NOMENCLATURE | M | = local Mach number | |----------|---| | α | = Angle of attack | | C_L | = Lift coefficient | | C_D | = Drag coefficient | | L/D | = Lift/Drag ratio | | M_{cr} | = Critical Mach number | | M_{dd} | = Drag-divergence Mach number | | β | = Wave angle (degree) | | θ | = Flow deflection angle (degree) | | ho | = Flow density (kg/m^3) | | p | $= Pressure (N/m^2)$ | | T | = Temperature (K) | | V | = Flow velocity (m/sec) | | M_I | = Mach number upstream of shock wave | | P_{I} | = Pressure upstream of shock wave (N/m^2) | | $ ho_I$ | = Density upstream of shock wave (kg/m ³) | | V_{I} | = Velocity upstream of shock wave (m/sec) | | M_2 | = Mach number downstream of shock wave | | P_2 | = Pressure downstream of shock wave (N/m^2) | | $ ho_2$ | = Density downstream of shock wave (kg/m ³) | | V_2 | = Velocity downstream of shock wave (m/sec) | | M_n | = Mach number normal to shock wave | | M_t | = Mach number tangential to shock wave | | u | = x-component of velocity (m/sec) | | ν | = y-component of velocity (m/sec) | ``` w = z-component of velocity (m/sec) ``` $$e$$ = Internal energy (kg m²/sec²) $$\tau$$ = Shear stress (N/m²) $$\vec{F_c}$$ = Convective flux (W/m²) $$R$$ = Specific gas constant (J/K mol) $$C_v$$ = Specific heat at constant volum (m²/sec²) $$\bar{f}$$ = Time average quantity $$r$$ = Leading edge and trailing radius (m) $$i, j, k$$ = Average value of variable in cell i, j, k $$\mu_t$$ = Turbulent viscosity (kg/m sec) $$u', v', w'$$ = Velocity fluctuations in x, y and z directions (m/sec) $$y$$ + = Non-dimensional distance from form the surface (m) $$h = \text{Enthalpy (kg m}^2/\text{sec}^2 \text{ mol)}$$ $$\gamma$$ = Ratio of specific heat $$\phi$$ = Shock reflection angle (degree) $$\mu$$ = Expansion waves angle (degree) $$\mu_1$$ = Angle of forward Mach line (degree) $$\mu_1$$ = Angle of rearward Mach line (degree) $$\nu$$ = Prandtl-Meyer function $$c = \operatorname{chord}(m)$$ $$R$$ = Normal force component (N) $$\epsilon$$ = Semi Wedge angle (degree) $$q$$ = Dynamic force (N) $$n = \text{No. of parallel plates (m)}$$ $$A_t$$ = Throat area (m²) $$A_i$$ = Inlet area (m²) $$t/c$$ = Thickness/chord ratio $$A = Aspect ratio (m)$$ $$\Lambda$$ = Wing sweep angle (degree) $$t = time (sec)$$ Ω = Control volume E = Total energy (kg m²/sec²) $\overrightarrow{f_e}$ = Body force (N) $\bar{\bar{\tau}}$ = viscous tensor stress (N/m²) $\overrightarrow{F_D}$ = diffusive flux (kg/m³ sec³) k = thermal conductivity (kg m/sec³ K) $\dot{q_h}$ = time rate of heat transfer per unit mass Q_S = surface sources λ = Second viscosity coefficient μ = Dynamic viscosity (kg/m sec) $\overrightarrow{F_v}$ = Viscous flux C_p = Specific heat at constant pressure (J/kg K) P_T = Prandtl number z = Distance between biplane element (m) x =Stagger upper element distance (m) $\vec{l}, \vec{l}, \vec{k}$ = Unit normal vectors in x, y and z directions $d\Omega$ = Elemental volume R_e = Reynold number