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ABSTRACT 

Snow avalanche is known as a most dangerous natural hazard in snow-bound 

regions of the Indian Himalaya. Detection of potential avalanche areas and 

generation of avalanche susceptibility maps assist decision-makers and planners in 

executing suitable measures to reduce the avalanche risk. The base of the research 

is development and implementation of geospatial models for avalanche hazard 

mapping using avalanche occurrence parameters. The geospatial models 

implemented in the present study are Probabilistic Frequency Ratio, Multicriteria 

Decision Analysis-Analytical Hierarchy Process (MCDA-AHP), and Fuzzy-

Frequency Ratio (Fuzzy-FR) Models. The most prominent avalanche occurrence 

parameters were used in proposed models. The avalanche occurrence parameters 

are divided into two categories as: (i) Terrain-based and (ii) meteorological-based 

parameters. The terrain-based avalanche occurrence parameters are slope, aspect, 

curvature, elevation, terrain roughness and ground cover. The meteorological-

based avalanche occurrence parameters are: Air temperature, snow depth, wind 

speed/direction and relative humidity. ASTER GDEM V2 and Landsat 8 satellite 

imagery were used to generate considered terrain parameters and vegetation cover. 

Meteorology datasets were used to generate meteorological parameters. The 

proposed models were developed and implemented in geospatial domain by using 

both types of avalanche occurrence parameters to generate susceptibility maps of 

potential avalanche release areas. For validation of the results, avalanche inventory 

map of documented avalanche locations was used. The prediction accuracy has 

been calculated by using the area under the ROC curve (ROC-AUC) method. 
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1. INTRODUCTION 

1.1 Overview of avalanche 

Avalanche is a rapid downhill flow of snow mass on a slope. This may bring 

ice, soil, forest and rocks along with it. Snow avalanche is known as most 

dangerous natural hazard in snow-bound regions of the Indian Himalaya. A snow 

avalanche is a ubiquitous phenomenon in snow-belt mountainous regions and a 

threat to human, property, communication, etc., because of the uncertainty 

associated and poor predictability involved (Brundl et al. 2004; McCammon and 

Häegeli, 2007).  

Generally, snow avalanches are of mainly two types, such as loose snow 

avalanche and slab avalanche. The avalanche releases at a point which extends over 

the large area is known as loose snow avalanche. A large amount of snow usually 

flows down a sloping surface in a triangular pattern (McClung and Schaerer, 2006). 

A failure in the snow depth initiates slab avalanche, which is commonly in a 

rectangular shape and completely break down cracks in snow cover. The slab-

avalanche is more destructive in nature than loose-snow avalanche. The destructive 

nature of the slab-avalanche causes more fatalities and property damage property 

than other type of avalanches (McClungiandiSchaerer, 2006). The relative 

magnitude of the shear displacement in slab-avalanche is influenced by the slope 

angle and type of snow. More than two-thirds of the total deformation is in shear 

by slope angles of 25º and nearly 90% of the total deformation is in shear when the 

slope angle reaches 45º (McClung and Schaerer, 2006). When the snow density 

increases, as would be expected for most slab avalanches, shear deformation 

becomes even more dominant. The slope dependence of the deformation 

components is one explanation of the slope angle dependence of slab avalanche 

formation. Slab avalanches become rare for slope angles near 25º and they increase 

in frequency as slope angle increases due to higher shear stresses and a more 

significant percentage of shear deformation (McClung and Schaerer, 2006).  

The Indian Himalayan experiences number of avalanches of all types. The 

various type of avalanche activities reported in the Indian Himalaya ranging from 

loose-snow to wet slab-avalanche. The loose-snow avalanche activities are 
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reported during the early winter (Bahadur, 2004). Whereas, wet slab avalanches 

are noticed in March-April (Bahadur, 2004). The western Indian Himalaya is 

divided into 03 zones by Sharma and Ganju (2000). The lower, middle and upper-

Himalaya are three zones of the western India Himalaya. The frequency of 

avalanches is fairly high in lower-Himalaya. In this zone, almost all the direct-

action avalanches occur in heavy snowfall. 

Most of the slab avalanches occurred in peak winter (Sharma and Ganju, 

2000). In the lower Himalaya zone, the loose snow avalanches may occur due to 

radiation in (Sharma and Ganju, 2000). The area covering in this zone is Pir-Panjal 

range of Jammu & Kashmir and same range in Himachal Pradesh on the windward 

side. In the middle Himalaya zone, a maximum number of avalanches observed 

throughout the winter, including slab, loose snow and thaw avalanches. Thaw 

avalanches are observed in April and May. The snowfall in the upper Himalaya 

zone is almost dry. In the upper Himalaya zone, the frequency of avalanche activity 

is low because ground conditions are not favourable to anchor the amount of 

snowpack. However, delayed action avalanches have been observed in some areas 

where undulating and rugged slopes provide sufficient anchorage (Sharma and 

Ganju, 2000). 

In worldwide, snow avalanche mostly occurs in spring and winter seasons 

on slopes without vegetation where snow slide along the inclined slope due to the 

effect of internal and external forces (Schweizer et al., 2003). Prediction of 

avalanche is inferior to understand because it mostly affects by dynamic 

parameters. The dynamic parameters are referred to snowfall, snowpack, wind, 

temperature, raining, and precipitation intensity. Subsequently, weather conditions 

also contributing avalanche occurrence (Schweizer et al., 2003).  

1.2 The magnitude of the problem 

Avalanche can reach speed of upto 200ikm/h and exerts pressures upto 

50iT/m2 (McClung and Schaerer, 2006) (Figure 1.1). Such speed and the pressure 

are bound to cause soil erosion in soil terrain and forest destruction in a forested 

area in the first instance. Besides that, several problems are associated with an 

avalanche that affects mountain people, directly or indirectly. Life in the mountains 

becomes paralyzed, thus affecting the overall wellbeing of mountain people. Due 
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to the disruption of traffic, essential supplies to the interior in snowbound areas are 

affected. Loss of forest cover and soil cover, in addition to road damage, impedes 

the hill development schemes. While on the one hand, the avalanche debris dams, 

rivers causing flooding, same avalanche debris on the ground locks up the water 

required during the spring period. Avalanches affect military operations as well as 

border area security and safety. 

1.3 History and research motivation 

Avalanche activities occur in snow-belt mountainous regions worldwide. 

Avalanche is one of the main natural disasters and threats to humans, property, 

communication, etc. The oldest recorded avalanche accident in 218 BC, which 

killed 12,000 soldiers and 2,000 horses (Schweizer et al., 2015). Most of the 

significant avalanche accidents associated with military operations. The associated 

military operations are Napoleon in 1800 and Dolomites in 1916 during World-

War 1. A recent example was the conflict between India and Pakistan in April 

2012. Due to this conflict, an avalanche triggered and killed 130 soldiers 

(Schweizer et al., 2015). 

