Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End-Semester Examination, Jun. 2021 (ONLINE MODE)

Course: Advanced Thermodynamics

Program: MTech Chemical (Spl. in Process Design) Course Code: CHPD7003 Semester: II Time : 3 hrs Max. Marks: 100

UPES

UNIVERSITY WITH A PURPOSE

Instructions: The exam is closed book and closed notes. Use of unfair means will be severely dealt with.

SECTION A				
S. No.		Marks	CO	
1	Define internal energy and entropy.	5	CO1	
2	State the three parameter theorem of corresponding states	5	CO1	
3	What information do you require in order to completely define a system at equilibrium in the thermodynamic sense?	5	CO2	
4	According to the combined first and second law, what is entropy a function of?	5	CO2	
5	Explain the concept of fugacity in words.	5	CO3	
6	State and explain Duhem's theorem.	5	CO4	
SECTION B				
S. No.		Marks	CO	
1	Show that ${C_P}_{C_V} = \left(\frac{\partial V}{\partial P}\right)_T \left(\frac{\partial P}{\partial V}\right)_S$	10	CO2	
2	Develop a suitable expression of $\left(\frac{\partial T}{\partial P}\right)_H \left(\frac{\partial P}{\partial T}\right)_S$ in term of PVT properties and their derivatives	10	CO2	
3	Show that if a component <i>i</i> in a mixture obeys Lewis-Randall rule, its fugacity is given by, $\hat{f}_i = y_i P \exp\left[\int_0^P \left[\frac{Z-1}{P}\right] dP\right]_{T_{fixed}}$	10	СО3	
4	The enthalpy of mixing of a ternary solution containing components 1, 2 and 3 is: $\Delta H_{123} = \frac{[100x_1x_2 + BD(x_1x_3 + x_2x_3)]}{[x_1 + 2x_2 + 0.5x_3]}$ Find the partial molar enthalpy of mixing of component 2 at $x_1 = 0.4$ and $x_2 = 0.5$ (<i>B</i> , <i>D</i> are the last two digits of your SAP ID)	10	CO3	
5	For a liquid mixture of benzene and cyclohexane, experimental data have shown that the activity coefficient of benzene may be expressed as:	10	CO3	

	$RT \ln \gamma_B = (3800 - KT)(1 - x_B)^2$				
	Calculate the total enthalpy of mixing when one mole of benzene is mixed with				
	three moles of cyclohexane.				
	(<i>K</i> is the last digit of your roll number if non-zero, otherwise take it to be equal				
	to 10)				
SECTION C					
1	Derive from first principles the condition of chemical equilibria for a two-phase				
1	system with the reaction occurring in only one of the phases	20	CO4		