Name:

## **Enrolment No:**



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## **End Semester Examination, May 2019**

Programme Name: BT-E&CE

Course Name : Analog Electronics II

Course Code : ECEG 2014

Semester : IV

Time : 02 hrs

Max. Marks: 100

Nos. of page(s) : 02

#### **Instructions:**

• Attempt all questions.

• Assume any data if required and indicate the same clearly. Otherwise indicated symbols and notations have their usual meanings.

• Strike off all unused blank pages.

## SECTION A

| S. No. |                                                                                                                | Marks | CO  |
|--------|----------------------------------------------------------------------------------------------------------------|-------|-----|
| Q1.    | Write short notes on virtual ground concept.                                                                   | 5     | CO1 |
| Q2.    | Discuss why astable multivibrator is also known as free running oscillator.                                    | 5     | CO2 |
| Q3.    | Determine $V_{out}$ for the two connections shown in below Figure 1. Assume $V_1=3V$ , $V_a=2V$ and $V_b=3V$ . | 5     | CO3 |

| Q4.  | With neat block diagram, explain the operation of 8-bit successive approximation register type ADC. What is the maximum conversion time for this type of ADC.                                                                            | 5  | CO2 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|      | SECTION B                                                                                                                                                                                                                                |    |     |
| Q5.  | A regenerative comparator (Schmitt Trigger) circuit is shown in <b>Figure 3</b>                                                                                                                                                          |    |     |
|      | Derive expressions for upper threshold and lower threshold voltages, $V_{UT}$ and $V_{LT}$                                                                                                                                               | 10 | CO3 |
|      | respectively and hence the value of hysteresis voltage $V_{\text{H}}$ . Calculate $V_{\text{UT}}$ , $V_{\text{LT}}$ , $V_{\text{H}}$ for                                                                                                 |    |     |
|      | the given values of $R_1 = 27 \text{ k}\Omega$ and $R_2 = 1 \text{ k}\Omega$ .                                                                                                                                                           |    |     |
|      | $v_i \stackrel{\downarrow}{=} \stackrel{\circ}{\downarrow} v_o$ $R_1$ Figure 3                                                                                                                                                           |    |     |
| Q6.  | A sine wave with 2 V peak-to-peak amplitude and 1 kHz frequency is applied at the                                                                                                                                                        |    |     |
|      | input of the circuit. Plot the input and output waveforms. $Vcc = +15 \text{ V}$                                                                                                                                                         | 10 | СОЗ |
|      | Figure 4                                                                                                                                                                                                                                 |    |     |
| Q7.  | Show that the Low pass RC network performs filtering and op-amp provides amplification?                                                                                                                                                  | 10 | CO3 |
| Q8.  | Design a circuit using op-amp to produce a square wave output whose output does not have any stable state and the Output has two Quasi-Stable states where output keeps on changing its own from 1state to another state and Vice Versa. | 10 | CO4 |
|      | SECTION-C                                                                                                                                                                                                                                |    |     |
| Q 9  | Design an astable multivibrator for an output frequency of 1 kHz but a variable duty cycle of 30% to 70%. Assume Vcc=12V.                                                                                                                | 20 | CO4 |
| Q 10 | Design a timer, which should turn ON heater immediately after pressing a push button and should hold heater in 'ON-state' for 5 seconds.                                                                                                 | 20 | CO4 |

Name:

#### **Enrolment No:**



# UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**End Semester Examination, May 2019** 

Programme Name: BT-E&CE

Course Name : Analog Electronics II

Course Code : ECEG 2014

Semester : IV

Time : 02 hrs

Max. Marks: 100

Nos. of page(s) : 02

\_\_\_\_\_

#### **Instructions:**

• Attempt all questions.

• Assume any data if required and indicate the same clearly. Otherwise indicated symbols and notations have their usual meanings.

• Strike off all unused blank pages.

# **SECTION A**

| S. No. |                                                                                                                        | Marks | CO  |
|--------|------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q1.    | Figure 1 shows the output voltage of an op-amp in response to the step input. Find the slew rate.                      | 5     | CO2 |
|        | Figure 1                                                                                                               |       |     |
| Q2.    | With neat block diagram, explain the operation of 8-bit successive approximation register type ADC.                    | 5     | CO1 |
| Q3.    | Discuss why astable multivibrator is also known as free running oscillator.                                            | 5     | CO2 |
| Q4.    | Determine $V_{out}$ for the two connections shown in below <b>Figure 2</b> . Assume $V_1=3V$ , $V_a=2V$ and $V_b=3V$ . | 5     | CO3 |



| Q8.  | A regenerative comparator (Schmitt Trigger) circuit is shown in <b>Figure 4</b> Derive expressions for upper threshold and lower threshold voltages, $V_{UT}$ and $V_{LT}$ respectively and hence the value of hysteresis voltage $V_H$ . Calculate $V_{UT}$ , $V_{LT}$ , $V_H$ for the given values of $R_1 = 27 \text{ k}\Omega$ and $R_2 = 1 \text{ k}\Omega$ . | 10 | CO3 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|      | SECTION-C                                                                                                                                                                                                                                                                                                                                                          |    |     |
| Q 9  | Design an astable multivibrator which will flash the electric bulb such that its ON time will be 3 seconds and off time will be 1 seconds.                                                                                                                                                                                                                         | 20 | CO4 |
| Q 10 | Design a timer, which should turn ON heater immediately after pressing a push button and should hold heater in 'ON-state' for 5 seconds.                                                                                                                                                                                                                           | 20 | CO4 |