Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Program: BCA (IoT and BFSI)
Course: MATHEMATICS
Semester: I
Time 03 hrs.

Course Code: MATH 1006 Max. Marks: 100

	SECTION A		
S. No.	(Answer all the questions)	N/L 1	CO
		Marks	CO
Q 1.	$Solve x - 7\sqrt{x} + 6 = 0$	4	CO1
Q 2.	Test the continuity of the following function at the origin. $f(x) = \begin{cases} \frac{ x }{x}; & x \neq 0 \\ 1; & x = 0 \end{cases}$	4	CO3
Q 3.	Evaluate $\int \frac{e^{\sin g_e x} - e^{\sin g_e x}}{e^{3\log g_e} x - e^{2\log g_e}} dx$	4	CO3
Q 4.	From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there in the committee. In how many ways can it be done?	4	CO4
Q 5.	When two dice are rolled, find the probability of getting a greater number on the first dice than the one on the second, given that the sum should equal 8.	4	CO4
	SECTION B		
	(Answer all the questions. Q 9 has internal choice)		
Q 6.	Solve the following system of linear equations by Cramer's rule. $3x + y + z = 2$; $2x - 4y + 3z = -1$; $4x + y - 3z = -11$	10	CO1
Q 7.	 A, B and C are three candidates for the position of principal in a certain college whose chances of getting the appointment are in the proportion 4: 2: 3 respectively. The probability that A if selected would introduce co-education in the college is 0.3. The probabilities of B and C doing the same are respectively 0.5 and 0.8. (i) What is the probability that there will be co-education in the college after appointing one of them as principal? (ii) If there is co-education after the selection of principal, what is the probability that C is the principal? 	10	CO4
Q 8.	Let A and B be independent events with $P(A) = \frac{1}{4}$ and $P(A \cup B) = 2P(B) - P(A)$. Find (i) $P(B)$ (ii) $P(A B)$ (iii) $P(B^c A)$.	10	CO4
Q 9.	Find (i) $P(B)$ (ii) $P(A B)$ (iii) $P(B^c A)$. Prove that $\int e^{ax} \cos bx \ dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$. (OR) Evaluate $\int \frac{1}{(x-1)^2(x+1)} \ dx$.	10	CO3

SECTION-C (Answer all the questions. Q 11A-Q 11B have internal choice)					
Q 10A.	Define continuity of a function on an interval. If $f(x) = \begin{cases} 5, & \text{if } x \le 2 \\ ax + b, & \text{if } 2 < x < 10, \\ 21, & \text{if } x \ge 10 \end{cases}$ determine the values of a and b so that $f(x)$ is continuous.	10	CO3		
Q 10B.	If $y = (\sqrt{x})^{(\sqrt{x})^{(\sqrt{x})^{\infty}}}$, show that $\frac{dy}{dx} = \frac{y^2}{x(2-y\log x)}$.	10	CO3		
Q 11A.	The daily cost C , of operating a hospital is a linear function of the number of in-patients I , out-patients P , plus a fixed cost a , i.e., $C = a + bP + dI$. Given the following data for three days, find the values of a , b and d by setting up a linear system of equations and solving them. $ \frac{Day}{I} C I P \\ \hline I 6950 40 10 \\ \hline 2 6725 35 9 \\ \hline 3 7100 40 12 $ (OR) An amount of Rs. 4,000 is distributed into three investments at the rate of 7%, 8% and 9% per annum respectively. The total annual income is Rs. 317.50 and the total annual income from the first investment is Rs. 5 more than the income from the second. Find the amount of each investment.	10	CO2		
Q 11B.	Show that $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ satisfies the equation $A^2 - 4A - 5I_3 = 0$ and hence find A^{-1} .				
	If $A = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, prove that $(adj A)A = A I_3$.	10	CO2		