Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Solar Thermal Technologies

Program: M. Tech. - REE Course Code: EPEC 7016

Semester: II Time 03 hrs. Max. Marks: 100

	SECTION A		
S. No.		Marks	CO
Q 1	Briefly explain "solar green house".	4	CO3
Q 2	Briefly explain Advanced Solar Cooker.	4	CO
Q 3	Write short note on 'Black Chrome' - selective surface.	4	CO
Q 4	Explain the term 'aperture' and 'intercept factor'.	4	CO
Q 5	For a collector with a top loss coefficient of 3.79 W/m²-K. Calculate overall loss coefficient using following data: Back insulation thickness = 8 cm Insulation conductivity = 0.05 W/m-K Side insulation thickness = 4 cm Size absorber plate = 1.90 m x 0.9 m Height of collector casing = 0.16 m	4	CO ²
	SECTION B		
Q 6	Determine the collector area to supply 200 litres per day, hot water at a temperature of 65°C, for a family at a location, where average radiation intensity available is 6 kWh/m². The temperature of supply water to the bottom of storage tank is 15°C. Collection efficiency may be assumed to be 30%.	10	CO4
Q 7	With the help of diagram, explain the working of Natural circulation solar water heater (pressurized).	10	CO ₂
Q 8	With help of diagram, discuss following situations for using a thermal energy storage: (I) Buffer storage (ii) Diurnal storage (iii) Annual storage	10	CO
Q 9	Give a neat diagram of a central tower receiver power plant and explain its operation.	10	CO

	SECTION-C		
Q 10	Find the days of the year on which the sun is directly overhead at 1 (18°32').	2:00 (LAT) at Pune 20	CO1
Q 11	The temperature rise (ΔT) of air through a vertical south-facic collector (UTC) is found to satisfy the following empirical relation $\Delta T = 0.03I_T + 3.0$ for an air flow rate of 36 m³/h-m² of UTC. I_T is the total sol UTC in W/m²; ΔT is in °C. Assuming this relation to be valid, calculate the efficiency of UTC for the following data: Location: Date: December 10 Time: 10:47 h (LAT) Global solar radiation on horizontal surface: 543 W/m² Diffuse solar radiation on horizontal surface: 144 W/m² Reflectivity of the surrounding surface: Air data: Air flow rate = 36 m³/h-m² of UTC $C_p = 1005 J/kg$. K $\rho = 1.165 kg/m³$	ation: ar radiation incident on a vertical south-facing	CO2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Solar Thermal Technologies

Program: M. Tech. - REE Course Code: EPEC 7016

Semester: II Time 03 hrs. Max. Marks: 100

S. No.		Marks	CO
Q 1	Briefly explain Evacuated tube collector.	4	CO
Q 2	Explain the term 'Solar Constant' and give its value.	4	CO
Q 3	Write short note on 'Cermets' - selective surface.	4	CO
Q 4	Explain the term 'concentration ratio' and 'acceptance angle'.	4	CO:
Q 5	A solar air heater is used for heating ambient air in a particular application. The characteristic parameters of the air heater are $FR(\tau\alpha)av = 0.63$, $F_RU_1 = 6.2$ W/m²-K.If the solar flux incident on the plane of the collector is 705 W/m², calculate the useful heat gain rate.	4	CO ₂
	SECTION B		
Q 6	Determine the size of the heating array from the following factors: i. The daily heating needs of a home during the heating season are 100 kW-hr/day . ii. The available daily insolation on the array is $4 \text{ kW-hr/}m^2$ day. iii. Also assume that each panel has an area of 1.5 m^2 , an efficiency of 50 per cent, and that one third of the heating will come from auxiliary heaters.	10	CO ₂
Q 7	With the help of diagram, explain the working of forced circulation solar water heater.	10	CO2
Q 8	With the help of diagram explain arrangements of spaces and tubes in container for latent heat storage.	10	CO
Q 9	With the help of diagram, explain the working of low temperature power generation cycle using liquid flat plate collector.	10	CO

Q 10	Determine the sunset hour angle for Allahabad (longitude 81°58′E, latitude 24°25 N) for following dates: January 1, March22, july15.	20	CO1
Q 11	The following observations were recorded in experiments on a single pass solar air heater and on a double pass solar air heater with a porous medium:	20	
	Inlet air temperature = 26 °C Outlet air temperature = 40 °C (single pass air heater) = 47 °C (double pass with process medium), Air flow rate = 0.033 Kg/s, Collector length = 1.8 m, Collector width = 0.7 m, Location = Jodhpur (16° 18′ N,73° 01′ E & Day = March 16, Time = 9:42 h (LAT), Tilt of collector = latitude of the place = 26°18′ N, Azimuth angle of collector = 0°, Global solar radiation on horizontal surface = 640 W/m², Diffuse solar radiation on horizontal surface = 160 W/m², Reflectivity of the surrounding surface = 0.2 a) Calculate values of efficiency for the above two cases b) When porous medium is removed, the outlet air temp. in the double pass heater is recorded to be 44 °C. Calculate the value of efficiency for this situation also.		CO2
	Comment on the values obtained.		