Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Online End Semester Examination, May 2021

Course: Thermodynamics -II
Program: B. Tech (CE+RP)
Semester: IV
Time: 3 hrs

Course Code: CHCE 2016 Max. Marks: 100

Instructions: (1) Answer **ALL** questions

(2) Assume the appropriate value of missing data, if any.

(3) The thermodynamic terms have their usual meanings as described in the class

SECTION A (60 M)

S. No.		Marks	CO
Q 1	How would you calculate the constant pressure y-x data of a binary mixture using an average value of the relative volatility?	6	CO1
Q2	What can be the industrial applications of T-xy and P-xy VLE data?	6	CO1
Q3	What are the critical solution temperatures regarding partially miscible liquid systems?	6	CO4
Q4	What are the available degrees of freedom in the following non-reactive equilibrium systems? (a) Two partially immiscible liquid phases in equilibrium with their vapors (b) A mixture of benzene and toluene undergoing a simple distillation operation.	6	CO1
Q5	Enlist any two applications of both the solid-liquid equilibria and liquid-liquid equilibria?	6	CO4
Q6	How will you obtain the value of the equilibrium constant of a chemical reaction from the value of standard Gibb's free energy? Discuss the feasibility of a chemical reaction using the value of standard Gibb's free energy.	6	CO3

	SECTION B (50 M)					
Q7	A group of students from the Department of Chemical Engineering, UPES Dehradun, were asked to carry out the experiments on a binary system of ethanol and water (for example) to obtain the data on activity coefficients. The students performed several experiments and generated a set of data at constant temperature and pressure and obtained the values of the activity coefficients of ethanol (1) and water (2) as $\gamma_1 = \exp\left[x_2^2\left(2x_1 + 0.5\right)\right] \text{ and } \gamma_2 = \exp\left[x_1^2\left(-2x_2 + 1.5\right)\right]. \text{ Being a chemical engineer can you examine the correctness of their estimation?}$	10	CO2			
Q8	The following reaction proceeds in a gas phase system, $CO + H_2O \rightleftharpoons CO_2 + H_2$. The reaction proceeds at 100 kPa and 827 °C. The standard Gibbs free energy of the reaction is - 9,143.2 J/mol. If 1 mol of CO and 2 mol of H ₂ O is supplied continuously into the system. Find the equilibrium composition of all the components.	10	CO3			
Q9	Show that the following equations provide the criteria of equilibrium under certain constraints (a) $(dU)_{S,V} = 0$ (b) $(dA)_{T,V} = 0$ (c) $(dG)_{T,P} = 0$. Terms have their usual meanings.	10	CO4			
Q10	A hypothetical gas (1) follows an equation of state, $P(V-b) = RT$. For this gas $b = 0.1391$ l/mol. This gas undergoes condensation in a vessel and is assumed to be in equilibrium with the condensed liquid at 400 K and 1000 atm. Calculate the residual Gibbs free energy of the vapor phase at 400 K and 1000 atm. The thermodynamic terms have their usual meanings.	10	СОЗ			

Q11	The synthesis of ammonia takes place in a gas phase system according to the reaction		
	$0.5N_2 + 1.5H_2 \rightleftharpoons NH_3$		
	A mixture consisting of 0.5 mol N ₂ , and 1.5 mol H ₂ is continuously fed to the reactor.	10	CO4
	The equilibrium mixture behaves as an ideal gas. Obtain an expression for the extent of		
	reaction in terms of the equilibrium constant, K and total pressure, P.		
	SECTION C (20 M)		
Q12	For the system acetone (1)/methyl acetate (2), the following correlations provide a reasonable correlation for the activity coefficients:		
	$ \ln \gamma_1 = 1.7Ax_2^2 \qquad \text{and} $		
	$\ln \gamma_2 = 1.7 A x_1^2$ Where A = 2.771+ 0.00523 T		
	In addition, the following Antoine equations provide vapor pressures:		
	$\ln P_1^{sat} = 16.59158 - \frac{3643.31}{T - 33.424}$		
	$\ln P_2^{sat} = 14.25326 - \frac{2665.54}{T - 53.424}$	20	CO1
	Where T is in K and vapor pressures are in kPa. Assuming the validity of modified		
	Raoult's law		
	(a) calculate T and y_i for P= 101.33 kPa and x_1 =0.75 (perform two iterations)		
	(b) calculate T and x_i for P= 101.33 kPa and y_1 =0.55 (perform two iterations)		
	<u> </u>	<u>l</u>	