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ABSTRACT

In the present work our major work analysis was involving energy conservation mode to
a newly commissioned refinery unit, where the majority of the simulation has been carried out by
using aspen simulation. Pinch analysis is a technique used for energy conservation by managing
heat balances throughout the process units by ailing a integration of complete process design and
Pl diagrams. Improving integration of processes leads to the development of elegant heat
recovery networks without using advanced unit operation technology. In the present work, the
heat from the out coming streams of the atmospheric unit have been utilized to heat up the
incoming streams to the ADU in the preheat train. Thus, making fewer utilities there by

conserving energy that would result in improving economic efficiency of the unit.




Chapter-1: INTRODUCTION

While oil prices continue to climb, energy conservation remains the prime concern for
many process indusiries. The term “Pinch Technology™ was introduced by Linnhoff and
Vredeveld 1o represent a new set of thermodynamically based methods that guarantee minimum
energy levels in design of heat exchanger networks. Pinch Analysis (also known as process
integration. heat integration, energy integration. or pinch technology) is method for minimizing
the energy costs of a chemical process by reusing the heat energy in the process streams rather
than outside utilities. Over the last two decades it has emerged as an unconventional
development in process design and energy conservation. The term ‘Pinch Analysis’ is often used
to represent the application of the tools and algorithms of Pinch Technology for studying
industrial processes.

Basis of Pinch Analysis

Pinch technology presents a simple methodology for systematically analyzing chemical
processes and the surrounding utility systems with the help of the First and Second Laws of
Thermodynamics. The First Law of Thermodynamics provides the energy equation for
calculating the enthalpy changes (H) in the streams passing through a heat exchanger. The
Second Law determines the direction of heat flow. That is, heat energy may only flow in the
direction of hot to cold. This prohibits ‘temperature crossovers’ of the hot and cold stream
profiles through the exchanger unit. [n a heat exchanger unit neither a hot stream can be cooled
below cold stream supply temperature nor can a cold stream be heated to a temperature more
than the supply temperature of hot stream. In practice the hot stream can only be cooled to a
temperature defined by the ‘temperature approach’ of the heat exchanger. The temperature
approach is the minimum allowable temperature difference (DTmin) in the stream temperature
profiles, for the heat exchanger unit. The temperature level at which DTmin is observed in the
process is referred to as “pinch point” or “pinch condition”. The pinch defines the minimum
driving force allowed in the exchanger unit.

Objectives of Pinch Analysis

Pinch Analysis is used to identify energy cost and heat exchanger network (HEN) capital cost
targets for a process and recognizing the pinch point. The procedure first predicts, ahead of
design, the minimum requirements of external energy, network area, and the number of units for
a given process at the pinch point. Next a heat exchanger network design that satisfies these
targets is synthesized. Finally the network is optimized by comparing energy cost and the capital
cost of the network so that the total annual cost is minimized. Thus, the prime objective of pinch
analysis is to achieve financial savings by better process heat integration (maximizing process-
to-process heat recovery and reducing the external utility loads.




Development of the Pinch Technology Approach

When the process involves single hot and cold streams (as in above example) it is easy to
design an optimum keat recovery exchanger network intuitively by heuristic methods. In any
industrial set-up the number of streams is so large that the traditional design approach has been
found to be limiting in the design ol'a good network. With the development of pinch technology
in the late 1980°s. not only optimal network design was made possible, but also considerable
process improvemenis could be discovered. Both the traditional and pinch approaches are
depicted below.

Traditional Design Approach: First, the core of the process is designed with fixed flow
rates and temperatures yielding the heat and mass balance for the process. Then the design of a
heat recovery system is completed. Next, the remaining duties are satisfied by the use of the
utility system. Each of these exercises is performed independently of the others.

Pinch Technology Approach: Process integration using pinch technology offers a novel
approach to generate targets for minimum energy consumption before heat recovery network
design. Heat recovery and utility system constraints are then considered in the design of the core
process. Interactions between the heat recovery and utility systems are also considered. The
pinch design can reveal opportunities to modify the core process to improve heat integration. The
pinch approach is unique because it treats all processes with multiple streams as a single,
integrated system. This method helps to optimize the heat transfer equipment during the design
of the equipment.

