stabilization comparison of (a) proposed controller
response with (b) Takagi-sugeno FLC response [96]85
Figure 3-24 Settling time comparison of proposed controller with reference
controllers85
Figure 4-1 Forces acting on TRMS [97]
Figure 4-2 (a) Real-time DPCS system available in Control theory and
simulation lab, UPES (b) Connection block diagram for TRMS setup [97] \dots 91
Figure 4-3 Fuzzy logic control for TRMS92
Figure 4-4 FS for pitch angle and yaw angle error92
Figure 4-5 FS for error in pendulum angular position94
Figure 4-6 Simulation model for twin rotor MIMO system94
Figure 4-7 Parameters for simulation model
Figure 4-8 PID controller response for (a) 0.4 radian change pitch angle, (b)
0.5 radian change in yaw angle

Figure 4-9 PID control response for periodic change in set – point of (a) Pitc
angle (b) Yaw angle9
Figure 4-10 FLC response (a) step change of 0.4 radians for Pitch angle (b)
step change of 0.5 radians for Yaw angle10
Figure 4-11 FLC response for dynamically changing (a) Pitch angle set – point
, (b) Yaw angle set – point
Figure 4-12 Optimized FLC response (a) step change of 0.4 radians for Pitc
angle (b) step change of 0.5 radians for Yaw angle10
Figure 4-13 Optimized FLC response for dynamically changing (a) Pitch ang
set-point (b) Yaw angle set-point
Figure 4-14 (a) Pitch angle response for a step change of 0.4 radians (b) Ya
angle response for a step change of 0.5 radians
Figure 4-15 (a) Pitch angle response (b) Yaw angle response10
Figure 4-16 Pitch angle set-point tacking response (a) proposed controller (b)
reference controller [38]
Figure 4-17 Yaw angle set-point tacking response (a) proposed controller (b)
reference controller [38]
Figure 4-18 Architecture of hybrid Fuzzy-PID controller for coupled TRM
[99]11
Figure 4-19 Pitch angle set-point tacking response (a) proposed controller (b)
reference controller [99]11
Figure 4-20 Yaw angle set-point tacking response (a) proposed controller (b)
reference controller [99]11
Figure 4-21 Rise time and settling time comparison of proposed controlled
with reference controllers for pitch angle response
Figure 4-22 Peak overshoot comparison of proposed controller with reference
controllers of pitch angle response
Figure 4-23 Rise time and settling time comparison of proposed controlled
with reference controllers for yaw angle response11
Figure 4-24 Peak overshoot comparison of proposed controller with reference
controllers of pitch angle response
Figure 5-1 Magnetic levitation of steel ball11

Figure 5-2 Real-time magnetic levitation model available in Control theory
and simulation lab, UPES119
Figure 5-3 Forces acting on steel ball
Figure 5-4 Fuzzy logic control for Magnetic levitation system121
Figure 5-5 Initial FS for error
Figure 5-6 FS of position error for set "ze"
Figure 5-7 Simulation model for magnetic levitation system124
Figure 5-8 PID control for magnetic levitation [104]124
Figure 5-9 PID controller response for step change in ball position125
Figure 5-10 PID controller response for sinusoidal change in ball position126
Figure 5-11 FLC response for step change in ball position
Figure 5-12 FLC response for sinusoidal change in ball position127
Figure 5-13 Optimized FLC response for step change in ball position 128
Figure 5-14 FLC response for step change in ball position
Figure 5-15 Performance comparison for PID, FLC and optimized FLC for
step changes in desired position
Figure 5-16 Performance comparison for PID, FLC and optimized FLC for
sinusoidal change in desired position
Figure 5-17 Architecture of alpha-beta filter FLC
Figure 5-18 Step change in ball position response for (a) proposed controller
(b) reference controller [105]
Figure 5-19 Decomposed fuzzy PID controller
Figure 5-20 Decomposed fuzzy PID controller
Figure 5-21 Step change in ball position response for (a) proposed controller
(b) reference controller [105]
Figure 5-22 Overshoot comparison of proposed controller with reference
controllers135