	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
Cours	End Semester Examination (Online), JanFeb. 2021 se: Engineering Mathematics Semester: I					
Course Code: MATH 1036 Time:						
Programme: B.Tech. (All SoCS Batches)Max. Marks:						
	SECTION - A 6 X 5 = 3	0 Marks				
1. Eac	ch Question will carry 5 Marks					
2. Inst	truction: Select the correct option(s)					
Q 1	Given the system of linear equations $x - 4y + 5z = -1$, $2x - y + 3z = 1$,	CO1				
	3x + 2y + z = 3 has:					
	A. Unique solution B. No Solution					
0.0	C. Infinitely many solutions D. None of these	000				
Q 2	If $y_n(x) = p^n [1 + (-1)^n sin 2px]^{1/2}$, then the value of $y_8(0)$ when $p =$	CO2				
	1/4 is:					
	A. $\left(\frac{1}{4}\right)^{1/8}$ B. $\left(\frac{1}{4}\right)^{1/4}$ C. $\left(\frac{1}{4}\right)^{8}$ D. $\left(\frac{1}{4}\right)^{4}$					
Q 3	Find the particular integral of $(D^2 + 5D + 6)y = e^x$:					
	A. $\frac{e^x}{12}$ B. $\frac{e^x}{6}$ C. $\frac{e^x}{24}$ D. $\frac{e^x}{30}$					
	A. $\frac{12}{12}$ B. $\frac{12}{6}$ C. $\frac{12}{24}$ D. $\frac{12}{30}$					
Q 4	A number x is chosen at random from the numbers -2, -1, 0, 1, 2. Then the probability that $x^2 < 2$ is?	CO4				
	A. 1/5 B. 2/5 C. 3/5 D. 4/5					
Q 5	Using Newton-Raphson method, find the real root of $xsinx + cosx = 0$ which is near $x = \pi$ correct to three decimal places: A. 2.798 B. 1.798 C. 3.823 D. 3.141	CO5				
Q 6	The value of $\int_0^1 \frac{dx}{1+x}$ by Simpson's 1/3 rule is:	CO5				
	A. 0.96315 B. 0.63915 C. 0.69315 D. 0.69915					
1 Fac	SECTION - B 10 X 5 = 50) Marks				
	ch question will carry 10 marks truction: Answer on a separate white sheet, upload the solution as image.					
Q 1		CO1				
× '	Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence					
	compute A^{-1} .					
Q 2	Change the order of integration and hence evaluate $\int_0^a \int_{\sqrt{ax}}^a \frac{y^2 dx dy}{\sqrt{y^4 - a^2 x^2}}$.	CO2				

Q 3	3 A slider in a machine moves along a fixed straight rod. Its distance x (i									
	along the rod is given at various times t (in sec.).									
	<i>t</i> :	0	0.1	0.2	0.3	0.4	0.5	0.6		
	x:	30.28	31.43	32.98	33.54	33.97	33.48	32.13.		
	Evalu	hate $\frac{dx}{dt}$ a	at $t = 0.1$.							
Q 4	Assume that the probability of an individual coalminer being killed in a mine accident during a year is 1/2400. Use Poisson's distribution to calculate the probability that in a mine employing 200 miners there will be at least one fatal accident in a year.									
Q 5	Solve, by the method of variation of parameters, $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$.									
	OR									
	Solve $(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$ given that $y = x$ is a solution.									
Section – C $1 \times 20 = 20$										
 Each Question carries 20 Marks. Instruction: Answer on a separate white sheet, upload the solution as image. 										
Q 1	Solve the system of linear equations 20x + y - 2z = 17; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$. Using a) Jacobi's iteration method, b) Gauss – Seidel iteration method.								CO5	
	OR									
	Use Runge – Kutta method of fourth order to find the numerical solution at									
	$x = 1.4$ for $\frac{dy}{dx} = x^2 + y^2$, $y(1) = 0$. Assume step size $h = 0.2$.									