N	am	e	:

Enrolment No:

Semester: VIII

Max. Marks: 100

: 03 hrs.

Time

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End term Examination, May/June 2021

Course: Computational fluid dynamics

Program: BT/ADE & ME Course Code: ASEG 4005

Instructions: SECTION A

S. No.		Marks	CO
Q 1	Enlist the source of error in solving an equation using computation methodology.		CO1
Q 2	State the merits and demerits of computational tools.		CO1
Q 3	Enlist any four types of element used in FEM along with the interpolation function		CO1
Q4	Explain the terms consistency, convergence, stability for numerical simulation		CO2
Q5	Explain the LAX method for solving one dimensional wave equation with the CFL condition		CO3
Q6	Brief the methodology involved in solving a PDE's equation using numerical method with proper notation system used in space and time domain.	6	CO2
	SECTION B		
Q 5	Using Taylor series expansion, deduce the discretization for $\frac{\partial^2 u}{\partial x \partial y}$	10	CO3
Q 6	Enlist the different types of boundary conditions and their discretization method used in CFD	10	CO2
Q7	Develop the tri-diagonal matrix for one dimensional heat conduction equation solved using implicit scheme		
			1
	Or	10	CO3
	Or Compute the stability analysis for one dimensional heat conduction equation for implicit scheme.	10	CO3
Q8	Compute the stability analysis for one dimensional heat conduction equation for	10	CO3

Q 10	Discretize and deduce the FVM equations for orthogonal structural mesh to solve steady state heat conduction equation with heat generation for a cell volume P with unit thickness in direction perpendicular to the paper plane. The boundary conditions are constant temperature, constant heat flux, convection and radiation.		
	Or Discretize and deduce the FVM equations for structure curved mesh to solve	20	CO4
	first order equation $\frac{\partial E}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} = 0$		
	for the cell volume P with unit thickness in direction perpendicular the paper plane. The boundary conditions are constant temperature, constant heat flux, convection and radiation		