Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Theory Examination, May 2021

Course: Pharmaceutical Organic Chemistry-III

Semester: IV

Program: B.Pharm
Course Code: BP401T
Time 03 hrs.
Max. Marks: 75

Instructions: Read the Question Paper Carefully.

CO CO5	Objective type Questions (20X1)	Marks
CO5		
CO5		20
	The catalyst used in Claisen Schmidt reaction is	1
CO5	True or false? NaBH ₄ can reduce esters but not ketones.	1
CO1	Which of the following (I, II or III) is the enantiomer of the following substance (Squared)? H CH ₃ H CH ₃ CH ₃ H CH ₃ A a) I b) II c) III d) None of the above	1
CO3	Hantzsch-Widman nomenclature is used forcompounds.	1
CO2	The number of degrees of rotation observed if 1dm tube is used and concentration of compound is 1g/mL a) Geometrical rotation b) Optical rotation c) Specific rotation d) Conformation	1
CO3	The IUPAC name of a nitrogen containing five membered saturated heterocyclic ring is	1
CO1	Which of the following molecules is achiral? H ₃ C H ₃ C H H ₂ C H H CH ₃ H CH ₃ H H CH ₃ CH ₃ H CH ₃ CH CH CH CH CH CH CH CH CH C	1
	CO3 CO2	CO1 Which of the following (I, II or III) is the enantiomer of the following substance (Squared)? H

8	CO4	Madelung synthesis is used for	
		a) Pyrrole	
		b) Indole	1
		c) Quinoline	
		d) All of the above	
9	CO2	Assign E/Z configuration to the following:	
		H ₃ C _\	
		HO \rightarrow CH_3	
			1
		cí 🞾 o	
		H ₃ C	
		1130	
10	CO1	(2R,4S) –2,4–Dichloropentane and (2S,4R)-2,4-dichloropentane are:	
		a) Enantiomers b) Diastereomers	1
		c) Identical d) Constitutional isomers	
11	CO2	In the given conformation C2 is rotated about C2-C3 bond anticlockwise by an	
		angle of 120° , then the conformation obtained is	
		C_4	
		CH_3	
		H H	
		$\gamma \perp \gamma c_i$	
		\ C_1 \	1
		$H \longrightarrow H$	
		CII	
		CH_3	
		a) Fully eclipsed b) Partially eclipsed	
		c) Gauche d) Staggered	
10	00.5		
12	CO5	The catalyst used in Clemmensen's reduction is	1
13	CO3	The IUPAC name of an oxygen containing six membered unsaturated heterocyclic	1
		ring is	1
14	CO1	Enantiomers are:	
		a) Molecules that have a mirror image.	
		b) Molecules that have at least one stereogenic center.	1
		c) Non-superimposable molecules.	
		d) Non-superimposable molecules that are mirror images of each other.	
15	CO2	In the following the most stable conformation of butane is	1
		<u> </u>	

		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
16	CO5	LiAlH ₄ will reduce amides to	1
17	CO4	Suggest suitable catalyst for the following reaction Succinamide → pyrrole	1
18	CO4	Pyrrole undergoes electrophilic substitution reaction at a) C-1 position b) C-2 Position c) C-3 Position d) None of the above	1
19	CO1	Which of the following is true for any (S)-enantiomer? a) It rotates plane-polarized light to the right. b) It is a racemic form. c) It is the mirror image of the corresponding (R)-enantiomer. d) It has the highest priority group on the left.	1
20	CO4	Identify the following compound N a) Indole b) Isoindole c) Quinoline d) Isoquinoline	1

		SECTION B	
	Long Answers (Answer two out of 3) 2X10		
Q2			20
1	CO2	 i) Explain conformational isomerism in cyclohexane with suitable examples. Mark all the axial and equatorial position in a cyclohexane molecule. ii) Draw the energy profile diagram to show the energy of the different conformations of cyclohexane. 	5+5
2	CO4	Comment on a) Which is more basic: pyridine or pyrrole? Explain with suitable structures. b) Medicinal uses of azepines c) What is the preferable position for electrophilic substation in pyridine. Explain your choice with suitable resonating structures.	5+2+3
3	CO3	 Write two methods of synthesis of Furan Explain the aromaticity in thiophene with the help of molecular orbitals. 	5+5
		SECTION C	•
		Short Answers (Answer 7 out of 9) 7X5	
Q3			35
1	CO3	Write IUPAC name of the following: H N NH i) Br	5
2	CO2	Illustrate atropisomerism with a suitable example.	5
3	CO5	How Oppenauer-oxidation is useful in pharmaceutical industry. Explain the reaction with mechanism.	5
4	CO1	i) Draw structure of the molecule that is used as reference for D/L nomenclature. ii) Assign D/ L nomenclature to the following: OHOHHHOHHHOHHHOHHHOHHHOHHHOHHHOHHHOHH	1+4
5	CO5	Explain the mechanism of reaction between acetone and hydrazine followed by a treatment with an alkali at high temperature. Name the reaction.	5

6	CO1	Compare stereospecific and stereo-selective reaction.	5
7	CO4	Write synthesis and medicinal uses of following compound:	5
8	CO5	Comprehend the reduction of benzene in presence of sodium and liquid ammonia in ethanol with a suitable mechanism.	5
9	CO1	Write R-S nomenclature of the following. Mark the priority of the groups. O CH ₃ HO CI NH ₂ O CH ₃ b) H ₃ C	5
		Total	75