LIST OF FIGURES

FIGURE DETAILS	PAGE NO
Figure 1.1. Pivotal features of Smart grid technology	2
Figure 3.1. Technology, characteristics, components and challenges of Smart gird	23
Figure 3.2. Various stakeholders of Smart grid technology	25
Figure 3.3. Various components of Smart Microgrid	27
Figure 3.4. Layered Smart grid infrastructure	29
Figure 3.5. Home Area Network	31
Figure 3.6. Components of AMI	33
Figure 3.7. Bluetooth protocol stack	39
Figure 3.8. Piconet and Scatternet	40
Figure 3.9. Communication stack of WirelessHART standard	42
Figure 3.10. WirelessHART protocol stack	44
Figure 3.11. Zigbee protocol stack	46
Figure 3.12. Zigbee network architecture	48
Figure 3.13. 6LOWPAN network architecture	51
Figure 3.14. 6LOWPAN protocol stack	52
Figure 3.15. WLAN protocol stack	53
Figure 3.16. WLAN architecture.	55
Figure 3.17. Z wave network architecture	56
Figure 3.18. WiMAX protocol stack	58
Figure 3.19. 5G protocol stack	60
Figure 3.20. Various components of 5G	60
Figure 3.21. Cognitive radio gateways	62

Figure 4.1. Conceptual diagram of cross layer design	71
Figure 4.2. Throughput of nodes for no RTS mechanis	76
Figure 4.3. Throughput of nodes for RTS threshold-1	77
Figure 4.4. Throughput of nodes for RTS threshold-25	78
Figure 4.5. Throughput of nodes for RTS threshold-102	79
Figure 4.6. Mean values of result	81
Figure 4.7. Media access delay of nodes for NO RT	82
Figure 4.8. Media access delay of nodes for RTS threshold-1	83
Figure 4.9. Media access delay of nodes for RTS threshold-25	84
Figure 4.10. Media access delay of nodes for RTS threshold-102	85
Figure 4.11. Mean values of results	87
Figure 4.12. Total packet delay of nodes for No RTS/CTS	88
Figure 4.13. Total packet delay of nodes for RTS threshold-16	89
Figure 4.14. Total packet delay of nodes for RTS threshold-256	90
Figure 4.15. Total packet delay of nodes for RTS threshold-1024	91
Figure 4.16. Mean values of results	93
Figure 4.17. Throughput of nodes for default EDCA parameters	95
Figure 4.18. Throughput of nodes for adapted EDCA-1	96
Figure 4.19. Throughput of nodes for adapted EDCA-2	97
Figure 4.20. Throughput of nodes for adapted EDCA-3	98
Figure 4.21. Throughput of nodes for adapted EDCA-4	99
Figure 4.22. Throughput of nodes for adapted EDCA-5	100
Figure 4.23. Mean values of results	101
Figure 4.24. Media access delay for default EDCA parameters	102

Figure 4.25. Media access delay of nodes for adapted EDCA-1	103
Figure 4.26. Media access delay of nodes for adapted EDCA-2	104
Figure 4.27. Media access delay of nodes for adapted EDCA-3	105
Figure 4.28. Media access delay of nodes for adapted EDCA-4	106
Figure 4.29. Media access delay of nodes for adapted EDCA-5	107
Figure 4.30. Mean values of Media access delay	109
Figure 4.31. Total packet delay for default EDCA parameters	110
Figure 4.32. Total packet delay of nodes for adapted EDCA-1	111
Figure 4.33. Total packet delay of nodes for adapted EDCA-2	112
Figure 4.34. Total packet delay of nodes for adapted EDCA-3	113
Figure 4.35. Total packet delay of nodes for adapted EDCA-4	114
Figure 4.36. Total packet delay of nodes for adapted EDCA-5	115
Figure 4.37. Mean values of total packet delay	117
Figure 4.38. Diagram of the network to be optimized	118
Figure 4.39. WLAN Throughput of different access points	119
Figure 4.40. Network load of different BSS	120
Figure 4.41. WLAN delay of different access points	120
Figure 4.42. WLAN Media access delay of different access points	121
Figure 4.43. WLAN throughput comparison for Block acknowledgement vs RTS mechanism	122
Figure 4.44. WLAN media access delay comparison for Block acknowledgement vs RTS mechanism	122
Figure 4.45. WLAN delay comparison for Block acknowledgement vs RTS mechanism	123
Figure 4.46. WLAN delay with and without fragmentation	124
Figure 4.47. WLAN Media access delay with and without fragmentation	124

