Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Progra	amme Name: B.Tech., APE Gas Semester	: VIII	
Cours	te Name : Enhanced Oil Recovery Time	: 03 hr	S
Cours	se Code : CHGS 3104P Max. Mar	ks : 100	
Nos. o	$\mathbf{f} \ \mathbf{page}(\mathbf{s}) : \ 1$		
[nstru	ctions: Assume any data missing.		
SNo	SECTION A (6*5=30M)	Marks	CO
Q 1	Define conductance ratio and mention its significance.	5	CO ₁
Q 2	Classify various operations available for water treatment for its application in flooding.	5	CO2
Q 3	Define critical micelle concentration (CMC) and mention its significance.	5	CO3
Q 4	Classify various steam based thermal EOR methods.	5	CO4
Q 5	List various thermal method modifications proposed to obtain the highest recovery for the lowest expenditure of thermal energy.	5	CO4
Q 6	Classify various In-situ combustion thermal EOR methods.	5	CO
	SECTION B (5*10=50M)		
Q 7	Explain various injection well patterns available for flooding operations	10	CO
Q 8	A layered reservoir with no contact between the layers (as in figure) is subjected to water flooding. The displacement of fluids in layers is piston-like and the breakthrough is observed in j^{th} layer with permeability of k_j . Then, derive the following expression given by Stile for the fractional flow of water (f_w) in the reservoir. $f_w = \frac{M C_j}{M C_j + (C_t - C_j)}$ where, $M = \frac{k_{rw}}{k_{ro}} \frac{\mu_o}{\mu_w}$; C_t is the total kh of the formation; C_j is the cumulative kh up to j^{th} layer	10	COź
Q 9	Demonstrate with a neat diagram the working of a miscible gas flood.	10	CO
Q10	Illustrate with a neat diagram the working of air injection based thermal EOR method.	10	CO ₄
Q11	Explain the process of microbial enhanced oil recovery with its screening criteria.	10	CO ₂
	SECTION-C (1*20=20M)		
Q12	Classify various chemical enhanced oil recovery methods and elaborate with a neat diagram the various phase environments encountered in miscellar flooding operations.	20	CO