Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2019

Course: Basic Electr	onics Engineering	Semester:	Ι
Program: B.Tech. CSE-AIML, Big Data, SCF, Dev Ops, OSS, OGI, IoT smart city, Cyber Law		Time 03 hrs.	
Course Code: PHYS1	003	Max. Marks:	100

Instructions:

- 1. Draw suitable diagrams wherever required.
- 2. Your answer should be concise and to the point.

SECTION A (20 Marks)

Attemp	t all the Questions			
S. No.		Marks	CO	
Q 1	Plot the VI characteristics of silicon and germanium diodes on the same scales. Clearly label the various parameters.	4	CO1	
Q 2	Explain the physical structure of PNP transistor. Also label various majority charge carriers for the terminals.	4	CO2	
Q 3	Differentiate between Junction Field Effect Transistor (JFET) and Metal Oxide Semiconductor Field Effect Transistor (MOSFET).	4	CO2	
Q 4	Briefly enumerate the characteristics of an ideal op-amp.	4	CO3	
Q 5	Why is it necessary to modulate a signal for long distance transmission?	4	CO4	

SECTION B (20 Marks)

Attempt all the Questions

Aucmp	pt an the Questions		
Q 6	Design a Zener voltage regulator which has variable load R_L and load current should vary between 10 mA to 85 mA. It is given that $V_z = 10V$, $I_{Zmin}=15$ mA, $I_{Zmax}=100$ mA and the series resistance $R_s = 40$ Ω . Calculate the range of dc variation permissible and Zener power dissipation	10	CO1
Q 7	For the rectifier circuit given below, calculate (i) V_{DC} , (ii) rectification efficiency (iii) PIV	10	CO1
Q 8	Enumerate working of a p-channel MOSFET in Enhancement mode.	10	CO2
Q 9	Define modulation. Explain key differences between amplitude and frequency	10	CO4

	modulation.		
Atter	SECTION-C (40 Marks) npt any <i>Two</i> of the followings		
Q 10	 a) Draw the circuit diagram of an operational amplifier to be used as a differentiator. Also find the expression for the output voltage. b) Design a closed-loop inverting amplifier using op-amp. Also derive the expression for the output voltage. 	10 10	CO3
Q 11	 a) Design an op-amp based circuit using to implement the following signal manipulation: V_o = 6V₁ + 2V₂ + 4V₃ where V₁, V₂ and V₃ are the inputs, use R_f = 10kΩ b) Determine the output voltages at V₂ and V₃ for the circuit given below: 	10	CO3
Q.12	 a) Explain the working of half wave rectifier. Determine the value efficiency and PIV of half wave rectifier. b) Plot the input and output V-I Characteristics of NPN transistor in CE configuration. Derive the mathematical expression of α and β parameters of the BJT. 	10 10	CO2