| Name: | UPES | |---------------|---------------------------| | Enrolment No: | UNIVERSITY WITH A PURPOSE | ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021 **Course: Organic reagents and spectroscopic** analysis of Organic compounds Program: M.Sc(Chemistry) Course Code: CHEM7026P Semester: II Time 03 hrs. Max. Marks: 100 ## **SECTION A** - 1. Each Question will carry 5 Marks - 2. Instruction: Complete the statement / Select the correct answer(s) | S. No. | Question | CO | |--------|--|----------------| | Q 1 | A) The product of the following reaction is | CO1 | | | $R = CH = CH_2 + TI(ONO_2)_3 = MeOH$ | [1+2+2] | | | a) 1,2-glycol dimethylether b) 2-methylether c) 2-alkyl ethylene glycol d) Both a) and c) | | | | B) LiAlH ₄ reduces epoxides to The hydride ion is transferred to thehindered side of the epoxides. | | | | C) Reduction of esters with atleast 2 equivalents of DIBAL-H provideswhile with 1 equivalent of DIBAL-H provides | | | Q2 | A) The catalyst used in Suzuki reaction is B) 'Heck reaction' is palladium-catalyzed C-C coupling betweenandin the presence of a base C) Dissolvingin ammonia yields blue coloured reducing mixture. This blue coloured solution is rich in | | | Q3 | A) McLafferty rearrangement involves the migration offollowed by the cleavage of β-bond: a) α-hydrogen b) β-hydrogen c) Υ-hydrogen d) δ-hydrogen B) Molecular ion peak is often not visible in case of and and | [1+2+2]
CO2 | | Q4 | | [1+2+2] | |---|---|----------------| | | a) 2
b) 3 | CO2 | | | c) 4
d) 5 | 002 | | | B) The distance between the centres of the two adjascent peaks in a multiplet is usually | | | | and is called the C)tells us weather the two protons are in close proximity within a molecule. It leads to signalof the other proton when one proton is irradiated. | | | Q5 | A) For a compound, the mass spectrum has the m/e values: 124, 122 (low abundance), 43 (base peak), 107, 109. The organic compound is: | [1+2+2] | | | a) <i>n</i>-propylchloride b) <i>n</i>-propylalcohol c) <i>n</i>-propylbromide d) None | CO3 | | | B) Determine the multiplicity in ¹ H-NMR for each of the following compounds: | | | | CH ₃ H ₃ C—C—CH ₂ Br CH ₃ | | | | (i) (ii) C) Among two isotopes of carbon, is NMR active while is not. | | | Q6 | A) Determine the number of C-NMR signals for benzene molecule:
a) 1 b) 2 c) 3 d) 4 | [1+2+2]
CO3 | | | B) Predict the number of signals in a proton-decoupled ¹³ C-NMR spectrum of each compounds: — | | | | a) O | | | | C) In bromo compounds, M^+ and (M^++2) peaks are formed in the intensity ratio while in chloro compounds, it is | | | | SECTION B | <u> </u> | | Each question will carry 10 marks Instruction: Write short / brief notes | | | | Q 1 | Explain reduction reaction using LiAlH ₄ for various organic compounds with examples | CO1 | | Q 2 | Give the possible products of the following reaction and give reaction mechanism: | CO1 | | | | |-----|---|-----|--|--|--| | | $CH_3 \xrightarrow{N} CN \xrightarrow{\begin{array}{c} 1. & DIBAL-H \\ \hline CH_3 & 2. & H_3O \end{array}}$ | | | | | | Q 3 | How will you distinguish between isomeric alcohols with molecular formula C ₄ H ₁₀ O by mass spectroscopy? | CO2 | | | | | Q 4 | Propose a structural formula for carboxylic acid with molecular formula C ₆ H ₁₂ O ₂ : | | | | | | | H-NMR C-NMR | | | | | | | 1.08 (s, 9H) 179.29 | | | | | | | 2.23 (s, 2H) 46.82 | | | | | | | 12.1 (s, 1H) 30.62 | | | | | | Q 5 | Write a note on Sharpeless Asymmetric epoxidation with examples | CO1 | | | | | | Section C | | | | | | | Each Question carries 20 Marks. Instruction: Write long answer. | | | | | | Q1 | A) a) Give <u>any two</u> preparation methods of Lithium organocuprates with reactions | | | | | | | b) Complete the following reaction and discuss the properties of the reaction: a. Cu(CN)Li ₂ THF, 0 °C, 6 h b. NH ₄ Cl, H ₂ O | CO1 | | | | | | OR | | | | | | | OK | | | | | | | B) Explain preparation methods (<i>any two</i>) and applications (<i>any three</i>) of organosilicone ompounds | | | | |