 

Figure 1.1: Maximum speed and thrust exerted by an avalanche (McClung and 

Schaerer, 2006). 

Avalanche activities in the Western Himalaya are in extreme proportions and 

vicious in their frequency from January to March (Ganjui and Dimrii, 2004). In 
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1838, an avalanche accident was recorded in a village nearby Triloknath temple in 

Lahaul Himalaya. Due to this massive avalanche, a village near to Triloknath 

temple was utterly swept away and killed a total of about 60 people and 3,000 cattle 

(Rao et al., 1988). In northern India, on March 7, 1979, an avalanche moved 

through the village of Gusikar, destroying several stone buildings and killing 35 

residents (Figure 1.2). Widespread avalanche activity existed in the same week 

across the Indian Himalaya, resulting in the deaths of about 200 people (McClung 

and Schaerer, 2006).  

A total number of deaths due to avalanche accidents reached 869, including 

87 army officers upto 11-December-2015. A total of Rs 7505 crore utilized in 

military operations in 04 years as of 2016. Whereas, the Pakistan army lost 213 

soldiers in Siachen region from 2003-2010 (Indian Express 2016). 

 

Figure 1.2: Destruction caused by March 1979 avalanche in Lahaul and Spiti 

Valley Himachal Pradesh, India. Half of the Guiskar village was wiped away by 

the avalanche. 

A series of 04 avalanches on 25-January-2017 in the Gurez valley killed 24 

people (Figure 1.3 and Figure 1.4), known as the Gurez avalanche accident. 

Twenty India army soldiers and four civilians were claimed in total death of 24 

people. In the series of four avalanches, the first avalanche triggered in the morning 

and killed four people. The second avalanche was also triggered at almost the same 

time in a tourist place and army camp of Sonmarg. A distance of 150 km from 

http://indianexpress.com/article/india/india-news-india/siachen-avalanche-hanumanthappa/
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Sonmarg, two more avalanches triggered in the evening and killed 15 soldiers 

(Retrieved 26 January 2017, NDTV).      

 

Figure 1.3: Avalanches in Kashmir's Gurez sector (Source: NDTV) 

 

Figure 1.4: An Indian Kashmiri villager in Gund, located 70 km from Srinagar. 

Several people, including soldiers killed by avalanches. (Source: CBC) 

In Western Indian-Himalayan, 30-40 deaths on average and property lost 

each year because of avalanche accidents (De Scally and Gardner, 1994; Gardner 

and Saczuk 2004; Ganju et al., 2002; iGanjui and iDimri, 2004; Sharma et al., 

http://www.cbc.ca/news/world/kashmir-avalanches-india-soldiers-1.3954601
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i2004). While, total fatalities in worldwide due to avalanche accidents are 

estimated at about 250 per year (Schweizer et al., 2015).  

Analysis of avalanche occurrences data since the last four decades (Figure 

1.5) indicates that 35–40 deaths per year.  A property worth a million lost every 

year due to avalanche accidents. The actual loss is likely to be higher since many 

accidents unreported. Village of Himachal Pradesh, Jammu & Kashmir and 

Uttarakhand states such as: 109, 91, and 16 number of villages are affected 

continuously by snow avalanches throughout the winter season (Ganju and Dimri, 

2004) (Figure 1.6, Figure 1.7 and Figure 1.8). A certain extent of northeast Sikkim 

is also affected by snow avalanches.  

 

Figure 1.5: Year-wise fatalities due to avalanche accidents in the Indian Himalaya. 

On average, about 35–40 deaths due to avalanches every year in the (SASE internal 

report, 2010, 2016 and 2018). 

 

Figure 1.6: Villages affected by avalanches in Himachal (SASE internal report, 

2010, 2014, 2016 and 2018). 
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Figure 1.7: Villages affected by avalanches in Jammu and Kashmir (SASE internal 

report, 2010, 2014, 2016 and 2018). 

 

Figure 1.8: Villages affected by avalanches in Uttarakhand (SASE internal report, 

2010, 2014, 2016 and 2018). 

The primary study area is the Lahaul & Spiti district of Himachal Pradesh 

(H.P), i.e., Lahaul-Himalaya. The mountainous region falling in Kullu, Chamba, 

Lahaul & Spiti and Kinnaur districts of H.P.  These districts are highly vulnerable 

to avalanche accidents (Figure 1.9). Various recorded avalanche events and 

damage caused are given in Table 1.1. Avalanche accidents are break-up in district-

wise and given in Table 1.2. 
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Figure 1.9: Avalanche vulnerability map of Himachal Pradesh (SASE internal 

report, 2010) 

Table 1.1: Avalanche Hazard and the damage occurred (SASE internal report, 

2014) 

Place Date Avalanche Occurrence 

Lahaul and Spiti Jan 1975 The earthquake triggered the avalanche and 

damaged road network.  

Mar 1978  Damage property, road network and 30 people 

killed. 

Mar 1979  Damage communication system and 237 people 

died.  

Mar 1991  Tinku avalanche blocked the road for 40 days. 

Sept.1995  Snow avalanche debris changed to flood.  

Nov 1997  Avalanche occurred alongside the Rani Nala. 

March 2011  Avalanche occurred alongside Pindri Nala and 02 

labor men died.  
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The avalanche hazard vulnerability map of Himachal Pradesh, India, shows 

that the Kinnaur and of Lahaul-Spiti districts are highly vulnerable districts. Kullu 

and Chamba are moderate vulnerable districts. Some parts of Shimla and Kangra 

also fall in moderate vulnerable areas. 

Table 1.2: Avalanche accidents in Himachal Pradesh (SASE internal report, 2014) 

Sr. 

No.  

District  Accidents. People-

involved. 

People-

killed. 

People-

injured. 

1.  Lahaul & Spiti.  21. 397. 298. 53. 

2.  Kinnaur.  32. 144. 129. 9. 

3.  Chamba. 12. 59. 53. 0. 

4.  Kullu.  6. 13. 9. 4. 

5.  Shimla.  2. 6. 1. 5. 

Increasing population density, transport, construction and recreational 

activities in snow-bound mountainous regions leading avalanche risk to greater 

proportions in the near future (Ancey, 2001; Ganju and Dimri, 2004; Fuchs and 

Brundel, 2005). The predictive nature of snow avalanche is very poor because it 

affects by wind, snowfall, snowpack, temperature, raining, water content and 

precipitation intensity. Subsequently, weather conditions also contribute to 

avalanche occurrence (Schweizeriet al.,i2003). Although the predictive nature of 

the avalanche is poor, the susceptibility map of the avalanches provides useful 

information for avalanche risk assessment, management and planning the 

protection infrastructure development (Mears, 1992; Hervas, 2003; Barbolini et al., 

2011). Due to a lack of general awareness and an information map of the avalanche 

hazard area, the threat is likely to constitute serious problems. Therefore, avalanche 

susceptibility mapping over the large and undocumented mountainous regions is 

highly in demand nowadays. Through scientific analysis of avalanche activities, 

avalanche workers can predict avalanche release areas. Hence, minimize the 

avalanche risk through appropriate preparation. Geospatial modelling is 

recognized as a significant approach for natural hazards assessment, including 

avalanche susceptibility (Selçuk, 2013). In this regard, geospatial technology has 

tremendous capability to utilize various types of topographical information & 
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management of the large volume of data and hence, useful for avalanche 

susceptibility mapping (Selçuk, 2013).  

