List of Figures

rigure 1.1	July mean 850mb	pressure level us	ing the 1981-2	010 cilmatologi	cai
	base period based	on Internationa	l Research Ins	stitute for Clima	ate
	and Society, Eart	th Institute, Co	lumbia Unive	rsity. The arro	WS
	indicate the wind	d vectors, along	g with contou	ars indicating t	the
	resultant wind spec	ed (m/s). Vector	orientation ind	icates the directi	on
	of the resultant win	nd, and the vecto	r length indica	tes the wind spe	ed
	(Source:http://iridl	l.ldeo.columbia.e	edu/maproom/	Global/Climatol	.og
	ies/Vector_Winds	html) (After Du	tt et al., 2015).		4
Figure 1.2	January mean 8	350mb pressure	level using	g the 1981-20	10
	climatological bas	e period based or	n International	Research Institu	ute
	for Climate and So	ociety, Earth Ins	titute, Columb	ia University. T	`he
	arrows indicate the	e wind vectors, a	long with cont	ours indicating t	the
	resultant wind spec	ed (m/s). Vector	orientation ind	icates the directi	on
	of the resultant win	nd, and the vecto	r length indica	ites the wind spe	ed
	(Source:http://irid	l.ldeo.columbia.e	edu/maproom/	Global/Climatol	.og
	ies/Vector_Winds	html) (After Dut	tt et al., 2015).		6
Figure 2.1	Geological map o	f the Shillong P	lateau near th	e Wah Shikar a	nd
	Mawmluh caves,	Meghalaya, N	E Himalaya	(after Yin et a	al.,
	2010)				19
Figure 2.2	Average monthly	rainfall in Jaint	ia Hills distric	t, Meghalaya, N	٧E
	Himalaya	during	1901	to 20	00
	(http://www.india	waterportal.org/r	net_data/)		20

	(after Mishra et al., 2014)
Figure 2.4	Average monthly precipitation around the Tso Moriri Lake, Ladakh,
	NW Himalaya from 2010 to 2014 based on Tropical Rainfall
	Measuring Mission precipitation data
	(http://gdata1.sci.gsfc.nasa.gov/daac-
	bin/G3/gui.cgi?instance_id=TRMM B42_Daily)25
Figure 3.1	Stalagmite sample WSS-3 in the Wah Shikar cave, NE
	Himalaya29
Figure 3.2	Stalagmite sample MWS-1 in the Mawmluh cave, NE
	Himalaya30
Figure 3.3	Sediment coring in the Tso Moriri Lake, NW Himalaya during Lake
	coring expedition in September-October 201231
Figure 3.4	Chronology of the stalagmite WSS-3 from the Wah Shikar cave,
	Meghalaya, NE Himalaya32
Figure 3.5	Chronology of the stalagmite MWS-1 from the Mawmluh cave,
	Meghalaya, NE Himalaya34
Figure 3.6	Age Depth plot of core TMC-1 from the Tso Moriri Lake, Ladakh,
	NW Himalaya, based on Bacon age model using calibrated mean
	ages. The main graph shows the 2-sigma (95%) confidence level of
	the calibrated weighted mean ages (blue dots) before the present
	(BP) with respect to AD 1950 plotted against depths. The shadowed
	area between the dotted lines shows the probability range of the ages

Geological map of the Tso Moriri Lake, Ladakh, NW Himalaya

Figure 2.3

	(minimum and	maximum range	s). The red line	in the middle	of the
	shadowed area	is the best fit used	d for age depth c	alculation	39
Figure 4.1	Indian summer	monsoon proxy	record of stable	oxygen and ca	arbon
	isotopes from	Wah Shikar cave	e, Meghalaya, N	E Himalaya fo	or the
	period AD 1,02	26 to AD 2,012.	The inverted bl	ack triangles i	in the
	bottom panel in	ndicate the 230Th	ages		49
Figure 4.2	The Hendy tes	st correlation bet	tween $\delta^{18}O$ and	δ^{13} C proxy r	ecord
	from the Wah S	Shikar cave, NE	Himalaya		51
Figure 4.3	δ ¹⁸ O proxy rec	ord from the Wa	h Shikar cave w	ith the homoge	enous
	rainfall data in	NE India from ye	ear 1871 to 2012		51
Figure 4.4	Spectral analys	sis of δ^{18} O time	series from the	Wah Shikar	cave,
	Meghalaya, NE	E Himalaya from	AD 1026 to 200°	7	52
Figure 4.5	Spectral analys	sis of δ^{18} O time	series from the	Wah Shikar	cave,
	Meghalaya, NE	E Himalaya from	AD 1026 to 132	20	53
Figure 4.6	Spectral analys	sis of δ^{18} O time	series from the	Wah Shikar	cave,
	Meghalaya, NE	E Himalaya from	AD 1320 to 171	0	53
Figure 4.7	Spectral analys	sis of δ^{18} O time	series from the	Wah Shikar	cave,
	Meghalaya, NE	E Himalaya from	AD 1710 to 200) 7	54
Figure 4.8	Spectral analys	sis of IITM hom	ogenous rainfal	l data for NE	India
	from	years	1871	to	2012
	(http://www.tro	opmet.res.in/Data	a%20Archival-5	1-Page)	54
Figure 4.9	Indian simmer	monsoon prox	y record from	Wah Shikar	cave,
	Meghalaya, NI	E Himalaya comp	pared with cave	records from	India,