Areas of Applications of Pinch Technology

Pinch originated in the petrochemical sector and is now being applied to solve a wide range of
problems in mainstream chemical engineering. Wherever heating and cooling of process
materials takes places there is a potential opportunity. Thus initial applications of the technology
were found in projects relating to energy saving in industries as diverse as iron and steel, food
and drink, textiles, paper and cardboard, cement, base chemicals, oil, and petrochemicals.

Early emphasis on energy conservation led to the misconception that conservation is the main
area of application for pinch technology. The technology, when applied with imagination, can
affect reactor design, separator design, and the overall process optimization in any plant. It has
been applied to processing problems that go far beyond energy conservation. It has been
employed 1o solve problems as diverse as improving effluent quality, reducing emissions,
increasing product yield, debottlenecking, increasing throughput, and improving the flexibility
and safety of the processes.

In this project we are applying Pinch to a newly commissioning refinery’s
ATMOSPHERIC DISTILLATION UNIT.
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Chapter-2: LITERATURE SURVEY
What is Pinch??

Network integration and energy targeting are the two technological aspects looked into by pinch
analysis ‘technique. Setting energy targets is the first key concept of pinch analysis. Target
obtained by pinch analysis are absolute thermodynamic targets showing what the process is
inherently capable ol achieving if the heat recovery, heating and cooling system are correctly
designed.

Benefits of Pinch Analysis

Before 1979. the concept of *“learning curve™ was used in the improvement of energy
consumption which was achieved by successive designs for a given product. But this concept of
“learning curve” was not 100% efficient since the minimum energy target was never achieved
while pinch analysis sets targets based on objective analysis.
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Fig.1 Learning Curves

The Concept of Process Synthesis

Pinch analysis is not just about heat exchanger network improvements come from changing
process condition more effective interfacing with utility system and improved operability all
under pinned by better process understanding, pinch now is an integral part of overall strategy
for process development in design often known as process synthesis it is also used for
optimization of the existing plant.

The affectivity of the overall design process can be represented by the onion diagram
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Fig. 2 Onion Diagram

The overall process synthesis is hierarchical in nature. The chemical reaction step is the core of
the process. Then come the separation and then heat exchanger network and finally site heat and
power system.

Role of Thermodynamics

Pinch analysis applies thermodynamics in a practical way. The approach is not mathematical.
The aim of the pinch analysis is to achieve both energy saving and other process benefits using
thermodynamics.

12




Concepts of Pinch Analysis

A stream is any flow which is required to be heated or cooled but its composition does not
change. The stream which is heated is known as cold stream and which is cooled is known as hot
stream. [t is basically the concept of exchanging heat is conservation of heat energy. The heat
from the hot stream is taken to heat the cold stream. The temperature enthalpy diagram the heat
content of a stream is known as enthalpy. The temperature enthalpy diagram represents the heat
exchanger. We are interested in enthalpy changes of stream. Stream can be plotted anywhere on
the enthalpy axis provided that it should have same slope and run between the same supply and
target temperature. The hot stream at all point is hotter than the cold stream. The slope of the line
is represented by di/dg=1/Cp.
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Fig. 3 Graph showing T Minimum

Here the cold stream is shown shifted on x axis (enthalpy) relative to the above hotter stream so
the minimum temperature difference is no longer zero. This shifting effects in increasing the
utilities by equal amount but reduces the load on heat exchangers by same amount. This
arrangement is practical because delta t minimum is not zero; further shifting implies larger t
minimum value in larger utility consumption. The optimized delta t minimum will give us the
optimized results. This is known as super targeting. This helps us in energy targeting. If cold
utility load is increased or decreased by any value, the hot utility load is increased or decreased
by same value.
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Composite Curves

In case of multiple streams, we add the heat load of all streams existing over any temperature
range. Thus a simple composite of all cold and hot stream can be produced in a temperature
enthalpy diagram. heince can be handled in just the same way as the two stream problem. The
single curve on temperature enthalpy diagram which represent hot stream is known as the hot
composite curve. The single curve which represents the entire cold stream is known as the cold
composite curve. The overlap between the composite curves represents the maximum amount of
heat recovery possible within the process. The overshoot at the top of the cold composite curve
represents the minimum amount of heating duty. And the overshoot; at the bottom of the hot
composite curve represents the minimum amount of cooling duty.
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Fig. 4 Composite curves

The temperature at which this delta t minimum occurs is known as pinch temperature and the
point of closest approach between the two composite curves is called as pinch.
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The Grand Composite Curve
The composite curves are replotted By 3 ways

1) Express all temperature in terms of hot stream temperature and increase all cold stream
temperature by delta T minimum.

