| Name:<br>Enroli | nent No:                                                               | UNIVERSITY WITH A PURPOSE                               |     |
|-----------------|------------------------------------------------------------------------|---------------------------------------------------------|-----|
|                 | UNIVERSITY OF PETRO                                                    | LEUM AND ENERGY STUDIES                                 |     |
|                 | <b>End Semester Examina</b>                                            | ntion (Online Mode), Dec 2020                           |     |
|                 | se: Molecular structure: S & D metho                                   |                                                         |     |
| _               | am: M. Sc. Chemistry                                                   | Time: 3 hrs                                             |     |
| Cours           | se Code: CHEM 8001                                                     | Max. Marks: 100                                         | )   |
| 1 Fac           | SECTION WILL COMMANDE & Market                                         | ON - A 	 6 x 5 = 30 Marks                               |     |
|                 | ch Question will carry 5 Marks<br>truction: Complete the statement / S | Select the correct answer(s)                            |     |
| Q 1             | (a) State which of the following                                       |                                                         | CO1 |
|                 | absorption spectra? N <sub>2</sub> , CO <sub>2</sub> ,                 | OCS, H <sub>2</sub> O, CH <sub>2</sub> =CH <sub>2</sub> |     |
|                 | • • •                                                                  | , - ,                                                   |     |
|                 | (b) Justification for the choice of                                    | correct answer:                                         |     |
|                 |                                                                        |                                                         |     |
| Q 2             | (a) The gross selection rule of ro                                     | otational and Raman spectra are                         | CO1 |
|                 |                                                                        |                                                         |     |
|                 | (b) The selection rule for CO2 m                                       | nolecule in case of perpendicular                       |     |
|                 | vibration is                                                           |                                                         |     |
|                 | (i) $\Delta v = \pm 1, \Delta J = \pm 1$                               |                                                         |     |
|                 | (ii) $\Delta v = \pm 1, \Delta J = 0, \pm 1$                           |                                                         |     |
|                 | (iii) $\Delta v = 0, \pm 1, \Delta J = \pm 1$                          |                                                         |     |
|                 | (iv) $\Delta v = 0, \pm 1, \Delta J = 0, \pm 1$                        | <u>-</u> 1                                              |     |
| Q 3             | Fill in the blanks                                                     |                                                         | CO1 |
|                 | (a) The degeneracy for a rigid ro                                      | otor ian an energy elevel with quantum                  |     |
|                 | number J is                                                            |                                                         |     |
|                 | (b) The zero point energy associ                                       | ated with rotation is .                                 |     |
|                 |                                                                        |                                                         |     |
| Q 4             | The wave number of the incident las                                    | ser light in Raman spectroscopy                         | CO1 |
|                 | experiment is 1440 cm <sup>-1</sup> . If the wave                      | enumber of Stokes line is 1410 cm <sup>-1</sup> ,       |     |
|                 | what is the expected wavenumber of                                     | f antiStokes line?                                      |     |

| Q 5   | Fill in blanks:                                                                                                                                                                                                                                            | CO2 |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|       | Spectral lines are usually broad because various types of broadening                                                                                                                                                                                       |     |  |
|       | such as (i)(ii)(iii)                                                                                                                                                                                                                                       |     |  |
| Q 6   | Using cuvettes of 1 cm path length, a solution of 10 <sup>-3</sup> M solution of a dye solution shows 10% transmittance at certain wavelength. What is the molar extinction coefficient of the dye in M <sup>-1</sup> cm <sup>-1</sup> at this wavelength? | CO2 |  |
| 1 Fac | SECTION – B $10 \times 5 = 50 \text{ Marks}$                                                                                                                                                                                                               |     |  |
|       | ch question will carry 10 marks<br>truction: Write short / brief notes/upload file                                                                                                                                                                         |     |  |
| Q 7   | Discuss the classical and quantum mechanical origin of Rayleigh,                                                                                                                                                                                           |     |  |
|       | stokes and antistokes scattering line using diagram.                                                                                                                                                                                                       |     |  |
| Q 8   | Give the expression relating rotational constant to moment of inertia.                                                                                                                                                                                     |     |  |
|       | If the rotational constant is 20 cm <sup>-1</sup> , calculate the rotational energy of                                                                                                                                                                     |     |  |
|       | J=0, 1, 2.                                                                                                                                                                                                                                                 |     |  |
| Q 9   | Explain the origin of splitting of lines of Na atomic spectra using spin                                                                                                                                                                                   | CO2 |  |
|       | orbit coupling. Use a diagram with proper labelling and term symbol                                                                                                                                                                                        |     |  |
