Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2019

Program Name: B. Tech (SoCS)LLB CL/ET-IPR Course Name : Physics Course Code : PHYS 1002 No. of page/s: 02 Semester – I Max. Marks :100 Duration : 3Hrs

All q	uestions are compulsory.		
	tion numbers to be written very clearly.		
All b	old representations are vectors.		
	SECTION A (All Questions are compulsory)		
1	Discuss characteristic properties of a LASER beam. How is it different from ordinary light beam?	[4]	CO1
2	The numerical aperture of a fiber is 0.25 and fractional refractive index is 0.02. Determine the refractive indices of the core and cladding of a fiber	[4]	C01
3	What do you understand by a wave function? Discuss the properties of a well-behaved wave function.	[4]	CO4
4	Explain the postulates of special theory of relativity.	[4]	CO5
5	Write Maxwell's equations in differential and integral forms for static fields.	[4]	CO2
6	Discuss the working of He Ne LASER with the help of energy level diagram. Discuss	[8]	C01
	all the processes involved.	[0]	cor
7	Using Gauss's law, derive an expression for the electric flux density for an infinite sheet of charge.	[8]	CO2
8	An infinitely long conductor is bent into an L shape as shown in the figure below. If a direct current of 5 A flows in the conductor, find the magnetic field intensity at (a) (2, 2, 0), (b) (0, -2, 0), and (c) (0, 0, 2). Take the origin at the bend.	[8]	CO3
9	What do you understand by phase velocity (v_p) and group velocity (v_g) of matter waves. Prove that $v_g = v_p - \lambda \frac{dv_p}{d\lambda}$	[8]	C04

10	What were the observations of photoelectric effect? Discuss how classical wave theory failed and how quantum theory of light was able to explain those observations. OR			CO4
11	State Heisenberg's uncertainty principl exist inside the nucleus.	[8]	CO4	
	(All Questions are compulsory	SECTION C y with an internal choice in Questions 13 and 14	ł)	
12	(a) Using Ampere's law and continuity equation, obtain an expression for the			CO3
	displacement current density.(b) Differentiate between classical con	[10]	CO5	
13	(a) Derive Schrodinger's wave equation in time independent form. Write the expression for Hamiltonian.			CO4
	 (b) Calculate the lowest energy of an estimate side 1Å. (ii) Find the temperature a a perfect gas would be equal to the J/K. 		CO4	
14	OR (a) What is Compton Effect? Derive an expression for the Compton shift in wavelength by considering inelastic scattering of a photon with an electron.			CO4
	(b) A metallic surface, when illuminated with light of wavelength λ_1 , emits electrons with energies upto a maximum value E_1 , and when illuminated with light of wavelength λ_2 , where $\lambda_2 < \lambda_1$, it emits electrons with energies upto a maximum value E_2 . Prove that plank's constant h and the work function φ of the metal are given by $h = \frac{(E_2 - E_1)\lambda_1\lambda_2}{C(\lambda_1 - \lambda_2)} \text{ and } \varphi = \frac{E_2\lambda_2 - E_1\lambda_1}{(\lambda_1 - \lambda_2)}$			CO4
	$C(\lambda_1 - \lambda_2)$ $(\lambda_1 - \lambda_2)$ Values of constants:			
	Constant	Standard Values		
	Planck's Constant (h)	6.63 x 10 ⁻³⁴ Joule-sec		
	Permittivity of free space (ε_0)	8.854 x 10 ⁻¹² Farad/meter		
	Velocity of Light c	3 x 10 ⁸ m/sec		
	Boltzmann constant (k _B)	$1.38 \times 10^{-23} \text{ J K}^{-1}$		
	Rest mass of an Electron	9.11 x 10 ⁻³¹ Kg		
	Charge of electron	1.6x10 ⁻¹⁹ C		