LIST OF FIGURES

	Page No	0.
Figure 1.1	Monoplane configuration.	2
Figure 1.2	Biplane configuration.	2
Figure 1.3	Supersonic Transport Aircrafts	4
Figure 1.4	North American XB-70 Valkyrie.	5
Figure 1.5	High-speed flows over streamlined bodies	7
Figure 1.6	Flow over Airfoil at high speeds	9
Figure 1.7	C _D Variation with Mach number	10
Figure 1.8	Supersonic flow over double wedge airfoil at $\alpha = 0^{\circ}$	1 1
Figure 1.9	Supersonic flow over double wedge airfoil at positive α	12
Figure 1.10	Propagation of Disturbances. (a) Subsonic Flow. (b) Supersonic Flow	13
Figure 1.11	Supersonic flow over a corner	14
Figure 1.12	Oblique shock geometry	15
Figure 1.13	Attached and Detached shock	17
Figure 1.14	Expansion Wave	18
Figure 1.15	Supersonic flow over a flat plate at positive α	20
Figure 1.16	Diamond airfoil in a supersonic flow at $\alpha = 0^{\circ}$	21
Figure 1.17	Regular reflection of a shock wave from a solid boundary	22
Figure 1.18	Intersection of shock waves	23
Figure 1.19	Shock-wave Boundary Layer Interarction	25
Figure 1.20	Variation of Critical Mach number with thickness/chord ratio	26
Figure 1.21	Variation of Critical Mach number with Aspect ratio	27
Figure 1.22	Schematic illustration of flow over Supercritical airfoil	28
Figure 1.23	Schematic illustration of effect of wing sweep	28
Figure 1.24	Delta wing in low-speed flow at angle of attack	30
Figure 1.25	An oblique wing	31

Figure 1.26	Wave reduction effect	32
Figure 1.27	Wave Cancellation effect of the Busemann airfoil	33
Figure 1.28	Shock Structure and Pressure Distribution for Busemann biplane	34
Figure 1.29	Starting Mach Number for Supersonic Inlets	35
Figure 1.30	Conceptual Boomless Supersonic Transport Aircraft	36
Figure 2.1	Wave Cancellation Effect in Busemann biplane	39
Figure 2.2	Licher Biplanes with lift and thickness components	40
Figure 2.3	Modified elements of Busemann biplane proposed by Kusunose et al.	42
Figure 2.4	Busemann biplane with Control Devices	43
Figure 2.5	Busemann biplane with leading edge and trailing edge flaps	44
Figure 2.6	Variable biplane Configuration for complete flight regime	44
Figure 4.1	Schematic of two-dimensional control volumes grids	57
Figure 4.2	Reynolds averaging – illustration of turbulent velocity fluctuations v'	64
	and statistical mean value \overline{v}	
Figure 4.3	Basic geometries	69
Figure 4.4	Grid points and cell centers	70
Figure 4.5	Unstructured triangular mesh on a unit square	71
Figure 4.6	Different types of block arrangement	73
Figure 4.7	Geometry cut out from a rectangular grid	74
Figure 4.8	Multi-block grid around (a) Diamond Airfoil and (b) Busemann	75
	Biplane airfoil	
Figure 4.9	Multi-bloc structured mesh around (a) Staggered Busemann biplane	76
	and (b) Busemann biplane with rounded leading and trailing edges	
Figure 4.10	Farfield boundary conditions for domain around Busemann biplane	84
Figure 4.11	Variation of Drag coefficient with number of elements for the	85
	Busemann airfoil	
Figure 4.12	C_p and Mach number variation for Diamond airfoil at $M_{\infty} = 1.7$	87
Figure 4.13	C_p and Mach number variation for Busemann airfoil at $M_{\infty} = 1.7$	87
Figure 4.14	Contours of C_p for Busemann biplane at $0.5 \le M_{\infty} \le 1.0$	88
Figure 4.15	Contours of C_p for Busemann biplane at $1.2 \le M_{\infty} \le 1.6$	89