1.4 Research questions and objectives. 

1.4.1 Research questions. 

A number of identified research questions related to geospatial modelling of 

avalanche hazard are given below as: 

(i) What kind of spatial data and geospatial components required to generate an 

avalanche hazard map?  

(ii) In the geospatial model development for avalanche hazard mapping, what 

relationships bind the occurrence parameters and spatial components?  

(iii) What is the experience worldwide in the best practice in geospatial modelling 

of avalanche hazard?  

(iv) How can geospatial models be developed for the assessment of avalanche 

hazard?  

(v) What are the statistical itechniques for ievaluating the efficiency of the 

imodels in the geospatial domain?  

(vi) How toiassess the iperformance of the imodels in the most appropriate 

fashion using GIS in combination with statistical tools?  

1.4.2 Research objectives 

Research objectives identified in the context of geospatial modelling of 

avalanche hazard are: 

(i) To analyze the terrain and meteorological data of the study area for 

identification of the various parameters (constant and dynamic parameters) 

contributing towards avalanche occurrence.  

(ii) Development and implementation of geospatial models/algorithms for 

avalanche hazard mapping using avalanche occurrence parameters. 

(iii) Proposed models for avalanche susceptibility mapping are: Probabilistic 

Frequency Ratio Model, Multi-Criteria Decision Analysis-Analytical 
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Hierarchy Process (MCDA-AHP) Model, and Fuzzy-Frequency Ratio 

(Fuzzy-FR) Model.  

(iv) Evaluating the model's performance in the most appropriate fashion using 

GIS in combination with statistical tools. 

1.5 Outline of the thesis 

The thesis is outlined in eight chapters, with section, subsection and 

subsections provided in each chapter. 

Chapter 1 

Introduction: This chapter presents the overview of a snow avalanche, the nature 

of the phenomenon of avalanche, the history and research needs. This explains 

history and motivation for snow avalanche research. Encourage the applications of 

geospatial technology in avalanche hazard modelling and mapping. The chapter 

describes the key research objectives followed by research questions. 

Chapter 2 

Literature ireview and state-of-the-art: Chapter 2 consists of a study of the 

literature and state-of-the-art GIS techniques used in modeling avalanches. The 

advantages and disadvantages of geospatial technology are discussed in 

thisichapter. 

Chapter 31  

Study area and dataset: Chapter 3 provides a brief overview of the studyiarea 

and the dataset used. 

Chapter 4 

Influence of terrain and meteorological factors in avalanche occurrence: 

Chapter 4 describe the contribution of terrain and meteorological factors in 

avalanche occurrence. Statistical assessment and development of the relationship 

between classes of terrain parameters and meteorological factors with avalanche 

occurrence data.  
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Chapter 5  

Geospatial modelling and mapping of avalanche Hazard: Development and 

implementation of proposed geospatial models for avalanche susceptibility 

mapping such as: Probabilistic FR-Model, MCDA-AHP Model, and Fuzzy-FR 

Model. Evaluation of the model's performance in the most appropriate fashion 

using GIS in combination with statistical tools. 

Chapter 6 

Results and discussion: Chapter 6 discusses the outcome of the geospatial models 

developed for avalanche hazard mapping.  

Chapter 7 

Conclusion and future research: Chapter 7 talks about the insights and 

achievements from present research with the proposed future scope. 
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2. LITERATURE REVIEW 

2.1 Background 

Avalanche hazard assessment using geospatial technology has a long history 

of more than thirty years. A snow avalanche is the most dangerous natural hazard 

in snowbound mountainous regions. Therefore, an avalanche susceptibility map 

needs to be prepared to know the potential areas and minimize the vulnerability. 

Geospatial technology, including remote sensing and GIS has tremendous 

capability to achieve the goal with better results. For two decades, many studies 

have been performed and algorithms developed in the context of avalanche hazard 

management. Identification and mapping of snow avalanche sites is a challenging 

process for a large undocumented mountainous terrain. Due to complex 

mountainous terrain, there is a lack of avalanche occurrence evidence, occurrence 

parameters and estimation of avalanche runout distance. Various kinds of 

parameters which influence the occurrence of avalanche activity are terrain, 

meteorological, vegetative parameters and snowpack structure. The terrain 

parameters which influence the avalanche occurrence are slope, aspect, curvature, 

elevation and terrain roughness. Meteorological parameters are snowfall, 

snowpack, wind, temperature, and precipitation intensity. The digital elevation 

model (DEM) in the GIS model helps to generate and apply terrain parameters for 

the identification and mapping of snow avalanches. Most commonly used ASTER, 

SRTM and NRSC Cartosat-1 digital elevation models of spatial resolution 30 m 

are freely available on respective web portals. The processes to generate the digital 

elevation model from ortho stereo-pair satellite data and generation of terrain 

parameters are discussed. The influence of various avalanche occurrence 

parameters and application of geospatial modelling & mapping by utilizing 

parameters for avalanche hazard are discussed in this chapter.  

Geospatial technology and methods applied for mapping and modelling of 

the snow avalanche are discussed in this chapter. This chapter highlights the 

modelling and mapping techniques with the advance remote sensing technology 

and spatial analysis. Present and future challenges, advantages and disadvantages 

of the technology are also concluded in this chapter. 
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2.2 Identification and monitoring of snow avalanche using remote sensing 

Remoteisensing technology is widely used for the collection of data from 

different kinds of objects on the Earth. The process of acquisition of data without 

any physical contact with the object through sensors mounted on satellites or 

airborne platforms. The space-based remote sensing technology is mostly used 

from early for the acquisition of data of snowbound mountainous regions. (Rango 

and Itten, 1976;iChang et al.,i1982;iDozier,i1989b; iHall et al.,i2002; 

iNolin,i2010; Dong, 2018; Tsai et al., 2019). Space-based remote sensing is 

considered as most suitable for avalanche related study because the satellite can 

cover a large area at a time with regular repeatability.  The satellite has a capacity 

to mount a number of remote sensing sensors to provide comprehensive capability 

data acquisition. Relevant theories and applications of satellite-based remote 

sensing for snow-related studies by Dozieri(1989a), Reesi(2006), Schereriet al. 

