Name:

Enrolment No:

Instructions

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2019

Course: Design and Analysis of Algorithms Program: B.Tech(CSE+All) Course Code: CSEG 2003

Semester: III Time 03 hrs. Max. Marks: 100

	SECTION A		
S. No.		Marks	CO
Q 1	Is it true that $2^{n+1} \le O(2^n)$? Give a brief justification	4	CO1
Q 2	Suppose you are given the array $A = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$, and you then perform the binary search algorithm find the number 8. Which numbers in the array A are compared against the number 8?	4	CO2
Q 3	Explain in brief the basic asymptotic efficiency classes.	4	CO1
Q 4	Discuss the effect of data structure on the time complexity of Prim's Algorithm.	4	CO4
Q 5	Briefly explain the concepts of P, NP and NP complete problems.	4	CO5
	SECTION B		
Q 6	Devise a divide-and-conquer algorithm for finding the position of the largest element in an array of n numbers.	10	CO4
Q 7	 Let A[0n - 1] be an array of n sortable elements. (For simplicity, you may assume that all the elements are distinct.) A pair (A[i], A[j]) is called an inversion if i < j and A[i]>A[j]. a) Determine, What arrays of size n have the largest number of inversions and what is this number? b) Demonstrate that the average-case number of key comparisons in insertion sort is O(n²) 	4+6	CO3
Q 8	Construct a Huffman code for the following data:SymbolABCDFrequency 0.4 0.2 0.1 0.15 0.15 a)Encode ABACABAD using the code of question b)Decode 100010111001010 using the code of questionORORSolve the following instances of the single-source shortest-paths problem with vertex \boldsymbol{a} as the source:	7+3	CO3

Q 9	$\begin{array}{c} 3 \\ 5 \\ 4 \\ 2 \\ 2 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 6 \\ 7 \\ 6 \\ k \\ 8 \end{array}$		
	Q 9 Consider the following graph n_2 n_2 n_3 n_4 n_5 n_5 n_5 n_6 n_8		CO4
	SECTION-C		
Q 10	Explain Matrix chain multiplication problem Figure out an optimal parenthesization of a matrix-chain product whose sequence of dimensions is <30,35,15,5,10,20,25>.	5+15	CO3

Q 11	Apply the branch-and-bound algorithm to solve the traveling salesman problem for the following graph.				CO5
	Knapsack capacity	Weight	Value		
	1	10	100		
	2	7	63		
	3	8	56		
	4	4	12		