

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Programme Name: B.Tech GSE Course Name : Statistical Methods in GeoSciences Course Code: PEGS 3005

Semester : VI Time : 03 hrs Max. Marks : 100

	Section A (All questions are compu	lsory.)			
1.	Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 green marbles, with replacement after each drawing. Find the probability that both are white.				CO1
2.	The time in hours required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{3}$. What is the probability that the repair time exceeds 3 hours?				CO2
3.	If X is a random variable with mean μ and variance σ^2 , then $\frac{2x_1 - x_6 + x_4}{6}$ is an unbiased estimator of a) $\frac{\sigma}{\sqrt{6}}$ b) $\sigma \sqrt{1/3}$ c) $\mu/3$ d) σ^2			[5]	CO3
4.	The number of messages sent per hour over a computer n probability distribution: x 10111213 $P(X = x)$ 0.080.150.300.20Determine the mean of the number of messages sent per h	0.20	following 15 0.07	[5]	CO4
5.	Assuming second order stationary condition and intrinsic hypothesis, write relation between semivariogram and covariance functions.			[5]	CO5
6.	In which kriging $E[Z(x)]$ is assumed constant and known			[5]	CO5

	(Q1-Q5	SECTION B 5 are compulsory and Q5 h	as internal choices.)		
1.	in the sequence. Head and variable denoting the number	d tail are equally likely in	ce is independent of other flips each flip. Let X be a random pear for the first time. Find the 1.	[10]	C01
2.	f Obtain (a) The marginal and c	variables with joint probab $(x, y) = \begin{cases} 2, & 0 < y < x \\ 0, & other \end{cases}$ conditional probability densi cans $E(X Y)$ and $E(Y X)$		[10]	CO2
3.	Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means equals to 160 sq. inches and 91 sq. inches. Can these be regarded as drawn from same normal population?			[10]	CO3
4.			ired to break a certain kind of ements present in the metal:Percent of element B x_2 555510101010101515202020202020	[10]	CO4

5.	A geologist claims that mean temperature in certain region inside the Earth in kelvin is 345K. To verify the claim, following temperatures are obtained at randomly selected locations in the region: 340, 356, 332, 362, 318, 344, 386, 402, 322, 360, 362, 354, 340, 372, 338, 375, 364, 355, 324, 370. Do the data contradict the geologist's claim? OR With equal probability, the observations 5, 10, 8, 2 1nd 7 show the number of defective units found during five inspections in a laboratory. Find the first four central moments,	[10]	CO4			
	SECTION C (Q1 is compulsory and has internal choices.)					
1A	Define semi- variogram and explain semi-variogram model. OR Mathematically, define the ordinary kriging error variance, and express it as a function of variogram function.	[10]				
1B	Use simple kriging to estimate the value of $Z(x_0)$ at $x_0 = (180, 120)$. Given $E[Z(x)] = 110$ and the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function $2000 * \exp(\frac{-h}{250})$. Image: X intermediate in the covariance function as $2000 * \exp(\frac{-h}{250})$.	[10]	CO5			

	X	Y	Z		
	x ₁ 387	72	50		
	x ₂ 392	81	a		
here $a=55 + \frac{1}{2}$	$\frac{3}{250}d$, where d	is the three digit num	iber formed by l	ast three digits of your	r
roll number.	For example i	f your roll number is	R870218125, th	nen d=125.	