(2013), Tedescoi(2015) and Xiao et al. (2018) are published. 

This section addressed the use of remoteisensing for the identification, 

monitoring, characterization and analysis of avalanche hazard. Remote sensing 

technology of optical, lightiidetection & iranging (LiDAR) and iradio idetection & 

iranging (RADAR) based sensors of different kinds were used worldwide for 

avalanche related studies. Remote sensing of avalanches depends upon the spectral 

properties of the snow in the electromagnetic spectrum. Remote sensing is 

categorized into two types as per the range of electromagnetic spectrum: 

opticaliandimicrowaveiremoteisensing. Further three categories of the optical 

remote sensing are: panchromatic, multispectral and hyper-spectral as per the 

spectral information. 

2.2.1 Optical remote sensing of snow avalanche hazard 

Optical sensor has been used in optical remote sensing which exploits the 

visible, NIRiandiSWIR parts of the electromagneticispectrum. Due to an increase 

in the snow density, snow depth and surface roughness, the detection of avalanche 

extent is mostly depending upon the difference in contrast between snowpack 

structure and avalanche debris. Calculation of snow properties usually affected by 

the angle of observation and illumination of the optical sensor. Thus, optical remote 

sensing sensors limits the detection accuracy of a snow avalanche. Three types of 
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platforms such as:iground-based, airborne andispaceborne, are generally usediin 

optical remote sensing.  

At the initial stage, theiground-based optical remoteisensing of the avalanche 

was based on the automatic time-lapse photography (Christiansen, 2001). 

Continued automated digital photographs were used for the extraction of snow 

distribution and snow cover maps. In recent time, the time-lapse photography for 

monitoring the glide cracks, cornice failure and cornice dynamics is popular (van 

Herwijnen and Simenhois, 2012; Peitzsch iet al., i2010; iHendrikxiet al., i2012; 

iFeick iet al., i2012; Vogel iet al., i2012; ivan iHerwijnen and Fierz, 2014). 

Whereas, glide cracks and cornice dynamics are not easy to understand. To 

improve the detailed understanding process, a high spatial and temporal 

photography camera facilitates direct integration with meteorological data. This 

time-lapse photography facilitates the simple approach to easily monitor the 

cornice dynamics and cornice failure activity on slope inflections, edges and 

ridges. Direct integration of continuous time-lapse photographs of high frequency 

with meteorological data has been successfully applied for easily monitoring of 

wet-snow avalanche (van Herwijnen et al., 2013).  

Digital photogrammetry is very helpful for understanding the interaction of 

terrain parameters with snow distribution (Wirz et al., i2011). Digital 

photogrammetry is commonly utilized for three-dimensional (3D) modelling. This 

technique uses the overlapping photographs of different angles of the same region 

to extract 3D measurement or geometry. The istructure-from-motion (SfM) is one 

ofithe advanced techniques to generate i3D information or structure from 2D 

photographs (Koenderink and van Doorn, 1991). This technique has been 

successfully demonstrated to study the slab avalanche (Gauthier et al., i2014). This 

research consists of generating the surface model for extracting the volume and 

deposition area of a slab avalanche. The SfM technique was also helpful for 

mapping the fracture lines of the slab avalanche.  

Aerial opticaliremoteisensing sensors are beneficial for avalanche detection, 

monitoring and topographicimapping. Application of data from aerial optical 

remote sensing sensors is extensively utilized in natural disasters and other 

environmental studies. Whereas, the application of data from aerial-based optical 
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remote sensing of avalanche is not thoroughly explored. A few researchers have 

used aerial optical sensor data for avalanche monitoring.  One of the main reasons 

behind the limited applicability of aerial optical remote sensing technology is that 

the survey is typically only carried out in summers. This technology is generally 

used for avalanche applications such as mapping of starting and run-out zones of 

the avalanche. Aerial optical remote sensing images are also used for avalanche 

inventory map generation. Bühler et al. (2009) recommended that the avalanche 

hazard mapping requires airborne optical images of a large scale. For the mapping 

of avalanche debris, a high radiometric and spatial resolution digital push-broom 

scanner was used by Bühler et al. (2009). In this study, an avalanche detection 

accuracy of 94% was achieved for large and medium debris of avalanches. The 

airborne digital push-broom scanner exploits the spectral, textural and directional 

information facilitating the medium avalanches differentiation in the shaded area.  

The slope angle is most prominent avalanche occurrence parameter. The 

high-resolution iDEM was usedifor the iextraction of theislope angle. 

Subsequently, avalanche runout was simulated by using a RapidiMassiMovement 

System (RAMMS) (Christeniet al.,i2010; Gilany and Iqbal, 2019; Jarsve et al., 

2019). The RAMMS is also known as a numerical simulation model. Lato et al. 

(2012) also used the airborne remote sensing using a push-broom scanner. The 

orthoimages were used for the mapping of avalanche debris by applying the object-

based technique. In this study, the neighborhood pixels were calculated to identify 

avalanche. This technique is followed by the classification and segmentation of the 

airborne remote sensing imagery, which then facilitates the detection of avalanche 

debris. The object-based technique was applied in two case studies avalanche 

detection, which demonstrated 95% and 97% accuracy (Lato et al., 2012). 

An aerial platform equipped with optical remote sensing sensors was 

deployed by Eckerstorfer et al. (2015) to detect the recent avalanche deposits. This 

system was employed to capture overlapping photographs with a high frequency 

of time-series. SfM technique was used to generate the full mosaic of ortho-image 

from captured overlapping photographs of avalanche deposits for further 

interpretation and calculation, such as volume and outline of deposits. 
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Space-borne optical remoteisensing is commonly applied in various fields 

such as ground subsidence hazard (Lee et al., 2010; Bianchini et al., 2019; Rehman 

et al., 2020), landslide susceptibility (PradhaniandiLee,i2010; Umari et al.,i2014; 

Shahabi et al.,i2015; Gholami et al., 2019; Ozdemir et al., 2020), groundwater 

imapping (Ohi et al., i2011; iOzdemir, i2011; Naghibiiet al.,i2015; Falah et al., 

2019), debris hazard mapping (Yang et al., 2011) and susceptibility assessment of 

debris flow (Chen et al., 2015; ; Xiong et al., 2020). Whereas, applications of 

optical remote sensing data in avalanche studies are not fully exploited. Only a few 

research scientists have worked on optical remote sensing for study on avalanche 

mapping. Table 2.1 shows the list of most popular optical space-based 

satellites/sensors useful for avalanche detection and monitoring. Remote sensing 

sensors mentioned in Table 2.1, range fromilow resolution to very highiresolution 

with remote sensing techniques are beneficial for detection and monitoring the 

avalanche. Latoiet al. (2012)iand Larseniet al. (2013) have mentioned the 

techniques for the avalanche detection using space-based optical remote 

sensingidata. Lato et al. (2012) adopted a technique followed by segmentation and 

classification of QuickBird satellite data for avalanche detection. Space-based 

optical remote sensing of avalanches is very helpful in those regions where the 

manual method is not possible due to rugged and high mountainous terrain. In 

recent years, a combination of manually and space-based optical remote sensing-

based techniques were applied for the detectioniof avalancheideposits in a large 

area (Eckerstorferiand Malnes,i2015; Eckerstorferiet al.,i2014). Landsat-8 OLI 

satellite data of spatial resolution 15 m was used in this study.  
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Table 2.1: The list of most popular space-borne optical satellites/sensors useful for 

avalanche detection and monitoring.  

