Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Digital Electronics Semester: II
Program: BCA Time: 03 hrs.

Course Code: ECEG 2016 Max. Marks: 100

Instructions: Attempt all the questions

SECTION A			
S. No.		Marks	CO
Q 1	Differentiate the following (a) Level-triggered and Edge-triggered flip-flops (b) Asynchronous and Synchronous counter	4	CO3
Q 2	Find the Minterms and Maxterms for the following logical expression: F = A + BC + ABD + ABCD	4	CO2
Q 3	State and Prove DeMorgan's theorem. Simplify the following expression using boolean laws: $F = A(A+B) + (B+AA)(A+B)$	4	CO2
Q 4	Convert the following: (a) (2598.675) ₁₀ to hexadecimal (b) (10010.1011) ₂ to decimal (c) (10111101.01101001) ₂ to octal (d) (465.0647) ₈ to Binary	4	CO1
Q 5	Explain the operation of master-slave flip-flop and show how the race around condition is eliminated in it.	4	CO3
	SECTION B		
Q 6	What do you understand by Universal gates? Design and Implement Ex-OR and Ex-NOR gates using NAND gate.	8	CO2
Q 7	Design and implement J-K flip-flop using S-R flip-flop.	8	CO3
Q 8	Simplify the expression $F(A, B, C, D) = \sum m (0, 1, 5, 6, 8, 9, 13, 14) + d (3, 7, 15)$ using K-map and implement the result using logic gates.	8	CO2
Q 9	Differentiate weighted & non-weighted codes with suitable examples. Define even and odd parity code. Convert the following to Gray code and back to their equivalent binary code. (a) 10001110101 (b) 00101101110	8	CO1

Q10	Design a MOD-3 counter using J-K flip-flop.	8	CO3	
	SECTION-C			
Q 11	 (a) Design a combinational circuit that accepts a 4-bit binary number and generates a output binary number equal to the 2's complement of input number. (b) Implement the following function using 8×1 Multiplexer F(A, B, C, D) = Σ (1, 3, 4, 11, 12, 13, 14, 15) 	[10+10]	CO2	
Q 12	(a) Design a 4-bit synchronous down counter that counts through all states from 1111 down to 0000.(b) Design a 4-bit Self-correcting Shift Counter using D flip-flop.	[10+10]	CO3	

Name:

Enrolment No:

UPES

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Digital Electronics Semester: II
Program: BCA Time: 03 hrs.

Course Code: ECEG 2016 Max. Marks: 100

Instructions: Attempt all the questions

SECTION A

S. No.		Marks	CO
Q 1	Design and implement Full subtractor using two half subtractor.	4	CO2
Q 2	Explain with suitable truth table and logical diagram how the forbidden condition has been eliminated in J-K Flip-Flop as compared to S-R Flip-Flop.	4	CO3
Q 3	Find the value of X in the following	4	CO1

	(a) $(F3A7C2)_{16} = (X)_{10}$ (b) $(2AC5)_{16} = (X)_8$		
	(c) $(0.93)_{10} = (X)_8$ (d) $(4057.06)_8 = (X)_{10}$		
Q 4	$(c) (0.93)_{10} = (X)_8$ $(d) (4057.06)_8 = (X)_{10}$ State and Prove Duality principle. Simplify the following expression using boolean		
	laws:	4	CO2
	F = (A+C)(AD+AD)+AC+C		
Q 5	Differentiate the following		
	(a) Latch and Flip-Flop	4	CO3
	(b) Combinational and Sequential circuits		
	SECTION B		
Q 6	What do you understand by registers? Discuss with suitable logic diagram all the four configuration SISO, SIPO, PISO, PIPO of registers.	8	CO3
Q 7	Simplify the expression $F(A, B, C, D) = \prod M(1, 3, 5, 8, 9, 11, 14) + d(2, 7, 10)$ using K-map and implement the result using logic gates.	8	CO2
Q 8	What are different types of error detecting and correcting codes. Explain with help of suitable example how the error can be detected and corrected.	8	CO1
Q 9	Design and implement D flip-flop using J-K flip-flop.	8	CO3
Q 10	What do you understand by Universal gates? Design and Implement Ex-OR and Ex-NOR gates using NOR gates.	8	CO2
	SECTION-C	<u> </u>	I.
Q 11	(a) Design a 4-bit Binary code to Gray code converter.(b) Differentiate multiplexer and demultiplexer. Implement the following boolean expression using a 8 X 1 multiplexer.	[10+10]	CO2
	$F(A, B, C, D) = \sum (0,1,2,5,6,9,14)$		
Q 12	(a) Design a synchronous BCD counter using J-K flip-flops.		
	(b) Design a 4-bit unit distance Up-Down counter using D flip-flops.	[10+10]	CO3