Figure 4.16	C_p variation of Busemann biplane for $1.9 \le M_{\infty} \le 2.5$	91
Figure 4.17	C_D variation with freestream Mach number for Diamond and	92
	Busemann airfoil at zero-lift condition	
Figure 5.1	Pressure Variation with Stagger distance at $M_{\infty} = 0.6$ and $\alpha = 0^{\circ}$	95
Figure 5.2	Pressure variation with Stagger at $M_{\infty} = 1.6$ and $\alpha = 0^{\circ}$	97
Figure 5.3	Pressure Variation with Stagger distance at $M_{\infty} = 1.4$ and $\alpha = 0^{\circ}$	98
Figure 5.4	Pressure Variation with Stagger at $M_{\infty} = 1.7$ and $\alpha = 0^{\circ}$	100
Figure 5.5	Drag variation (a) for with M_{∞} 0.5 \leq M_{∞} \leq 1.7 and (b) 1.8 \leq M_{∞} \leq 3.5	101
	for different Staggered configurations at $\alpha = 0^{\circ}$	
Figure 5.6	L/D ratio for different Stagger at $\alpha = 0^{\circ}$	102
Figure 5.7	C_p Variation for Stagger 0.1c and 0.2c at $M_{\infty} = 0.7$, $\alpha = 1^{\circ}$	103
Figure 5.8	C_p Variation for different Stagger distance at $M_{\infty} = 0.7$, $\alpha = 1^{\circ}$	104
Figure 5.9	C_p Variation for different Stagger distance at $M_{\infty} = 0.7$, $\alpha = 3^{\circ}$	106
Figure 5.10	C_p Variation for Busemann and Stagger distance 0.1c at M_∞ =1.7, α = 1°	107
Figure 5.11	C_p Variation for different Stagger distances at $M_{\infty} = 1.7$ and $\alpha = 1^{\circ}$	108
Figure 5.12	C_p Variation for different Stagger distances at $M_{\infty} = 1.7$ and $\alpha = 3^{\circ}$	109
Figure 5.13	C_D Variation at different angle of attack with M_∞	111
Figure 5.14	L/D ratio of different Stagger configuration at $\alpha = 1^{\circ}$	113
Figure 5.15	L/D ratio of different Stagger configuration at $\alpha = 2^{\circ}$	113
Figure 5.16	L/D ratio of different Staggered configuration at $\alpha = 3^{\circ}$	114
Figure 5.17	L/D Variation with angle of attack at $0.5 \le M_{\infty} \le 1.7$	115
Figure 5.18	L/D Variation with angle of attack at $M_{\infty} = 1.7 \& 1.9$	116
Figure 5.19	The Busemann biplane with rounded leading and trailing edges	117
Figure 5.20	Multi-block Grid around biplanes with rounded leading and trailing	118
	edges	
Figure 5.21	C_p variation for Busemann biplane with a) sharp leading edge and b)	120
	rounded leading edge of 1 mm radius, at $M_{\infty} = 0.6$, $\alpha = 0^{\circ}$	
Figure 5.22	C_p variation for different leading edge radius at $M_{\infty} = 0.6$, $\alpha = 0^o$	120
Figure 5.23	C_p variation with leading edge radius at $M_{\infty} = 1$, $\alpha = 0^o$	122
Figure 5.24	C_n variation with leading edge radius at $M_{\infty} = 1.7$, $\alpha = 0^o$	123

Figure 5.25	C_p variation of Busemann biplane at $M_\infty = 1.7$, $\alpha = \theta^o$ for (a) sharp	124
	leading edge and (b)rounded leading edge with 5 mm radius	
Figure 5.26	Variation of drag coefficient with leading edge and trailing edge	125
	radius for Busemann biplane at $\alpha = \theta^o$.	
Figure 5.27	Grid for Staggered biplane with rounded leading edge and trailing	125
	edges	
Figure 5.28	C_D variation with \mathbf{M}_{∞} for radii of leading edge and trailing edges for	127
	Stagger configuration at $\alpha = \theta^o$.	
Figure 5.29	Comparisons of pressures contours for Staggered configurations with	128
	round and sharp leading edges	
Figure 5.30	L/D variation with M_{∞} for different leading and trailing edge radii for	129
	Stagger configuration at $\alpha = \theta^o$	