2) Express all temperature in terms of cold stream temperature and reduce all hot stream
temperature by delta t minimum

3) Use the shifted temperatures, which are a mean value; delta t min/2 is the reduction in all
hot stream temperatures and the increment in all cold stream temperature is by delta t /2.

The minimum amount of heating or cooling duty at a given temperature can be known by using
shilted composite curve. A graph between shifted temperature and net heat flow can easily be
plotted and is known as grand composite curve. Grand composite curve represents the difference
between the heats available from hot stream and the heat required by the cold stream, relative to
the pinch at given shifted temperature.
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Composite curves help us
“process integration”.
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in obtaining energy targets; energy targeting is a powerful design

16



Golden Rules of Pinch
The 3 golden 1ules of pinch analysis to achieve minimum utility target are
1) Does not use any hot utility above the pinch
2) Does not use any cold utility below the pinch

3) Don’t transfer any heat across the pinch
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The other parameters considered in designing are
1) Starting the design at the pinch and moving away

2) Obeying the constraints

i.  Cp of hot stream should be less than equal to Cp of cold stream above the pinch

temperature

ii.  Cp of hot stream should be greater than equal to Cp of cold stream below the pinch

temperature
3) Divide the problem at pinch point in design each part separator.

4) Exchanger load must be maximized
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Methodology of Pinch Analysis
The techniques which should be covered are

1) To take process flow sheet from a consistent mass in heat balance and extract all the stream
data required for pinch analysis.-DATA EXTRACTION

2) Find out the best relation between the pinch and utilities, separation system and other process
items-the appropriate placement principle

3) Integration of heating and cooling system optimally with the process.-multiple hot and cold
utility available

4) Madification of network to eliminate non-profit for other undesirable exchangers-network
relaxation and optimization.

5) Modification in the existing exchangers or plant layout-retrofitting.
6) Heat pump and refrigeration system

7) Maximizing heat integration by altering operating conditions of unit operations or streams-
process change

8) Handling time dependent situations such as shut down and starts up.

How to Do Pinch Study

The techniques applied are listed above in practice. The stages in pinch analysis of a real process
plants or sites are as follows:

I. Produce, or obtain, a copy of the plant flow sheet including flow, temperature and heat
capacity data, and produce a consistent heat and mass balance.

2. Extract the stream data from the mass and heat balance.
3. Select AT minimum, calculate energy targets and the pinch temperature.

4. Examine opportunities for process change, modify the stream data accordingly And
recalculate the targets.

5. Consider possibilities for integrating with other plants on site, or restricting heat Exchange to a
subset of the streams; compare new targets with original one.

19



6. Analyse the site power needs and identify opportunities for combined heat and Power (CHP)
or heat pumping.

7. Having decided whether to implement process changes and what utility levels will be used,
design a heat exchanger network to recover heat within the process.

8. Design the utility systems to supply the remaining heating and cooling requirements,
modifying the heat exchanger network as necessary.

Mixing

Mixing and splitting junctions sometimes cause difficulty in stream data extraction. Taking two
process flows having same composition leaving separate units at different temperatures, mixing
and then heating to a common final temperature.

This is supposed 1o be as one stream, and a single heat exchanger can perform the heating duty.
But, mixing deteriorates temperature. Considering what can happen if the system is considering
as only one stream for energy targeting. If the mixing temperature lies under the pinch
temperature, then the “cooling ability” of the cold stream below the pinch deteriorates. Thus heat
must therefore be put to utility cooling, and by enthalpy balance, heat should be transferred
across the pinch increasing hot utility usage. Ensuring the best energy performance at the
targeting stage. mixing can be assumed isothermal. Thus, heat each stream separately to its final
temperature, or heat/cool one stream to the temperature of the other, then mix, and then heat/cool
the resultant mixture to its final temperature.
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This figure displays a numerical example. this time for two hot streams. The correct method is
assumed. that the streams mixes isothermally. here at the target temperature is 30°C. If the
original layout was retained and the pinch corresponded to a hot stream temperature between
70°C and 100°C. energy would have been wasted. However, whatever is the pinch temperature ,
mixing the streams deteriorates temperatures reducing the driving forces in heat exchangers,
giving increased capital cost. This is shown by the hot composite curves in figure below
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The solid line stands for mixing, broken line for the case when the streams are kept separate and
run down to the final temperature.