Satellite/Sensor Spectral 

resolution 

Spatial resolution (m) Swath 

(km) 

Temporal 

resolution 
Panchromatic Multi-

spectral 

Quick Bird NIR, R, G, B, 

P 

0.6 2.4 16.5 1–3.5 

Landsat-8 NIR, TIR, R, 

G, B, P 

15 30 185 16 

Ikonos NIR, R, G, B 0.8 3.6 11 3 

GeoEye-1 NIR, R, G, B 0.5 2 15.2 3 

WorldView-1 P 0.5  17.6 1–5 

WorldView-2 P, 8 MS 0.46 2 16.4 1–4 

Orbview-3 P, 4 MS 1 4 8 3 

Spot-51 NIR, SWIR, 

R, G, B, P 

2.5, 5 10 60 2–3 

Formosat-2 NIR, R, G, B, 

P 

2 8 24 1 

Kompsat-2 NIR, R, G, B, 

P 

1 4 15 2-3 

Kompsat-3 NIR, R, G, B, 

P 

0.7 0.8 15 2-3 

Cartosat-2B P 0.8  9.6 4 

Pléiades-1/2 NIR ,R, G, B, 

P 

0.7 2 20 1 

Sentinel-2A & 2B NIR, R, G, B, 

P 

10 10 290 5 

2.2.2 Light detection and ranging (LiDAR) remote sensing of avalanche 

hazard 

The application of LiDAR technology is divided into two categories (i) 

ground-based and (ii) airborne LiDAR. Terrestrialilaser scanner (TLS) is a ground-
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basediLiDAR. In snow study, the application of TLS is to measure snow depth 

(Prokop, 2008). (Prokop, 2008) applied the TLS for the detection of avalanche and 

known as one of the first researchers for this type of study. This study demonstrated 

the possibility of detection of avalanches. 

At first, the TLS was used for measurement of snow depth within a 500 m 

distance. An error below 10 cm was reported under normal visibility conditions. 

The accuracy of TLS was further compared with tachymetry survey data (Prokop 

et al.,2008), which demonstrated the acceptable results. The case study attempted 

by Prokop et al. (2013) permits the representation of mass gain and loss on 

deposits, starting and run-out zones of the snow avalanche. Application of TLS 

based approach was also applied by Deems et al. (2014) for analysis of relating 

parameters of avalanches. The relating parameters analyzed in this including 

various zones of avalanche (starting, tack and run-out zone), slope in snow cover 

& snow-free conditions. The process in this study was followed by calculating the 

massiloss at theistarting zone, massigain at the run-out zone and tracking of release 

area of avalanche (Deems et al. 2014). Change of mass balance of snow cover used 

for extraction of the volume of avalanche debris. Sovilla et al. (2010) used TLS for 

the extraction of the snow depth of avalanche debris before and after the avalanche 

occurrence. This study achieved the vertical resolution of 100 m and 500 m for 

horizontal, which demonstrated acceptable results instead of a manual 

photogrammetric approach for estimation of the depth of avalanche debris (Deems 

et al., 2013).  

The second category of LiDAR technology for remote sensing of avalanche 

is airborne LiDAR. The airborne LiDAR was initially applied by Vallet et al. 

(2000) in avalanche related study. A laser scanner Optech-ALTM 1020 was used 

to calculate the avalanche debris volume. The scanner mounted helicopter was used 

for the collection of recent avalanches data. This study achieves the accuracy from 

25 to 30 cm (Vallet et al., 2000). A very high-resolution DEM extracted from 

airborne LiDAR data was successfully applied for extraction of release area of 

avalanche (Chrustek and Wezyk (2009). A potential release area (PRA) technique 

was used in this study. The application of high-resolution DEM demonstrated 

better results in rugged and steep terrain.       
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2.2.3 Radar remoteisensing of avalanche hazard. 

Radar remoteisensing of avalanche is divided into three categories: (i) 

ground-based, (ii) airborne and (iii) spaceborne radar. As per knowledge, the 

remote sensing of avalanche using ground-based radar systems has been initially 

performed by iMartinez-Vazquez and iFortuny-Guasch (2008). This study 

demonstrated the application of Linear SAR (LISA) operated in C-band with a 

frequency of 5.8 GHz. In the backscattered arrangement, a high physical change of 

avalanche represented, which results in the temporal decorrelation. Qualitative 

measurement of temporal decorrelation is defined as coherence. In coherence, the 

avalanche release area seemed as low coherence. Decorrelation is also lead by the 

physical change of the snowpack structure. This decorrelation makes avalanche 

detection very difficult. Intermediate processes like morphological filtering and 

spatial averaging were applied to solve the problem byiMartinez-Vazquez and 

iFortuny-Guasch (2008). Finally, an accuracy of 73.5% was achieved for 

avalanche detection. The false-negative rating was found as 7.4%. The differential 

interferometry SAR (DInSAR) was also used to extract the avalanche volume by 

the ground-based SAR (Martinez-Vazquezi and iFortuny-Guasch, 2008). The 

avalanche identification in dry snow was also performed using C-band of SAR, 

followed by interferometry processing of paired images (Martinez-Vazquezi and 

iFortuny-Guasch, 2008). Whereas, the C-band of SAR has the capability of good 

penetration depth in dry snow.iGAMMA PortableiRadar Interferometeri(GPRI) 

was used to detect small avalanche (Wiesmanniet al., 2014 and iCaduff et al., 

2015). The GPRI acquired images with a repeat interval of 3 minutes. This study 

also revealed that liquid water content in snow affects the coherence.  

The second category of radar remote sensing is airborne radar remote 

sensing. As per knowledge, the avalanche detection study based on airborne radar 

remote sensing does not exist. Nevertheless, as per the references of existing 

studies performed based on ground and airborne remote sensing for avalanche 

detection, it is concluded that the airborne radar remote sensing of avalanche is 

possible. The SAR system introduced by the German Aerospace Centre, known as 

E-SAR has the potential for the present application. The E-SAR covers a 

wavelength ranges of 3-85cm and operates in four bands of frequency. The bands 

operated in the E-SAR system are X, C, L and P. A repeat pass and single-pass 
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channel included in measurement modes (DLR, 2014). Another airborne SAR 

developed by MetaSensing also has the capability for avalanche detection. This 

SAR system operated in Ku and X-bands. The UAVSAR developed by NASA 

operated in L-band may also capable of avalanche related studies. This system used 

for repeat and single-pass InSAR. The operational elevation of UAVSAR ranges 

from 2000–18000 m.  

