Name:							
Enrolment No: UNIVERSITY WITH A PURPOSE		UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
End Semester Examination, Dec 2020							
Program	n: B. Tech CERP	Time 03 hrs.					
Course Code: CHCE-3005 Max. Marks			s: 100				
Instructions:							
	SECT	ION A (30 Marks)					
S. No.			Marks	СО			
Q.1	Which one of the following is the correct	expression for overall gas-phase mass					
	transfer coefficient?						
	(a) $\frac{1}{m} = \frac{1}{m} + \frac{m}{m}$	(b) $\frac{1}{m} = \frac{m}{m} + \frac{1}{m}$	5				
	$K_y K_y k_y k_x$	$K_y k_y k_x$		CO1			
	1 1 1	1 1 1					
	$(c) \frac{-}{K_y} = \frac{-}{m k_y} + \frac{-}{k_x}$	$(d) \frac{1}{K_y} = \frac{1}{k_y} + \frac{1}{m k_x}$					
02	What is the physical significance of the a	ubsorption factor A?					
Q.2							
	(a) It is the ratio of liquid flow (b) It is the ratio of the slopes	v rate to gas flow rate.					
	(c) It is the ratio of the individ	dual gas-phase to liquid-phase mass transfer	5	CO1			
	coefficients.						
	(d) It is the fractional absorpti	on of the feed gas.					
Q.3	What are the different types of solid-liqui	d extraction systems? Explain with suitable	5	CO_{2}			
	examples.		5	02			
Q.4	What should generally be the minimum	n fractional density difference between the					
	lighter phase and heavier phase in order	r to ensure the smooth phase separation in	5	CO_{2}			
	nquid-nquid Extraction:		5	02			
	(A)20% (B) 10% (C) 5	% (D) 1%					
Q.5	In a cooling tower, \overline{T}_{wi} = inlet water temp	berature, T_{wo} = outlet water temperature,					
	T_{Gi} = inlet air temperature, T_{Go} = outlet air temperature and T_{as} = adiabatic saturation temperature of air. Then the 'approach' is						
	temperature of an. Then the approach is	,	5	CO4			
	(A) $T_{wo} - T_{wi}$ (B) $T_{wo} - T_{as}$ (C) T_{as}	$T_{Go} = T_{Go}$ (D) $T_{wo} = T_{Gi}$					

Q.6	Adsorption capacity of a regenerated bed compared to the fresh bed is generally			
	(A) slightly less(B) slightly more(C) half of that of the fresh bed after the first generation(D) double of that of the fresh bed	5	C05	
	SECTION B (50 Marks)			
Q. 1	t is required to design a packed tower to treat $1200 \text{ m}^3/\text{h}$ of an air stream containing 0 mole % SO2 at 60°C and 1 atm total pressure. It is necessary to recover 95 % of he SO2 using fresh water as solvent. If the mole fraction of SO2 in exit water is 0.1195, estimate the flow rate of water in the packed column.		CO1	
Q. 2	A cooling tower is required to cool warm water from 42°C to 29°C at a rate of 7000 kg/h. The inlet air has a dry-bulb temperature of 31°C and a wet bulb temperature of 22°C. The enthalpy of the inlet air is 64.3 kJ/kg dry air. Estimate the flow rate of the air if the enthalpy of exit air stream is (a) 180 kJ/kg (b) 200 kJ/kg		CO4	
Q. 3	Explain a typical drying rate curve with a neat diagram.	10	CO3	
Q. 4	Derive a general expression for Langmuir isotherm. Adsorption of a pure gas A (molecular weight = 65) on activated carbon follows the Langmuir isotherm. $q = \frac{6.4 p}{1 + 1.53 p}; \qquad p \text{ in kPa and q in mmol/g}$ Estimate the maximum quantity of gas (in kg adsorbate per kg carbon) that can be adsorbed.	10	C05	
Q. 5	A stream of waste-water containing 4% benzoic acid is to be extracted with benzene at a rate of 2000 kg/h in order to remove 96% of the solute. If water and benzene are assumed to be mutually immiscible and the distribution coefficient at given temperature is $K = \frac{W_w}{W_b} = 1.8$ Determine the minimum rate of benzene required for countercurrent separation of the mixture and the number of stages required if 1.3 times the minimum solvent is used.	10	CO2	
Section C (20 Marks)				
Q. 1	Ammonia is to be scrubbed from an air stream before it can be discharged in the atmosphere in a small packed tower by contacting it with a solvent. The feed gas is 2 % ammonia by volume, and 96 % of it is to be absorbed. The total gas rate is 150 m ³ /h at 25 °C and 1.1 bar absolute pressure. The liquid enters the column at a rate of	20	CO1	

1.80 kmol/h. Determine the overall gas phase mass transfer units and packed height if		
the column is 1 ft in diameter.		
Given: the overall mass transfer coefficient, $K_G = 3.5 \times 10^{-4} kmol/$		
$(m^2)(s)(\Delta P, bar)$; The effective gas-liquid contact area = 102 m ² per m ³ of packed		
volume; $k_y \bar{a} = 130 \frac{1}{(m)^3(h)(\Delta y)}$ Slope of the equilibrium line, m = 0.17		