Energy Targeting

Problem Table calculation searches the hot and cold utility requirements, pinch temperature and

relationship between net heat flow and temperature for a chosen A7 min value. Taking this ahead
to look at more detail and a variety of special cases.

Multiple Utilities

Till now. we have assumed that the external heating and cooling requirements are supplied as a
single hot utility and single cold utility, at an unknown temperature sufficient to suffice the duty.
Practically, greater than one utility may be available. and often price differentials between them

exist. Conversely, the requirements of the process can help in choosing utility levels. The GCC s
the major tool here.
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. Different Utility
Hot utilities. that supplics heat to a process:
o furnaces
o {lue gas
e steam heaters
¢ heat rejected from heat engine
o thermal fluid or hot oil systems
¢ exhaust heat {from refrigeration systems and heat pump condensers
e clectrical heating
A similarly cold utility system subtracts heat from the process. This comprises:
e cooling water systems
o air coolers
o chilled water systems
o refrigeration systems and heat pump evaporators
e steam raising and boiler feed water heating
¢ heat engines below the pinch
Balanced Composite Curve and Balanced Grand Composite Curve

Composite curves and Grand Composite Curves may be re-plotted comprising the utility streams
(at their target heat loads).Resultant curves have no unbalanced “overshoot™ at either end, reason
being the utilities must meticulously balance the process net heat loads.

The aftermath is that they are called as balanced composite curves (BCC) and the balanced
grand composite curve (BGCC). Typically required for displaying the effect of multiple
utilities, multiple pinches and variable-temperature utilities on temperature driving forces in the
network, hence revealing constraints on network design with lucidity.
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Fig. 11 Balanced composite curve, Shifted balanced composite curve and Balanced grand
composite.

Heat Exchange Equipment

Types of Heat Exchanger

Heat exchange equipment can be categorized into three kinds: shell and-tube, plate and
recuperative exchangers. Generally the shell-and-tube kind is used for heat exchange between
liquids, but could include gases or condensing/boiling streams. Fluid flows through a set of tubes
and exchanges heat with another fluid flowing outside the tubes in counter current, crossflow
cocurrent or mixed flow. Double-pipe exchangers are a special case of this kind where there is

just one central tube with an annular shell surrounding it. Construction is strong and rigid. suited

for high pressures and temperatures as found in many chemicals applications. but, adding
additional area needs either major retubing or additional shells. Plate kind is also generally used
for liquids, and includes gasketed plate, welded plate and plate-fin units. Basic construction is a
big number of pressed or stamped plates held against each other, with the recesses between the
plates forming narrow flow channels. These give good heat transfer but prone to fouling. It is
simple but tedious to dismantle the gasketed type for cleaning; this is much difficult with welded
types. Plates are mounted on a frame and there is usually spare space to add more plates; thus,
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it’s simple 1o increase the heat transfer area if needed. They are best for use as multi-stream
exchangers. Recuperative exchangers cover a variety of kinds mainly used for heat transfer to
and [rom gas streams Reason being the low-heat transfer coefticients. heating surfaces are often
extended to provide additional surface area (e.g. with fins). Some kinds are simple variants of
shell-and-tube units; others work on completely different concepts, like rotary regenerators (heat
wheels). where the equipment is alternately supplied with hot and cold gases and acts as short-
term heat storage.

Shell-And-Tube Exchangers

The three main categories of shell-and-tube exchanger;
1) flixed tube
2) floating head
3) U-tube

Fixed tubeplate and floating head have straight tubes with the tube side fluid entering at one
end and exiting at the other. Fixed tubeplate is cheaper but the shell side is hard to clean and
expansion bellows may require dealing with thermal stresses. U-tube type needs a header at
one end and the tubes can simply be withdrawn for external cleaning, but internal cleaning is
difficult and the flow reversal reduces effective AT.

Shell ar2 tb nest o hlanger

Fluabng Dad oty BES,

24



Fig. 12 Different type of heat exchangers

Criteria for putting aliotting the side (shell or tube) to the fuid:

C

0o

Condensing or boiling stream on the shell side (because of easier flows and better
temperature differences).

Fluid with the lower temperature change (or higher CP) on the shell side (yields
better temperature differences).