Unmanned aerial vehicles (UAV) is a type of aerial platform. UAVs may be 

operated in lower height to collect data in very high spatial resolution and accuracy. 

Therefore, UAV can be used a promising platform for avalanche detection. The 

capability of UVA to reach in inaccessible remote areas where difficult for the 

manned aerial platform is an added advantage. The SAR-based UAV has the 

potential for avalanche detection and related studies. This type of platform may be 

very beneficial for continuously monitor the avalanche-prone regions of highly 

complex, rugged and steepness. This technology may also be helpful when satellite 

coverage is not sufficient. Moreover, the GPR mounted on UAV assists the 

locations of avalanche victims buried underneath the snow cover (Instanes et al., 

2004). 

The third category of radar remote sensing is space-borne radar. As per 

knowledge, space-borne SAR remote sensing of the avalanche was initially 

performed by Wiesmann et al. (2001). This was performed to detect avalanche 

debris. The backscattered image from ERS 1/2 was used to detect avalanche. The 

C-band SAR data of ERS 1/2 was utilized in this study. Backscattered based 

change detection was applied for detection of avalanches by Bühler et al. (2014b). 

02 Terra SAR-X images of different acquisition dates were used to detect 

avalanche. For the requirement of visual identification of avalanche, the RGB 

composition was applied. C-band images of Radarsat-2(RS-2 U) were used to 

detect avalanche release areas (Malnes et al., 2013). The spatialiresolution of RS-

2 U is 3 m and ground swath is 20iKm. Due to the high backscattering contrast of 

RS-2 U image, the avalanche can also be visually detected. The backscattering 

contrast of avalanche snow ranges from 1.5–2.3 dB. RS-2 U images were also used 

by Eckerstorfer and Malnes (2015) for detection avalanches in Northern Norway. 

In these studies, high backscattered contrast between avalanche debris and 

contiguous snow cover, the small-size avalanches are visually detectable. Optical 
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remote sensing images and field datasets were alsoiused for theivalidation of 

results.  

2.2.4 Advantages and disadvantages of remote sensing technology in avalanche 

study 

(i) Advantage and disadvantages of optical remote sensing 

Advantage and disadvantage ofioptical remote sensing is divided into three 

categories of technology as (i) ground-based, (ii) airborne and (iii) space-borne 

remote sensing. The ground-based optical remote sensing delivers acceptable data 

in real-time through automated time-lapse photography to detect and monitor 

avalanche occurrence. The time-lapse (TL) photography system requires an 

integrated based high-resolution DSLR camera, weatherproof case, solar panel, 

charge circuitry and TL controller. At present, many suitable and cost-effectiveness 

time-lapse photography systems are available in the global market. The scale of 

the study ranges from low to high as per the resolution of the DSLR camera. In 

general, the time required to capture a single picture is two minutes to a day, which 

usually depends upon the application and input power. In wintertime, the power 

drain quickly, which requires frequent maintenance (Vogel et al., 2012). The 

probability of system failure also high due to draining the power in the wintertime. 

The weather conditions also affect the process of optical remote sensing. 

Unpleasant weather conditions obstruct continuous monitoring of avalanche sites. 

Spatial coverage of ground-based limited as compare to space-borne and airborne 

remote sensing. 

The 3D model can be generated from SfM photogrammetry by utilizing a 

pair of overlapping images (Westoby et al., 2012). This technique is highly reliable 

due to high resolution and accuracy. The main limitation of this technique is that 

while creating a 3D model, the scale and spatial orientation lost. Therefore, post 

georeferencing is usually required. Due to the high-resolution camera and high 

configuration system, an accurate with acceptable resolution (in cm) 3D models 

may be extracted.  

An airborne optical remote sensing system utilizes aerial scanner to capture 

high spatial and temporal and radiometric resolution images. One of the most 

popular scanners ADS used to capture high-resolution data at three observational 
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angles to extract DSM. The difference between summer and winter DSMs are 

useful for the extraction of snow-depth. A similar study was performed by Bühler 

et al. (2015) for a large area. Accuracy of around 0.3 m RMSE of snow depth was 

reported.  The spatialiresolution of data rangesifrom 0.5 m to 5 m, which depends 

upon theiflight level and spectral resolution is 5 bands. 

The main advantage of this scanner is the NIR band. The NIR band is less 

prone to image saturation. Due to the sensitivity of these bands with respect to the 

grain size of snow, the acquired image more contrasted than a simple color 

photograph (Bühler et al., 2015). Visually analysis of high-resolution image 

acquired through an airborne survey is easy for the detection of avalanche-debris 

manually. Non-experts can also easily identify the avalanche-debris because 

acquired images are exposed uniformly. However, this process becomes tedious 

work due to a lack of uniformity over large regions. To overcome this difficulty, 

the automated classification and segmentation technique provide appropriate 

results for the detection of avalanches. This technique is beneficial for the detection 

of a medium and large avalanche. The technique becomes a challenge for the 

detection of small avalanche because ski lifts and the wind blowing snow are hard 

to differentiate from avalanche debris. Documented potential release area and 

terrain parameters of snow-free terrain of avalanche site are essential to enhance 

the accuracy, reliability and efficiency of the algorithm for automated detection of 

avalanche debris. However, automated detection of avalanche debris using optical 

remote sensing is limited because the optical data is more sensitive to unpleasant 

weather conditions. This technique is based upon the texture differentiation in 

snow, which requires instant response time. An airborne optical remote sensing 

system with an ADS scanner is high resource-intensive and costly. The alternate 

airborne optical remote sensing system is RPAS. The payload carrier in RPAS is 

least cost and resource-intensive. The aerial survey through RPAS is pre-

programmable and fully autonomous for flights. The time taken in the RPAS 

survey is quick, which can survey a valley in a few hours. The main disadvantage 

of the RPAS survey is highly dependent upon the weather conditions.   

The third category of optical remote sensing technology is space-borne 

optical remote sensing. At present, many space-borne remoteisensing sensors 

ranges fromilow to highiresolution exist. A high resolution optical remote sensor 
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namely QuickBird was available for long time which provided the images of spatial 

resolution 0.6 m and 2.5im in panchromatic multispectralibands with a swath of 

16.5–19 km. Due to these characteristics of the QuickBird satellite sensor, the 

release area mapping of avalanche is feasible. The QuickBird satellite comes with 

the high cost because of high temporal, radiometric and spatial resolution. Many 

optical satellite sensors are available to acquire high-resolution data. The list of 

high resolution satellite imagery available commercially including WorldViewi1, 

WorldViewi2, WorldViewi3, WorldViewi4, OrbView-3, Ikonos, GeoEyei1, and 

Pleiadesi 1A/1B.  