	China and Turkey; ice record from China and marine record from
	Arabian Sea. (a) δ^{18} O record from Wah Shikar cave, India (present
	study), (b) δ^{18} O record from Jhumar cave, India (Sinha et al., 2011)
	(c) δ^{18} O record from Wanxiang cave, China (Zhang et al., 2008), (d)
	δ^{18} O record from Dongge cave, China (Wang et al., 2005), (e) δ^{18} C
	record from Dunde ice core, China (Thompson et al., 2000), (f) δ^{18} C
	record from Sofular cave, Turkey (Fleitmann et al., 2009) and G
	bulloides (%) in marine core RC 2730 from the Arabian Sea
	(Anderson et al., 2002). The inverted black triangles in the bottom
	panel indicate ²³⁰ Th ages. Light grey bar shows the Little Ice Age
	(LIA). The Medieval Warm Period (MWP) has also been
	shown
Figure 4.10	Correlation of Indian summer monsoon proxy record from the Wah
	Shikar cave with the major events in the Indian history during last
	the last millennium62
Figure 5.1	$\delta^{18}O$ and $\delta^{13}C$ proxy record of Indian summer monsoon strength
	from speleothem MWS-1, from the Mawmluh cave, NE
	Himalaya66
Figure 5.2	Hendy test correlation of $\delta^{18}O$ and $\delta^{13}C$ values from a single lamina
	from the speleothem MWS-1 from the Mawmluh cave, NE
	Himalaya67
Figure 5.3	Spectral analysis of δ^{18} O time series from speleothem MWS-1 from

	the Mawmluh cave, NE Himalaya for the period between 33,800 and
	5,500 yrs BP68
Figure 5.4	Indian summer monsoon (ISM) proxy record from the Mawmluh
	Cave, Meghalaya, India, compared with cave and lake records from
	China, and marine records from the Bay of Bengal and Cariaco
	Basin. (a) Mawmluh Cave δ^{18} O record for the interval 33,800 to
	5500 yrs B.P. (dated intervals are marked by diamonds with error
	bars in blue color); also superimposed is the published $\delta^{18}\mathrm{O}$ record
	from the Mawmluh Cave (Berkelhammer et al., 2012). (b) Dongge
	Cave $\delta^{18}O$ record (black color) (Yuan et al., 2004) combined with
	Hulu Cave $\delta^{18}O$ record (green color) (Wang et al., 2001). (c) SST
	values from Cariaco Basin core PL07-39PC (cyan color) (Lea et al.,
	2003). (d) Bay of Bengal planktic for aminifer $\delta^{18}\mathrm{O}$ record as proxy
	for precipitation change (Govil and Naidu, 2011). (e) Huguang Maar
	Lake record of Ti counts/s (Yancheva et al., 2007). Broken vertical
	black lines mark the boundaries between marine isotopic stages
	(MIS). Light grey bars mark the Younger Dryas (YD) period and
	Last Glacial Maximum (LGM), whereas the dark grey bar indicates
	the Bølling-Allerød (B-A) period
Figure 5.5	Mawmluh Cave $\delta^{18}O$ data (blue color) compared with Greenland Ice
	Sheet Project 2 (GISP2) core $\delta^{18}O$ data (orange color) (Stuiver and
	Grootes, 2000). Also superimposed are maximum solar insolation at

	25°N (cyan color) (Huybers, 2006) and orbital precession (black
	color) (Berger and Loutre, 1991)72
Figure 6.1	Location of sites of the Harappan civilization in India, Pakistan and
	Afghanistan in yellow circle and red triangle (Madella and Fuller,
	2006). Also shown are the location of the Tso Moriri Lake, NW
	Himalaya in blue circle
Figure 6.2	Optimal end-member modelling (EM1-EM-3) using grain size data
	of core TMC-1 from the Tso Moriri Lake, Ladakh, NW Himalaya.
	End-member loadings represent sedimentologically interpretable
	unmixed grain-size distributions of three end members;
	EM1(lacustrine deposition of clay under slack water conditions near
	the river mouth, indicating very low or even temporary absence of
	river discharge, EM2 (high energy fluvial flow, and EM2(low
	energy fluvial flow)80
Figure 6.3	Indian summer monsoon proxy records of extracted end members
	from grain size variations (EM1: fluvial-lacustrine deposition of
	clay under slack water conditions, EM2: fluvial high energy flow,
	and EM3: fluvial low energy flow), $\delta^{18}O$ and $\delta^{13}C$ ratios in bulk
	carbonate, elemental ratios of Al/Ca and Rb/Sr and TOC (Wt. %) in
	core TMC-1 from the Tso Moriri Lake, Ladakh, NW Himalaya.
	Light green-grey bars indicate prolonged arid phase during ~4,350-
	3,450 cal yrs BP and the Little Ice Age (LIA). A potential
	commencement of the arid phase until 2,800 cal yrs BP is marked

	by the shaded bar. Medieval Climate Anomaly (MCA) is marked in
	light orange82
Figure 6.4	Spectral analysis of Al/Ca time series from core TMC-1, Tso Moriri
	Lake, Ladakh, NW Himalaya for the period 4,500 to -62 cal. yr BP
	showing the strongest periodicity at 140, 80, 63, 58 and 45 yrs (90%)
	using PAST Red Fit and Monte Carlo methods85
Figure 6.5	Indian summer monsoon proxy records from the Tso Moriri Lake,
	Ladakh compared with lake record from eastern tropical Pacific
	Ocean region, and marine records from the eastern Pacific Ocean
	and Cariaco Basin. (a) EM3 (low energy fluvial) from the Tso
	Moriri Lake, NW Himalaya (present study), (b) EM2 (high energy
	fluvial) from the Tso Moriri Lake, NW Himalaya (present study),
	(c)percent Ti from the ODP site 1002, Cariaco Basin (Haug et al.,
	2001), (d) percent sand in sediment core from the El Junko Lake,
	Galapagos, eastern tropical Pacific (Conroy et al., 2008) and (e) 10
	years running mean of lithics percentage from marine core SO147-
	106KL, eastern Pacific Ocean (Rein, 2007)88