Corrosive fluids on the tube side; as it is inexpensive to make tubes from exotic
alloys than shells, and easier to repair than a shell if it gets corroded.

Streams whose pressure drop must be minimised is allotted on the shell side (AP
through the exchanger is much less).

The boiling or condensing stream is allotted the shell side.

Fluid having lower temperature change (or higher CP) is assigned the shell side.
Corrosive fluids are allotted the tube side.

Streams whose pressure drop must be minimised are allotted the shell side.

In fixed tube plate units, fouling fluids are allotted on the tube side; in U-tube
units, they are placed on the shell side.

Hot fluid on the tube side minimises structural heat losses.

Plate Exchangers

It’s comparatively narrow passages mean that the pressure drop will be high. It is easier to
achieve a nearly counter-current flow pattern than in most shell-and-tube exchangers. They are
simple to enlarge by adding more plates (there is normally free space between the movable cover
and the end mounting) which helps when revamping an existing plant.

Recuperative Exchangers

This includes both gas-to-liquid and gas-to-gas duties. Heat transfer coefficients of gases are
lower than that of liquids, and to get a reasonable AT without using large area, extended heat
exchange surfaces (e.g. finned tubes or elements) are usually needed. Moreover, hot gas streams
are usually wet, dusty and heavily fouling. So, glass tube exchangers can be used.
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Chapter-3: DESIGN OF ADU/CDU
Atmospheric Unit

The crude oil is pumped through heat exchangers and its temperature raised to around 288
degree C by heat exchanger with product and reflux streams .Then it is heated to around 399
degree C in a turnace and send to the flash zone of the atmospheric column. The discharge
temperature of the furnace is very high (around 343 to 399 degree C) which the vaporization of
products which are further withdrawn above the flash zone with 10 10 20% of bottoms. Due to in
excess internal reflux (0 10 20% “*over-flash’” goes to the trays just above the flash zone.

The tower overheads are.then condensed and a portion of the liquid is returned to the top of the
tower, and in lower of the tower by pump back and pump around. The amount of reflux is
decreased blow the point of draw off by removing products from the side streams. By removing
all heat from the top maximum reflux and fractionation can be obtained. The diameter of the top
of the tower and liquid loading over the tower length is reduced with help of streams which
remove heat to generate reflux below side stream removal points. To perform this, liquid from
the tower is removed passes through a heat exchanger, cooled and sent back to the tower again.
The vapors coming up are condensed with help of this cold stream hence the reflux below this
point is increased. ‘

With the help of pump around reflux the distillation operation efficiency is improved. If
sufficient reflux were produced in the overhead condenser to provide for all side stream draw
offs as well as the required reflux, all of the heat energy would be exchanged at the bubble-point
temperature of the overhead stream. The heat transfer temperatures are increased using pump
around reflux at lower points and hence this higher temperature helps in recovering of higher
fractions of energy by preheated feed. Though crude towers do not usually use reboilers, many
trays are generally incorporated under the flash zone and steam is introduced below the bottom
tray to strip any leftover gas oil from the liquid in the flash zone and to produce a high-flash-
point bottoms. Steam reduces the partial pressure of the hydrocarbons and therefore lowers the
required vaporization temperature. The atmospheric fractionators usually comprise of 30 to 50
fractionation trays. Separation of the complex mixtures in crude oils is relatively simply and
generally five to eight trays are required for each side stream product plus the same number
above and below the feed plate. Therefore, a crude oil atmospheric fractionation tower with four
liquid side stream draw offs will need from 30 to 42 trays. The liquid side stream withdrawn
from the tower will contain low-boiling components which decreases the flashpoint, because the
lighter products pass through the heavier products and are in equilibrium with them on every
tray. These “*light ends’’ are stripped from each side stream in a separate small stripping tower
having four to ten trays with steam introduced below the bottom tray. The steam and stripped
light ends are vented back to vapor zone of the atmospheric {ractionators above the
corresponding side-draw tray overhead condenser on the atmospheric tower condenses the
pentane and- heavier fraction of the vapors that passes out of the top of the tower. This is the
light gasoline portion of the overhead, containing some propane and butanes and essentially all
higher-boiling components in the tower overhead vapor.