WorldView-1 and WorldView-2 satellite sensors have a spatialiresolution of 

0.46 m in PAN band, 8 and 4 multispectralibands. The spatial resolution of 

WorldView-3 is 0.31 m in PAN band with 8 multispectral and 8 SWIR bands. The 

spatial resolution of WorldView-4 is 0.31 m in PAN band with 4 

multispectralibands. The spatialiresolution of OrbView-3 is 1 m in PAN band with 

4 multispectralibands. The spatialiresolution of Ikonos is 0.8 m in PAN band with 

4 multispectralibands. The spatialiresolution of GeoEye-1 is 0.46 m in PAN band 

with 4 multispectralibands.  The spatialiresolution of Pleiades 1A/1B is 0.5 m in 

PAN band with 4 multispectral bands. These satellite images can be used for 

natural hazards applications like landslide, snow avalanche, debris flow, etc. for 

detection, monitoring and mapping. The list detailing the available high-resolution 

optical satellite images are described by Latoi et al. (2012). Landsati8 OLI having 

a spatialiresolution of 15im in PAN band and 30im in multispectralibands with a 

swath 100 Km are freely available for academic exercises. Though, the acquisition 

time of Landsati8 OLIi is variable and may not cover the area of the interest. 

Recently, two optical remote sensing satellites Sentineli2A and Sentineli2B also 

launchedion 23-June-2015 and 07-March-2017 to acquire medium resolution 

satellite images. These satellites have visible, NIR, SWIR sensors with 13 

multispectral bands of spatialiresolution 10, 20i and 60im with a swath of 290iKm, 

respectively. Due to theiavailability ofihigh and medium iresolution satellitei data, 

the avalanche detection, monitoring and mapping are feasible nowadays. The only 

problem is that the optical remote sensing is very highly sensitive to unpleasant 

weather conditions through which become the tedious task for extraction of 

adequate information.  
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(ii) Advantage and disadvantages of LiDAR remote sensing 

Riegl initially used the TLS for the detection of avalanche debris. The TLS 

systems LMS Z420i, LPM-2 K or LPM-i800HA, were used by Reigl (Prokop, 

2008) for the avalanche-related study. The acquisition speed of these systems is 

very slow and outdated as compared to recent years. A few years back, the TLS-

based survey was limited to a small range due to scanner wavelength. This scanner 

takes long scanning time due to slow operating speed and also limited by the 

availability of power supply. New TLS systems Optech Ilris LR and RieglVZ-6000 

have fast acquisition speed and unprecedented range. These TLS systems are 

portable and work in all weather conditions due to wavelength. The GPS, SLR 

camera and software used in new TLS are expansive. Therefore, the main 

disadvantage of new TLS systems is the high price. The airborne LIDAR for 

avalanche detection does not use significantly and only a little information 

available. Riegl is considered as the mail provider of airborne LiDAR systems. 

Riegl VQ-580 system is suitable for avalanche related studies. Leica Optec also 

provides the LiDAR system. Leica LiDAR systems may be suitable for avalanche 

monitoring. The main advantage of the airborne LiDAR system is the application 

in large areas. The main disadvantage of airborne LiDAR is high price and logistic 

challenges.  

(iii) Advantage and disadvantages of RADAR remote sensing 

Mostly used portable ground-based imaging SAR devices are Ibis-FL, 

LISAlab and GPRI. The data acquisition speed of these systems is fast and less 

time interval of 30 seconds. Therefore, less time interval makes it regular 

repeatability of data acquisition. Through ground-based imaging SAR devices, 

coherence-coefficients & temporal backscattered change-detection used for the 

detection of the avalanche.  The SAR data should be acquired after and before 

avalanche occurrence for extraction of occurrence parameters.  Preprocessing of 

SAR data is necessary before application. The preprocessing of SAR data including 

filtering, calibration, coregistration and classification techniques. Interferometric 

coherence changes with a change of snowpack structure (Cadufffet al., i2015). The 

main advantage of the ground-based iSAR is high spatial and temporal-resolution. 

Its temporal resolution is around 30 seconds and spatial resolution ranges from 1 
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m to 8 m in 1 Km distance. Ground-based SAR can detect any minor change in the 

snow surface. This is very sensitive upto 1 mm of change in the snow surface. The 

ground-based SAR method is not dependent on light, weather conditions and can 

be used at any time. However, this system is dependent on enough power supply.  

The main disadvantage of the ground-based SAR system is limited area 

monitoring. This system is still expensive to procure, complex to operate and 

processing.   

The space-based i.e., satellite-borne SAR systems provide high-resolution 

data for avalanche detection but restricted to poor in repeatability. The list of most 

popular space-based RADAR satellites/sensors is given in Table 2.2. These 

systems work in all weather and light conditions, but acquisition cost is high. A 

small avalanche can also detectable in high-resolution SAR data after contract 

enhancement and topographical correction.  

Sometimes, the detection capability in SAR images is limited to the low incidence 

angle of radar, which causes layover and foreshortening effects. The SAR data of 

Sentinel-1A satellite is freely available since 2015 for any region on the globe. 

Sentinel-1A solved the issue of acquisition cost and poor repeatability.  The spatial 

resolution of the C-band SAR of Sentinel-1A is 10 m and the swath is 250×150 

Km. The temporal resolution of Sentinel-1A is 12 days. Medium size avalanche 

debris can be detected in the Sentinel-1A image (Malnes et al., 2015). As per 

Malnes et al. (2015), a Sentinel-1A image can cover the complete county ofITroms. 

A total 505 number of avalanche release areas were detected manually by 

Malnes et al. (2015) in a single image. Backscattered-base change detection can 

also apply with two SAR images of with and without avalanche occurrence 

(Eckerstorfer et al., 2016). An avalanche is detectable in high backscattered 

contrast of the SAR image. High backscattered SAR images of Sentinel-1A with 

and without avalanche activity were used in automated detection of the avalanche 

release area algorithm (NGI, 2015). After comparison with manually detected 

avalanches, 57.1 % detected avalanches were correct.  The satellite-based SAR 

system has the advantage of acquiring data in high resolution and with large swath. 

Also, this system is not dependent on weather and light conditions, which can be 
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used to detect avalanche activity regularly. These factors show the high potential 

of SAR data for avalanche detection.  

