Name: Enrolmo	olment No:		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
	End Semester Examination, December 2019		
Course: Mathematics-I (MATH-1002)Semester: IProgramme: All SOCS BranchesTime: 03 hrs.			
No. of pages: 2 Max. Mark		ks: 100	
-	tions: All sections are compulsory		
	SECTION A		
~	Attempt all Questions		
S. No.		Marks	CO
Q 1	Check whether the given statement $(p \land q) \lor (q \land \sim r)$ is tautology or not ?	4	CO2
Q2	Let $\lambda_1 = 3$ and $\lambda_2 = 5$ be two the eigen values of the matrix A of order 3×3 and $Trace(A) = 12$. Find the determinant of inverse of the matrix A.	4	CO1
Q3	Let the group $G=\{1, 2, 4, 5, 7, 8\}$ under multiplication modulo 9 be a cyclic. Find its all generator.	4	CO5
Q4	Find the <i>n</i> th derivative of the function $y = e^{3x}(2x + 3)^3$	4	CO3
Q5	Evaluate $\int_0^2 \int_1^{e^x} dy dx$	4	CO4
	SECTION B		
	Attempt all Questions		
Q6	Test the given vectors are $X_1 = (1,2,4)$, $X_2 = (2,-1,3)$, $X_3 = (0,1,2)$, $X_4 = (-3,7,2)$ linearly dependence or not? If yes, find the relation between them.	10	CO1
Q7	Check whether the two statements $p \Rightarrow (q \lor r) \equiv (p \Rightarrow q) \lor (p \Rightarrow r)$ are equivalence	10	CO2
Q8	Change the order of integration and evaluate: $\int_0^1 \int_y^{\sqrt{2-y^2}} \frac{y}{\sqrt{x^2+y^2}} dx dy.$	10	CO3
Q9	Define subgroup and let set $H = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, a \neq 0, a, b \in \mathbb{R} \}$ be a subset of the multiplicative group G of 2×2 non-singular matrices over \mathbb{R} . Is the given set H a subgroup of G? OR		CO5
	Define the order of an element of group and also find the order of each element of an abelian group $G = \{1, 3, 5, 7\}$ under multiplication mod 8.		

	SECTION-C Attempt all Questions				
Q10(A)	Let R is the set of integers mod 6 under addition and multiplication mod 6. Show that R is a ring with unit element.	10	CO5		
Q10(B)	If \mathbb{R} is the additive group of real numbers and \mathbb{R}_+ the multiplicative group of positive real numbers, prove that the mapping $f: \mathbb{R} \to \mathbb{R}_+$ defined by $f(x) = e^x \forall x \in \mathbb{R}$ is an isomorphism of \mathbb{R} onto \mathbb{R}_+ .	10	CO5		
Q11(A)	If $u = xyz$, $v = xy + yz + zx$, $w = x + y + z$, then compute Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. OR A rectangular box open at the top is to have volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction.	10	CO3		
Q11(B)	Evaluate $\iint_R x^2 dx dy$, where <i>R</i> is the region in the first quadrant bounded by xy = 16, $x = y$, $y = 0$ and $x = 8$. OR Evaluate $\iiint_X yz (x^2 + y^2 + z^2) dx dy dz$ over the first octant of the sphere $x^2 + y^2 + z^2 = a^2$	10	CO4		