

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Semester – I

End Semester Examination, Dec 2019

Program Name: B. Tech (SoCS)

IOT, Block chain, OGI, OSS, CSF, Big Data, AI+ML, Devops

Course Name : Physics Max. Marks :100
Course Code : PHYS 1008 Duration : 3Hrs

No. of page/s: 02

Ques	uestions are compulsory. stion numbers to be written very clearly. sold representations are vectors.		
	SECTION A (All Questions are compulsory)		
1	Discuss characteristic properties of a LASER beam. How is it different from ordinary light beam?	[4]	CO1
2	The numerical aperture of a fiber is 0.25 and the fractional refractive index is 0.02. Determine the refractive indices of the core and cladding of a fiber	[4]	CO1
3	What do you understand by a wave function? Discuss the properties of a well-behaved wave function.	[4]	CO4
4	Given the ket $ \psi\rangle = 3 0\rangle - 2i 1\rangle$ Find its normalized state.	[4]	CO5
5	Write the Maxwell's equations in differential and integral forms for static fields.	[4]	CO2
6	Discuss the working of He Ne LASER with the help of energy level diagram. Discuss all the processes involved.	[8]	CO1
6	(All Questions are compulsory with an internal choice in Questions 10 and 11) Discuss the working of He Ne LASER with the help of energy level diagram. Discuss		CO1
7	Using Gauss's law, derive an expression for the electric flux density for an infinite	101	COA
	sheet of charge.	[8]	CO2
8	An infinitely long conductor is bent into an L shape as shown in the figure below. If a direct current of 5 A flows in the conductor, find the magnetic field intensity at (a) (2, 2, 0), (b) (0, -2, 0), and (c) (0, 0, 2). Take the origin at the bend.	[8]	CO3
9	What do you understand by phase velocity (v_p) and group velocity (v_g) of matter waves. Prove that	[8]	C04

	$v_g =$	$v_p - \lambda \frac{dv_p}{d\lambda}$			
10	What were the observations of photoelectric effect? Discuss how classical wave theory failed and how quantum theory of light was able to explain those observations. OR			[8]	CO4
11	State Heisenberg's uncertainty principle and based on it explain why electron cannot exist inside the nucleus.				CO4
		SECTION C with an internal choice in Questions 13	and 14)		
12	(a) Using Ampere's law and continuity equation, obtain an expression for the displacement current density.			[10]	CO3
	(b) Differentiate between classical computing and quantum computing.				CO5
13	(a) Derive Schrodinger's wave equation expression for Hamiltonian.	on in time independent form. Writ	te the	[10]	CO4
	(b) Calculate the lowest energy of an ele side 1Å. (ii) Find the temperature at was a perfect gas would be equal to the lo J/K.	ıles of	[10]	CO4	
14	OR (a) What is Compton Effect? Derive an expression for the Compton shift in wavelength by considering inelastic scattering of a photon with an electron.			[10]	CO4
	(b) A metallic surface, when illuminated with light of wavelength λ_1 , emits electrons with energies upto a maximum value E_1 , and when illuminated with light of wavelength λ_2 , where $\lambda_2 < \lambda_1$, it emits electrons with energies upto a maximum value E_2 . Prove that plank's constant h and the work function ϕ of the metal are given by $h = \frac{(E_2 - E_1)\lambda_1\lambda_2}{C(\lambda_1 - \lambda_2)} \text{and} \phi = \frac{E_2\lambda_2 - E_1\lambda_1}{(\lambda_1 - \lambda_2)}$				CO4
	Values of constants:				
	Constant	Standard Values			
	Planck's Constant (h)	5.63 x 10 ⁻³⁴ Joule-sec			
	Permittivity of free space (ε_0)	8.854 x 10 ⁻¹² Farad/meter			
	Velocity of Light c 3	3 x 10 ⁸ m/sec			
	Boltzmann constant (k _B) 1	$1.38 \times 10^{-23} \mathrm{JK^{-1}}$			
	Rest mass of an Electron 9	9.11 x 10 ⁻³¹ Kg			
	Charge of electron 1	1.6x10 ⁻¹⁹ C			