Figure 4.48. WLAN retransmission attempts with and without fragmentation	125
Figure 4.49. WLAN throughput with and without fragmentation	125
Figure 4.50. WLAN delay for different fragmentation thresholds and without	126
fragmentation	
Figure 4.51. WLAN Media access delay for different fragmentation thresholds and	126
without fragmentation	
Figure 4.52. WLAN retransmission attempts for different fragmentation thresholds	127
and without fragmentation	
Figure 4.53. WLAN throughput for different fragmentation thresholds and without	128
fragmentation	
Figure 4.54. WLAN optimization with RTS and fragmentation mechanisms	128
Figure 4.55. WLAN delay optimization with RTS and fragmentation mechanisms	129
Figure 4.56. WLAN retransmission attempts optimization with RTS and	129
fragmentation mechanisms	
Figure 4.57. WLAN throughput optimization with RTS and fragmentation	130
mechanisms	
Figure 4.58. WLAN throughput optimization with different values of RTS and	130
fragmentation thresholds	
Figure 4.59. WLAN delay optimization with different values of RTS and	131
fragmentation thresholds	
Figure 4.60. WLAN Media access delay optimization with different values of RTS and fragmentation thresholds	131
Figure 4.61. WLAN buffer size optimization for higher throughput	132
Figure 4.62. WLAN buffer size optimization for lower delay	133
Figure 4.63. WLAN buffer size optimization for lower media access delay	134
Figure 4.64. WLAN throughput optimization with Greenfield operation	135
Figure 4.65. WLAN throughput optimization with RTS, Fragmentation and	136
Greenfield operation parameters	
Figure 4.66. WLAN dealy optimization with RTS, Fragmentation and Greenfield	136
operation parameters	

Figure 4.67. WLAN Media access delay for optimized value of RTS, Fragmentation and Greenfield operation parameters	137
Figure 4.68. Default values of CWmin and CWmax	138
Figure 4.69. Optimized values of CWmin and CWmax	138
Figure 4.70. WLAN delay with and without Contention window optimization	139
Figure 4.71. WLAN Media access delay with and without Contention window optimization	139
Figure 4.72. Frame aggregation parameters	140
Figure 4.73.WLAN Media access delay with and without frame aggregation	141
Figure 4.74. WLAN Throughput with and without frame aggregation	141
Figure 4.75. WLAN Delay with and without Frame aggregation, RTS and Fragmentation mechanisms	142
Figure 4.76. WLAN Throughput with and without Frame aggregation, RTS and Fragmentation mechanisms	142
Figure 4.77. WLAN Media access delay with and without Frame aggregation, RTS and Fragmentation mechanisms	143
Figure 4.78. Values of various parameters	144
Figure 4.79. Network optimization by considering various parameters	145
Figure 4.80. Neighborhood area network	146
Figure 4.81. Default AODV parameters	148
Figure 4.82. Reduced routing traffic parameters	149
Figure 4.83. Reduced routing traffic parameters with gratuitous route reply flag disabled	149
Figure 4.84. AODV protocol optimization-Routing traffic sent	150
Figure 4.85. AODV protocol optimization-Routing traffic received	150
Figure 4.86. AODV protocol optimization-Route discovery time	151
Figure 4.87. AODV protocol optimization-Total route errors sent	151

Figure 4.88. Comparison of throughput of different routing protocols for network	152
optimization	
Figure 4.89. Comparison of WLAN delay of different routing protocols for network	153
optimization	
Figure 4.90. Comparison of WLAN Media access delay of different routing	153
protocols for network optimization	
Figure 4.91. Default OLSR parameters	155
Figure 4.92. Optimized OLSR parameter	155
Figure 4.93. WLAN Throughput for default and optimized OLSR parameters	156
Figure 4.94. Default parameters	157
Figure 4.95. Optimized parameters	157
Figure 4.96. WLAN Media access delay for default and optimized OLSR parameters	158
Figure 4.97. WLAN Throughput for default and optimized OLSR parameters	158
Figure 5.1. Block diagram of developed prototype	161
Figure 5.2. Sensing and measurement in ACS 712	162
Figure 5.3. Flow diagram of designed prototype	163
Figure 5.4. Circuit diagram of designed prototype	164
Figure 5.5. Flowchart of monitoring of prototype	165
Figure 5.6. Flowchart of control of prototype	166
Figure 5.7. Snapshot of monitoring and control of developed prototype	167
Figure 5.8. Block diagram of designed prototype	168
Figure 5.9. Flow diagram of designed prototype	169
Figure 5.10. Snapshot of developed prototype	171
Figure 5.11. Flowchart of monitoring of prototype	172
Figure 5.12. Flowchart of controlling of prototype	173
Figure 5.13. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage	174

Figure 5.14. Snapshot of remote wireless monitoring and control of smart power	174
system through HTML webpage	
Figure 5.15. Snapshot of remote wireless monitoring and control of smart power	175
system on Arduino serial monitor.	
Figure 5.16. Snapshot of remote wireless monitoring and control of smart power	175
system on serial terminal program	
Figure 5.17. Graph of System-1	176
Figure 5.18. Graph of System-2	177
Figure 5.19. Graph of System-3	178
Figure 5.20. Graph of all three systems	178
Figure 5.21. Graph of System-1	179
Figure 5.22. Graph of System-2	179
Figure 5.23. Graph of System-3	180
Figure 5.24. Graph of all three systems	180
Figure 5.25. Snapshot of remote wireless monitoring and control of smart power	181
system through HTML webpage in Wide Area Network	
Figure 5.26. Snapshot of remote wireless monitoring and control of smart power	182
system through HTML webpage in Wide Area Network	
Figure 5.27. Snapshot of remote wireless monitoring and control of smart power	182
system through HTML webpage in Wide Area Network	
Figure 5.28. Snapshot of remote wireless monitoring and control of smart power	183
system through HTML webpage in Wide Area Network	
Figure 6.1. EMI Causes in Smart Grid	186
Figure 6.2. Conceptual model of Smart grid	189
Figure 6.3. Major challenges of WSN	192
Figure 6.4. Types of attacks in WSN	193