Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2020

Programme Name: B.Tech. Mechatronics Engineering

Course Name : Mechatronics System Design Course Code : MECH4001 Semester : VII Time : 03 hrs. Max. Marks : 100

Nos. of page(s) : 03

Instructions: 1. Assume any missing data

2. Section B has an internal choice in Q.10.

3. Section C has an internal choice.

SECTION A (Answer in not more than 50 words)

S. No.		Marks	СО	
Q 1	Differentiate between closed-loop and open-loop control systems.	5	CO1	
Q 2	Describe the methods of performing frequency response analysis of control systems.	5	CO1	
Q 3	State Routh criterion of stability.	5	CO1	
Q 4	Discuss the steps of Nyquist stability criterion.	5	CO1	
Q 5	Define derivative time and integral time.	5	CO1	
Q 6	Discuss the various functional elements of a measurement system.	5	CO1	
SECTION B				
(Answer in not more than 150 words)				
Q 7	Describe the working of a field-controlled DC motor.	10	CO2	
Q 8	Discuss the various types of controllers that can be used in a feedback control system.	10	CO2	
Q 9	Describe the mathematical model of a liquid flow system having two interconnected tanks with capacities C_1 and C_2 respectively. Take two resistances: R_1 and R_2 at the inlet of each tank. The liquid pressure at the bottom of tank 1 is p_1 and at the bottom of tank 2 is p_2 . Take inlet pressure as p_0 . There is no outlet from tank 2. Derive the mathematical model and draw the block diagram.	10	CO2	
Q 10	a) For the system shown in Fig. 1 below, find out the steady state error due to unit ramp reference input. Take $K = \frac{100}{D+10}$, $G = \frac{1}{5D+1}$, $b(t) = 0$ and $H = 1$.	10	CO2	

Draw the block diagram for the above system and hence derive the transfer function.	
OR	
(Internal Choice of Q. 12) Draw the closed-loop frequency response curve (polar plot) for the block diagram shown in Fig. 1. Take the physical parameters of the system as provided in Q. 10. Ignore disturbance b(t).	