Some of this condensate is returned to the top of the tower as reflux, and remainder is sent to
stabilization section of the refinery gas plant where the butanes and propane are extracted from
the C5-180 degree F (C5-82 degree C) LSR gasoline.
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Fig. 13 PFD of ADU UNIT

DESIGNING OF CDU

The process ot designing consists of the following steps:

I. The process feed (MIXCRUDE), consisting of a blend of two crude oils,goes to the preflash
furnace.

2. The prelash tower (PREFLASH) removes light gases and some naphtha from the partially
vaporized feed.

3. Preflash bottoms (CDU-FEED) are further processed in the crude distillation unit (CDU). The
CDU consists of a crude unit furnace and an atmospheric tower. First, the crude unit furnace
partially vaporizes the bottoms from the preflash. Then the atmospheric tower separates the
preflash bottoms into five cuts:

— Heavy naphtha (HNAPHTHA)

— Kerosene (KEROSIEENE)

— Diesel (DIESEL)

— Atmospheric gas oil (GAS-OIL)

— Reduced crude (RESIDUE)

BLENDING OF CRUDES

Following two oils are blended together in a ratio of OIL 1: OIL 2= I:3

DATA :- OIL 1 (API GRAVITY 30.8)
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TBP DISTILLATION | LIGHT ENDS ANALYSIS APl GRAVITY
CURVE
Liquid Temperature  Components Liquid Mid Gravity
' volume(%) (degreeF) Volume Volume
- Fraction (%)
7.0 125 Methane  0.001 5 88.0
11.3 190 | |Ethane 0.0016 10 67.0
| 30.0 420 Propane 0.008 15 60.0
1 48.7 620 Iso-butane | 0.005 20 52.0
59,6 810 n-butane  0.018 30 40.0
' 68.7 ' 900 ' 2-methyl 0013 | 40 1 35.0
| : ~ butane _
740 10507 BN n-pentane  0.015 a5 T3
190.0 11270 - ' | {50 1280
' ' ' ' 60 21.0
70 1 18.0
80 1925

DATA :- OIL 2 (API GRAVITY 33.4)

TBP DISTILLATION LIGHT ENDS ANALYSIS = API GRAVITY
_ | ) ' CURVE :
Liquid Temperature Components Ligquid Mid Gravity
volume{%]} (degree F} . Volume Volume
| ' Fraction (%)

68 a8 " | [Water 0001 30 140
11.4 189 ' Methane 00019 | 5.0 90
20 320 ~ Ethane 0.006 10 67
30 400 | Propane | 0.005 20 49
42 480 Iso-butane  0.01 30 39
50 560 |  nbutane | 0.02 40 37
60 650 2-methyl 0.004 45 33

. butane ;
68 760 n-pentane | 0.035 60 30
80 - 850 : . _ 70 24
AR A S w1
95 1290 90 ‘15
98 1450 | | ' 95 10

100 1700 1 : 98 05
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Fig. 15 OIL-1 data entry (ASPEN Simulation)
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Fig, 17 OIL-1 GRAVITY SPECIFICATION entry (ASPEN Simulation)
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Fig, 19 OIL-2 LIGHT ENDS entry (ASPEN Simulation)
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Fig. 28 TBP plot (OIL-1, OIL-2 and MIXCRUDE) (4SPEN Simulation)
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Simulated the tower with 8 theoretical stages, no reboiler, and a partial condenser and inlet
temperature of feed being 180 F. The condenser operates at 170 F and 39.7 psia, with a pressure
drop of 2 psi. The tower pressure drop is 3 psi. The tower is stripped with open steam in the
bottom. The steam stream is at 400 F and 60 psia, and has a flow rate of 5,000 Ib/hr. The furnace
operates at a pressure of 50 psia and a temperature of 450 F. The distillate rate is estimated at

15,000 bbl/day. Its value is manipulated to produce a wide naphtha cut with an ASTM 95%
temperature of 375 F.

Fig. 29 PREFLASH MODEL Created (ASPEN Simulation)
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MODELLING OF ADU

Figure below shows the process flowsheet we have developed. The topped crude from the
preflash tower goes first to the crude furnace, then to the atmospheric tower.

The tower has:

s A total condenser.

» Three coupled side strippers.
» Two pumparound circuits.

