Name:					
Enrolment No:		UNIVERSITY WITH A PURPOSE			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
	Online End Semester Examination, May 2021				
Course: Metric Spaces & Complex Analysis Semester: VI					
	e Code: MATH 3005 amme: B.Sc. (Hons.) Mathematics	N	Time: 03 hrs. Max. Marks: 100		
IIUgi	annie: D.Se. (11013.) Wathematics	14	Iux. 1/101 Kg. 100		
	SECTI	ON - A	6 X 5 = 30 Marks		
	1. Each Question will carry 5 Marks				
	truction: Select the correct option(s)			
Q 1	Let (X, d) be a metric space. (X, d)) is disconnected if there e	xists a non- CO2		
	empty proper subset of <i>X</i>				
	A. Both open and closed.	B. Open C. Closed			
	D. Neither open nor closed.	-			
Q 2	Every convergent sequence is a		CO1		
	A. Cauchy Sequence B.	Bounded Sequence			
	C. Unbounded Sequence D	-			
Q 3	If $f(z) = \frac{z^2}{(z+2)(z-1)^2}$, then residue of		CO3		
	A. 5/9 B. 4/9 C. 1/9 D.				
Q 4	The value of $\int_{-1+i}^{1+i} z^2 dz$ along the particular terms of $\int_{-1+i}^{1+i} z^2 dz$	arabola: $x = t, y = t^2, -1 \le 1$	$\leq t \leq 1$ is: CO4		
	A4/3 B. 3/4 C. 1 D	1			
Q 5	The value of <i>m</i> so that $2x - x^2 + m$		CO3		
0.6	A. 0 B. 1 C. 2 D.				
Q 6	The radius of convergence of the po	wer series $\sum \frac{z+n}{2^n} z^n$ is:	CO3		
	A. 1 B. 2 C. 0 D.				
	SECTIO	DN – B	10 X 5 = 50 Marks		
1. Each question will carry 10 marks					
	truction: Answer on a separate whit				
Q 1	Let (X, d_1) and (Y, d_2) be two m				
	continuous on <i>X</i> if and only if for e subset of <i>X</i> .	ach open set $G \subset Y, f^{-1}(G)$) is an open		
	SUDSEL OI A.				
Q 2	Prove that every contraction mapping	ng T on a complete metric s	space (X, d) CO5		
	has a unique fixed point.				
			1		
Q 3	If $u - v = (x - y)(x^2 + 4xy + y^2)$	f) and $f(z) = u + iv$ is	an analytic CO3		
	function of $z = x + iy$, find $f(z)$ in	terms of z by Milne Thoms	on method.		
			1		

Q 4	Show that $w = \frac{i-z}{i+z}$ maps the real axis of z plane into the circle $ w = 1$ and the half plane $y > 0$ into the interior of unit circle $ w = 1$ in the w plane.			
	the half plane $y > 0$ into the interior of unit circle $ w = 1$ in the w plane.			
Q 5	Evaluate $\oint_c \frac{1}{Z^2 \sin Z} dz$ where <i>C</i> is the triangle with vertices (0, 1), (2, -2), (7, 1).			
	(7, 1).			
Section – C 1 X 20 = 20				
1. Each Question carries 20 Marks.				
2. Instruction: Answer on a separate white sheet, upload the solution as image.				
Q 1	Using complex variable techniques, evaluate the integral $\int_{0}^{2\pi} \frac{\sin^2\theta - 2\cos\theta}{2 + \cos\theta} d\theta$.	CO4		
	OR			
	Using complex variables, Evaluate the real integral $\int_0^\infty \frac{\cos 3x}{(x^2+1)(x^2+4)} dx$.			