Name:				
Enrolment No:		UNIVERSITY WITH A PURPOSE		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
End Semester Examinations (Online Mode), June 2021 Course: Differential Equations Semester: II				
Program: B.Sc Mathematics Time: 3				
Course Code: MATH1031		Max. Marks: 100	Max. Marks: 100	
SECTION - A 6 x 5 = 30 Marks 1. Each Ouestion will carry 5 Marks				
2. Instruction: Type the correct option(s)				
Q 1	The function $y = ax + be^x$ where a	a and b are arbitrary constants is the		
	solution of the differential equation			
	A. $(x+1)y'' + xy' + y = 0$	B. $(x-1)y'' - xy' + y = 0$	CO1	
	C. $(x-1)y'' + xy' - y = 0$	D. None of these		
Q 2	For the differential equation $(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$,			
	the integrating factor is given by			
	A. e^x	B. $\frac{1}{x^2}$	CO1	
	C. $\frac{1}{y^2}$	D. None of these		
	The solution of the equation $\frac{dy}{dx} = e^{2x-y} + x^3 e^{-y}$ is			
Q 3	A. $e^y = \frac{e^{2x}}{2} + \frac{x^4}{4} + c$	B. $e^y = \frac{e^{2x}}{2} - \frac{x^4}{4} + c$	CO2	
	C. $e^x = \frac{e^{2y}}{2} + \frac{x^4}{4} + c$	D. None of these		
	The velocity of a chemical reaction is given by $\frac{dx}{dt} = k(a - x)$ where x is			
Q 4	the amount transferred in time t, k is	s a constant and a is the concentration at CO4		
	time $t = 0$ when $x = 0$. Then the value of $x(t)$ is			
	A. $a(1 - e^{-kt})$	B. $k(1 - e^{-kt})$		
	C. $a(1 + e^{-kt})$	D. None of these		
	The solution of the exponential g	growth model $\frac{dN}{dt} = rN$, $N(0) = n_0$	CO4	
Q 5	where $r > 0$ is given by			
	A. $n_0 e^{rt}$	B. $n_0 e^{-rt}$		
	C. $n_0 t e^{rt}$	D. None of these		

	For the linear autonomous system $\frac{dx}{dt} = -x$, $\frac{dy}{dt} = 2x - 2y$, the equilibrium			
06	point X =0 is	CO5		
	A Agreent stable D Unstable			
	A. Asymptotically stable D. Unstable D. Vonstable			
	$\frac{10 \text{ y} \text{ 5} = 50 \text{ N}}{\text{SECTION} - \text{R}}$	Tarks		
SECTION – B 10 x 5 – 50 Mar 1. Each question will carry 10 marks				
2. Instruction: Answer on a separate white sheet, scan and upload the solutions.				
Q 7	Write a short notes on Mathematical modeling and explain characteristics of mathematical models.	CO4		
Q 8	Solve the Cauchy-Euler equation $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + lnx$	CO3		
Q 9	Define exact differential equation and prove that the necessary and sufficient	CO2		
	condition for the differential equation $Mdx + Ndy = 0$ to be exact is			
	$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$			
Q10	Check whether the equation $y(x^2y^2+2)dx + x(2-2x^2y^2)dy = 0$ is	CO2		
	exact or not and solve the equation by suitable technique.			
Q 11	Find all equilibrium solutions of the system of nonlinear differential	CO5		
	equations $\frac{dx}{dt} = 1 - xy$, $\frac{dy}{dt} = x - y^3$ and determine whether they are stable or unstable.			
	$Section - C \qquad 1 \ge 20 \ge 20 \text{ N}$			
1. Each Question carries 20 Marks.				
2. Instruction: Answer on a separate white sheet, scan and upload the solutions.				
	Derive the method to find the general solution of $y'' + Py' + Qy = R$ by			
	changing the dependent variable and removing the first derivative. Using this			
	method solve the equation $y'' - \frac{2}{x}y' + \left(1 + \frac{2}{x^2}\right)y = xe^x, x > 0$			
	[20 Marks]			
Q 12	(OR)			
	(a): Apply the method of variation of parameters to solve the differential			
	equation $(D^2 + 1)y = cosec \ x. \cot x$ [10 Marks]			
	(b) Solve $x^2y'' - 2x(1+x)y' + 2(1+x)y = x^3$ by obtaining a part of the			
	complimentary function. [10 Marks]			