The furnace operates at a pressure of 24.18 psia and provides an overflash of 3% in the tower.
The furnace outlet enters the atmospheric tower on stage 22 of the main fractionator. The main
fractionator is modeled with 25 equilibrium stages. The heavy naphtha product flow is estimated
at 13,000 bbl/day, and is manipulated to achieve an ASTM 95% temperature of 375 F. The
condenscr operates at 15.7 psia with a pressurc drop of S psi. The tower pressure drop is 4 psi.
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Chapter-4:

NETWORK DESINGING USING ASPEN HX-NET.
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Fig. 81 Data entry

This is initial data entry; all data are obtained using ASPEN PLUS.

The streams obtained from simulation

The hot steams are-

1) Residue

2) Gasoil

3) Diesel

4) Kerosene
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5) Heavy Naptha
6) Light Naptha
The cold stream is-
1) Crude
These streams are segmented using the data obtained from the ASPEN PLUS simulation.
ULITITY STREAMS
The different utilities are

Hot utility- Fired heater

Coid utility- Cooling water
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These presents about the economics of the project-
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Fig. 82 ECONOMICS of the project
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This is the graph of composite curves-

The GCC curve-
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Fig. 8¢ GRAND COMPOSITE curve

This screenshot gives us the all target-

1) Energy targets

2) Area targets

3) Number of units targets

4) Cost index targets
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This tabie help us to find the enthalpy relation and in plotting the composite curves-
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Fig. 86 Tables of ENTHALPY DATA

This tabies helps us in plotting GCC-




Fig. 87 ENTHALPY DIFFERENCE data
This is the most important table in pinch analysis
This table helps us in finding delta T minimum-

This is known as SUPERTARGETING
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This is table used for SUPERTARGETING-
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This screenshot shows us the balanced composite curves-
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This screenshot shows the utility composite curve-
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Fig. 92 UTILITY COMPOSITE curve

£ oA R B0R3 - epedh - Ko ]

TR i Wemes Fobe Tk

SETE

Shifted Composite Curves

o
%003
03
zm;
zmé

I

Temperature (C)

1003

90):
E

00000

ED)JJ g Z.Ml ¢MI EM e am"'”mr‘.mm 1M” " 10):;‘((9 16004009

Enlhalpy (ki)

Fig. 93 SHIFTED COMPOSITE curve

3k 3

Shifted Balanced Composite Curves

9000+

LObE

[LE

00

L]

Temperature (C)

ma

1000-

e

ek

0000

D000 200000 AMeOs GOSN 0000 100D 120 LA 16NN

Enthaipy (kih)

Fig. 94 SHIFTED BALANCED COMPOSITE curve

77



it - o W 2353 vk - e 1

T (8 g Fetem Tk Wk W =

1AM 3

dT (<)

Driving Force Plot - Hot

1000

w04

004

{004

mod

1

003

100.04

00000

WM K0 W0 X0 400 s @00 X00 600 e

Th(C)

Fig. 95 DRIVING FORCE PLOT - HOT

Iiﬂlhqnm\‘ﬂﬂziﬂ

1000

13K B

dT ()

Driving Force Plot - Cold

b}

6003
50003
4004 f
mui /
m /

3
10004

|

(e

WM Wm0 W0 Wm0 om0 W0

Te(0)

T

Fig. 96 DRIVING FORCE plot for cold stream

78



THE DESIGN FOR THE NETWORK FOR ABOVE THE PINCH-

EYIE

inch

97 GRID DIAGRAM for above the p

Fig.
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CONCLUSION

Pinch analysis is a mature subject. It has developed from the early work on targeting and heat
exchangér network design to cover a wide range of aspects of process design, particularly those
related to energy usage. Many new techniques have been developed and the methodology has

become more complex; nevertheless, at its core are still the fundamental insights given by energy
targets and the pinch concept.

Since pinch analysis gives useful results of every process, it could be said that every process
engineer should calculate the pinch and targets on his plant. just as he would do a heat and mass
balance. especially now that simple sofiware are available.

The project is focused on heat integration and energy targeting; the basic concept of the project is
to acquire data through ASPEN PLUS doing the simulation work. This data is used in ASPEN
HX-NET for further calculation of energy target and heat integration.

All the designs of preheat train network is drawn on ASPEN HX-NET using the concept of pinch

technology. These designs are focused on a new commissioning plant where no retrofitting cost
and labourr is used.

All the data used for simulation work are real time data taken from industry persons.

Using these industry data in ASPEN PLUS, enthalpy data and other important data in heat
integration are put in ASPEN HX-NET for further network design.
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