Name:	UPES
Enrolment No:	UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

Course: Organic reagents and spectroscopic

analysis of Organic compounds
Program: M.Sc(Chemistry)
Course Code: CHEM7026P

Semester: II Time 03 hrs.

Max. Marks: 100

SECTION A

- 1. Each Question will carry 5 Marks
- 2. Instruction: Complete the statement / Select the correct answer(s)

S. No.	Question	CO
Q 1	A) The product of the following reaction is	CO1
	$R = CH = CH_2 + TI(ONO_2)_3 = MeOH$	[1+2+2]
	 a) 1,2-glycol dimethylether b) 2-methylether c) 2-alkyl ethylene glycol d) Both a) and c) 	
	B) LiAlH ₄ reduces epoxides to The hydride ion is transferred to thehindered side of the epoxides.	
	C) Reduction of esters with atleast 2 equivalents of DIBAL-H provideswhile with 1 equivalent of DIBAL-H provides	
Q2	A) The catalyst used in Suzuki reaction is B) 'Heck reaction' is palladium-catalyzed C-C coupling betweenandin the presence of a base C) Dissolvingin ammonia yields blue coloured reducing mixture. This blue coloured solution is rich in	
Q3	 A) McLafferty rearrangement involves the migration offollowed by the cleavage of β-bond: a) α-hydrogen b) β-hydrogen c) Υ-hydrogen d) δ-hydrogen B) Molecular ion peak is often not visible in case of and and	[1+2+2] CO2

Q4		[1+2+2]
	a) 2 b) 3	CO2
	c) 4 d) 5	002
	B) The distance between the centres of the two adjascent peaks in a multiplet is usually	
	and is called the C)tells us weather the two protons are in close proximity within a molecule. It leads to signalof the other proton when one proton is irradiated.	
Q5	A) For a compound, the mass spectrum has the m/e values: 124, 122 (low abundance), 43 (base peak), 107, 109. The organic compound is:	[1+2+2]
	 a) <i>n</i>-propylchloride b) <i>n</i>-propylalcohol c) <i>n</i>-propylbromide d) None 	CO3
	B) Determine the multiplicity in ¹ H-NMR for each of the following compounds:	
	CH ₃ H ₃ C—C—CH ₂ Br CH ₃	
	(i) (ii) C) Among two isotopes of carbon, is NMR active while is not.	
Q6	A) Determine the number of C-NMR signals for benzene molecule: a) 1 b) 2 c) 3 d) 4	[1+2+2] CO3
	B) Predict the number of signals in a proton-decoupled ¹³ C-NMR spectrum of each compounds: —	
	a) O	
	C) In bromo compounds, M^+ and (M^++2) peaks are formed in the intensity ratio while in chloro compounds, it is	
	SECTION B	<u> </u>
 Each question will carry 10 marks Instruction: Write short / brief notes 		
Q 1	Explain reduction reaction using LiAlH ₄ for various organic compounds with examples	CO1

Q 2	Give the possible products of the following reaction and give reaction mechanism:	CO1			
	$CH_3 \xrightarrow{N} CN \xrightarrow{\begin{array}{c} 1. & DIBAL-H \\ \hline CH_3 & 2. & H_3O \end{array}}$				
Q 3	How will you distinguish between isomeric alcohols with molecular formula C ₄ H ₁₀ O by mass spectroscopy?	CO2			
Q 4	Propose a structural formula for carboxylic acid with molecular formula C ₆ H ₁₂ O ₂ :				
	H-NMR C-NMR				
	1.08 (s, 9H) 179.29				
	2.23 (s, 2H) 46.82				
	12.1 (s, 1H) 30.62				
Q 5	Write a note on Sharpeless Asymmetric epoxidation with examples	CO1			
	Section C				
	Each Question carries 20 Marks. Instruction: Write long answer.				
Q1	A) a) Give <u>any two</u> preparation methods of Lithium organocuprates with reactions				
	b) Complete the following reaction and discuss the properties of the reaction: a. Cu(CN)Li ₂ THF, 0 °C, 6 h b. NH ₄ Cl, H ₂ O	CO1			
	OR				
	OK				
	B) Explain preparation methods (<i>any two</i>) and applications (<i>any three</i>) of organosilicone ompounds				