Name: Enrolment No:		UPES UNIVERSITY WITH A PURPOSE
UNIVERSITY OF PETI	ROLEUM AN	

Course: Analog System and Application

Program: B.Sc H (Physics) Course Code: PHYS2006

Semester: IV Time 03 hrs. Max. Marks: 100

SECTION A

1. Each Question will carry 5 Marks

Instruction: Complete the statement / Select/write the correct answer(s)

S. No.	Question	Marks	CO
Q 1	For an ideal Op-Amp, value of input impedance, output impedance, bandwidth, offset	5	
	voltage and open loop voltage gain are (a), (b), (c), (d)and (e)		CO1
	respectively.		
Q2	Basic conditions to be satisfied for faithful amplification are	5	CO1
Q3	In a BJT, emitter region is (a)doped to have (b), while collector region is kept (c) doped to have (d)	5	CO2
Q4	Photodiode is (a)biased, while LED is (b) biased in normal working operations.	5	CO1
Q5	If negative voltage feedback fraction is 0.01 and gain after feedback is 50, the value of voltage gain without feedback will be		
Q6	The output of a particular OP-AMP increase 8 V in 12 micro sec. The slew rate is a) 90 V/μs b) .67 V/μs c) 1.5 V/μs d) none of these	5	CO4
1. 2.	SECTION B Each question will carry 10 marks Instruction: Write short / brief notes		
Q 1	What is the input current and load current for this op-amp shown in fig?	5	CO3

	$V_{IN} = +2V \underbrace{\frac{I_{IN}}{R_1 + V}}_{R_1 + V} \underbrace{\frac{I_{IN}}{I_{L}}}_{Q_{OUT}} \underbrace{\frac{R_L}{4.7K}}_{A,7K}$ (a) (b) Three input signals 1 V, 2 V, and 3 V are applied to the inverting terminal of the closed-loop inverting amplifier configuration through 3 k Ω resistor each. If $R_f = 1 \text{ k}\Omega$, then calculate the output.	5	CO3
Q 2	(a) A transistor uses voltage divider bias method, with R1= 50 k Ω , R2 = 10 k Ω and R _E = 1 k Ω , If V _{CC} = 12 V and V _{BE} = 0.1 V, determine the value of Ic.	5	CO4
	(b) Define base resistor method of biasing with circuit diagram and deduce expression of resistance.	5	CO4
Q 3	(b) Distinguish between insulators, conductors and semiconductors with the help of energy level diagram.(c) Explain the principle of a RC phase shift oscillator.	5	CO2
	(e) Explain the principle of a ree phase since oscillator.	5	CO2
Q 4	(a) Explain the terms (i) CMRR, (ii) Slew rate.	5	CO1
	(b) Explain the phase reversal in CE transistor configuration.	5	CO1
Q 5	Explain the working of an npn transistor in common base connection with proper circuit diagram. Deduce the expression for collector current. OR	10	CO2
	What is a full wave rectifier? Explain the functioning of a bridge type full wave rectifier, and deduce the expression for the efficiency and ripple factor.		
	Section C		
	Each Question carries 20 Marks Instruction: Write Long answer		
Q 1	(a) Explain the Barkhausen's Criterion for self-sustained oscillation with the help of mathematical and graphical representations.	10	CO3
	(b) Explain the working of oscillator with the help of a tank circuit.	10	CO3
	Or Explain the term virtual ground in noninverting Op-Amp. Explain the circuit diagram, working and derive an expression for gain of an inverting and noninverting amplifier.	20	СОЗ