Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

Course: 3D Complexity Techniques for GMA

Program: B.TECH CSE GG

Course Code: CSGG3007

Semester: VI

Time 03 hrs.

Max. Marks: 100

Instructions:

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Complete the statement / Select the correct answer(s)

S. No.	Question	CO
Q 1	Data representations have two components, the first is called as and the second is called as	CO 3
Q 2	Spacing of the in-betweens is referred to as	CO 4
Q 3	is the distance between the two cameras in stereoscopy.	CO 3
Q 4	In computer animation, the term is a measurement of the number of still displayed in one second to give the impression of a moving image or	CO 2
Q 5	is a variant of animation in which the characters are backlit and only visible as	CO 1
Q 6	that the animation is created digitally on a computer. ————————————————————————————————————	CO 3

SECTION B

- 1. Each question will carry 10 marks
- 2. Instruction: Write short / brief notes

Q 1	Explain the term Production Pipeline with respect to Animation?	CO 1
Q 2	With appropriate examples explain: a) Stereoscopy b) Camera Angles in Animation 	CO 1
Q 3	Differentiated between the following: a) 2D and 3D animation b) Clay Animation and Object Animation	CO 2
Q 4	Write a short note on "Storyboarding."	CO 3

Q 5	Differentiate between Animatic and Photomatic				
	OR	CO 2			
	Explain Splines and with proper diagrams, state examples to suggest all mentioned				
	arguments.				
	SECTION-C				
1. Eacl	1. Each Question carries 20 Marks.				
2. Insti	2. Instruction: Write long answer				
Q 1	Design an algorithm to model the conditions and prepare for animation:				
	a) Bursting Cracker				
	b) Collision of two cars approaching towards each other				
	OR	CO 2			
	Design an algorithm to model wastage of water and its implications taking all-important assets in consideration.				