NOMENCLATURE

M	= local Mach number
α	= Angle of attack
C_L	= Lift coefficient
C_D	= Drag coefficient
L/D	= Lift/Drag ratio
M_{cr}	= Critical Mach number
M_{dd}	= Drag-divergence Mach number
β	= Wave angle (degree)
θ	= Flow deflection angle (degree)
ho	= Flow density (kg/m^3)
p	$= Pressure (N/m^2)$
T	= Temperature (K)
V	= Flow velocity (m/sec)
M_I	= Mach number upstream of shock wave
P_{I}	= Pressure upstream of shock wave (N/m^2)
$ ho_I$	= Density upstream of shock wave (kg/m ³)
V_{I}	= Velocity upstream of shock wave (m/sec)
M_2	= Mach number downstream of shock wave
P_2	= Pressure downstream of shock wave (N/m^2)
$ ho_2$	= Density downstream of shock wave (kg/m ³)
V_2	= Velocity downstream of shock wave (m/sec)
M_n	= Mach number normal to shock wave
M_t	= Mach number tangential to shock wave
u	= x-component of velocity (m/sec)
ν	= y-component of velocity (m/sec)

```
w = z-component of velocity (m/sec)
```

$$e$$
 = Internal energy (kg m²/sec²)

$$\tau$$
 = Shear stress (N/m²)

$$\vec{F_c}$$
 = Convective flux (W/m²)

$$R$$
 = Specific gas constant (J/K mol)

$$C_v$$
 = Specific heat at constant volum (m²/sec²)

$$\bar{f}$$
 = Time average quantity

$$r$$
 = Leading edge and trailing radius (m)

$$i, j, k$$
 = Average value of variable in cell i, j, k

$$\mu_t$$
 = Turbulent viscosity (kg/m sec)

$$u', v', w'$$
 = Velocity fluctuations in x, y and z directions (m/sec)

$$y$$
+ = Non-dimensional distance from form the surface (m)

$$h = \text{Enthalpy (kg m}^2/\text{sec}^2 \text{ mol)}$$

$$\gamma$$
 = Ratio of specific heat

$$\phi$$
 = Shock reflection angle (degree)

$$\mu$$
 = Expansion waves angle (degree)

$$\mu_1$$
 = Angle of forward Mach line (degree)

$$\mu_1$$
 = Angle of rearward Mach line (degree)

$$\nu$$
 = Prandtl-Meyer function

$$c = \operatorname{chord}(m)$$

$$R$$
 = Normal force component (N)

$$\epsilon$$
 = Semi Wedge angle (degree)

$$q$$
 = Dynamic force (N)

$$n = \text{No. of parallel plates (m)}$$

$$A_t$$
 = Throat area (m²)

$$A_i$$
 = Inlet area (m²)

$$t/c$$
 = Thickness/chord ratio

$$A = Aspect ratio (m)$$

$$\Lambda$$
 = Wing sweep angle (degree)

$$t = time (sec)$$

 Ω = Control volume

E = Total energy (kg m²/sec²)

 $\overrightarrow{f_e}$ = Body force (N)

 $\bar{\bar{\tau}}$ = viscous tensor stress (N/m²)

 $\overrightarrow{F_D}$ = diffusive flux (kg/m³ sec³)

k = thermal conductivity (kg m/sec³ K)

 $\dot{q_h}$ = time rate of heat transfer per unit mass

 Q_S = surface sources

 λ = Second viscosity coefficient

 μ = Dynamic viscosity (kg/m sec)

 $\overrightarrow{F_v}$ = Viscous flux

 C_p = Specific heat at constant pressure (J/kg K)

 P_T = Prandtl number

z = Distance between biplane element (m)

x =Stagger upper element distance (m)

 $\vec{l}, \vec{l}, \vec{k}$ = Unit normal vectors in x, y and z directions

 $d\Omega$ = Elemental volume

 R_e = Reynold number