|       | to explain the spin orbit coupling of Na (Electronic configuration:                                                                                                                                                                                        |     |  |
|       | $1s^2s^2sp^63s^1$ ).                                                                                                                                                                                                                                       |     |  |
| Q10   | (a) What are the selection rule for fundamental, first overtone, second                                                                                                                                                                                    | CO2 |  |
|       | overtone transitions?                                                                                                                                                                                                                                      |     |  |
|       | (b) The energy in cm <sup>-1</sup> of the photon absorbed when a heteronuclear                                                                                                                                                                             |     |  |
|       | diatomic molecule goes from $v = 0$ , $J = 0$ to $v = 1$ , $J = 1$ . Assume the $v$                                                                                                                                                                        |     |  |
|       | = 0 and $v = 1$ states have the same B values.                                                                                                                                                                                                             |     |  |
|       | Given that $\omega_e = 2000 \text{ cm}^{-1}$ , $B = 1.5 \text{ cm}^{-1}$ , anharmonicity constant ( $\chi_e$ )                                                                                                                                             |     |  |
|       | = 0.005.                                                                                                                                                                                                                                                   |     |  |
| Q 11  | (a) Which of these molecules will show a pure rotational (microwave)                                                                                                                                                                                       | CO2 |  |
|       | spectrum: CCl <sub>4</sub> , CH <sub>3</sub> Cl, O <sub>2</sub> , H <sub>2</sub> O, C <sub>6</sub> H <sub>6</sub> , SF <sub>6</sub> ? Explain with proper                                                                                                  |     |  |
|       | reasoning.                                                                                                                                                                                                                                                 |     |  |
|       | (b) Show the origin of P, Q, R branch in rotational-vibrational                                                                                                                                                                                            |     |  |

|                                                                                                            | spectra?                                                                                  |     |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|--|--|
|                                                                                                            | Section – C $1 \times 20 = 20 \text{ Man}$                                                | rks |  |  |
| <ol> <li>Each Question carries 20 Marks.</li> <li>Instruction: Write long answers/ upload file.</li> </ol> |                                                                                           |     |  |  |
| Q 12                                                                                                       | (a) The vibration of <sup>1</sup> H <sup>35</sup> Cl molecule can be considered as simple | CO3 |  |  |
|                                                                                                            | harmonic oscillation. The force constant is 200 Nm <sup>-1</sup> . Calculate the          |     |  |  |
|                                                                                                            | fundamental vibration frequency and the zero point vibrational                            |     |  |  |
|                                                                                                            | energy of this molecule in joule.                                                         |     |  |  |
|                                                                                                            | (Given: Plank constant = $6.626 \times 10^{-34}$ Js).                                     |     |  |  |
|                                                                                                            | OR                                                                                        | CO3 |  |  |
|                                                                                                            | Draw all the vibrational normal modes of vibration of CO <sub>2</sub>                     |     |  |  |
|                                                                                                            | molecule. Indicate the IR active vibrations of CO <sub>2</sub> molecule.                  |     |  |  |
|                                                                                                            |                                                                                           | CO3 |  |  |
|                                                                                                            | (b) In rotational-vibrational spectroscopy for a polyatomic linear                        |     |  |  |
|                                                                                                            | molecule (CO <sub>2</sub> ), what are parallel and perpendicular vibrations?              |     |  |  |
|                                                                                                            | Write the selection rule of rotational-vibrational spectra for parallel                   |     |  |  |
|                                                                                                            | and perpendicular vibrations.                                                             | CO3 |  |  |
|                                                                                                            | OR                                                                                        |     |  |  |
|                                                                                                            | Which of the following molecules has the lowest vibrational                               |     |  |  |
|                                                                                                            | stretching frequency? Give justifications.                                                |     |  |  |
|                                                                                                            | $(i) 	 ^1H^{35}Cl$                                                                        |     |  |  |
|                                                                                                            | $(ii)$ $^2H^{35}Cl$                                                                       |     |  |  |
|                                                                                                            | (iii) <sup>1</sup> H <sup>36</sup> Cl                                                     |     |  |  |
|                                                                                                            | (iv) ${}^{1}H^{39}C1$                                                                     |     |  |  |