Table 2.2: Most popular space-borne radar satellites/sensors useful for avalanche 

mapping 

Sensor Spatial 

resolution 

(m) 

Band Frequency 

(GHz) 

Swath 

(km) 

Polarization 

ERS 1/2 30 C 5.3 100 VV 

Envisat ASAR IM 30 C 5.3 100 HH/VV 

Envisat ASAR 

WSN 
100 C 5.3 500 HH/VV 

TerraSAR-X 

Staring Spotlight 
0.25–40 X 9.65 4–270 

HH/VV/HV/

VH 

RS-2 U 3 × 3 C 5.4 20 
HH/VV/HV/

VH 

RS-2 SCWA 100 × 100 C 5.4 300 
HH, HV/VV, 

VH 

RS-2 SCNA 50 × 50 C 5.4 500 
HH, HV/VV, 

VH 

S-1 IW 20 × 20 C 5.4 250 
HH, HV/VV, 

VH 

S-1 EW 40 × 40 C 5.4 500 
HH, HV/VV, 

VH 

Cosmo-Skymed 

Spotlight 2 
1 × 1 X 9.65 10 

HH, HV/VV, 

VH 

Cosmo-Skymed 

Strip map 
3–15 X 9.65 40–30 

HH, HV/VV, 

VH 

2.3 Spatial modelling and mapping of avalanche hazard 

In past years, a number of avalanche runout  modelling studies are performed 

with statisticalimodels iAlpha-Beta (α-β) and iRunout-Ratio Models (Sinickas and 

Jamieson, 2014), dynamic models such as PCM Model (Perlai et al., 1980), PLK 

Model (Perlai et al., i1984), Leading Edge Model (McClungi and Mears, i1995), 

AVAL-1D (Oller et al., 2010), Erosion and Deposition Model (Naaim et al., 2003, 

2004), Snow Avalanche Modelling and Simulation Model (SAMOS) (Sailer et al., 

2002), the modified version of SAMOS i.e. SamosAT (Sailer et al., i2008) and 

Voellmy–Salm model (Christeni et al., i2010).  
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There have been various kinds of GIS-based studies performed and models 

developed for mapping various aspects of avalanche hazard (Gleason 1994; 

Furdadai et al., i1995; iStoffel et al., i1998; Tracyi 2001; Hebertsoni and iJenkins, 

2003; Hendrikx et al., i2004; Gruber and Bartelt, 2007; Delparte et al., 2008; 

Biskupic and Barka, 2010; Barbolini et al., 2011; Campbell et al., i2012; Selçuk, 

i2013, Snehmani et al., i2013; Snehmani et al., i2014; Meer et al., 2020; Yariyan 

et al., 2020). These models are vital to assess the extent of a particular hazard factor 

as per the terrain and occurrence zones of the hazard. Maggioni et al. (2002) 

identified potential avalanche release areas using GIS with respect to topographical 

parameters and historical avalanche events data. iBühler et al., (2013) also 

developed aniautomated snow avalanche irelease areaidetection tool over two 

study sites such as (i) Manali, Himachal, India, and (ii) Davos, Grisons, 

Switzerland. The tool presented by Bühler et al., (2013) was based on the high-

resolution forest cover information and digital elevation models derived from 

aerial photogrammetric data. Pistocchi and Notarnicola (2013) tested two 

probabilistic data-driven models to delineate potential avalanche release zones, 

such as: (i) weightsiofievidence model, and (ii) logisticiregression model in South 

Tyrol, Italy. 

Probabilistic assessment and identification of avalanche occurrence 

conditions including snow cover and weather are extensively performed by 

Hendrikx et al., (2005); McClung et al., (2006); Jomelli et al., (2007); Schweizer 

et al., ( 2009). A few studies based on release area mapping of the avalanche has 

been done (Pistocchii and Notarnicola, i2013; iBühler et al., i2013) and 

susceptibility mapping of snow avalanches (Selçuk, 2013, Snehmani et al., 2014). 

A heuristic (expert-judgment) method, the analyticalihierarchy process 

(AHP) model (Saaty, 1980) basis of weighting and rating is successfully attempted 

for avalanchei susceptibility mappingi (Selçuk, 2013, Snehmani et al., 2014). The 

modified-AHP (M-AHP) model has been introduced by Nefeslioglu et al. (2013) 

for natural hazard assessment, especially for avalanches. The primary benefit of 

this method is the values incorporated in the model depending on the expert 

judgments. Sometimes, this process could lead to the main drawbacks, specifically 

for pair-wise comparisons and results in model imperfection. Weighti of evidence 
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(WoE) andilogistic regression (LS) models based on data-driven techniques were 

also attempted for avalanche mapping (Pistocchi and Notarnicola, 2013). 

Researchers like McClungiand Schaereri(2006), Jomelli et al. (2007), and 

Schweizeriet al. (2009) proposed various methods for probabilistic assessment and 

identification of snow cover and weather parameters influencing the contribution 

in avalanche activity. 

It is generally assumed that the avalanche events in the future will 

predominantly repeat themselves at the documented avalanche regions (Hebertson 

and Jenkins, 2003). Barbolini et al., (2001) suggested frequency analysis of 

registered or documented avalanche sites as the first step in avalanche 

susceptibility mapping. Sometimes mapping of large-area avalanche hazard in the 

mountainous region needed, where an adequate dataset of recorded avalanches are 

unavailable (Eckert et al., 2007). In this condition, it is significant to use 

topographical factors for the identification of avalanche-prone areas. Maggioni and 

Gruber (2003) devised a concept to calculate a relationship between avalanche 

occurrences and topographical parameters to observe the statistical distribution of 

documented avalanche sites onto less known areas based on geomorphological 

characteristics. This concept has found extensive useful in mountainous areas 

where documentation of past avalanche occurrences does not exist (Maggioni, 

2004). Various probabilistic models (Chung and Fabbri, 1993, 1999) initially 

utilized for mineral exploration and landslide hazard mapping have been 

successfully adopted for mapping potential avalanche release areas (Ghinoi and 

Chung, 2005). The approach for applying these probabilistic models is independent 

of expert judgment and entirely based on data-driven values, which makes the 

applicability of these models for large regions consistent. However, these 

probabilistic models have not been further used in avalanche mapping.  

On the other hand, modelling of avalanches using a fuzzy and machine 

learning approach is limited (Jaccard, 1989; Barpi 2004; Ghinoi and Chung, 2005; 

Zischg et al., 2005; Rahmati et al., 2019; Choubin et al., 2020). 

Integration of Fuzzy logic (Zadeh, 1965) with AHP (F-AHP) and frequency ratio 

approach (Bonham-Carter, 1994) (Fuzzy-FR) are widely applied for natural hazard 

and geo-environmental problems (Aksoyi and iErcanoglu, 2012; Huang et al., 
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2012; Kavzoglui et al.,i2014; Shahabi et al., 2015; Gholami et al., 2019; Ozdemir, 

2020). As per knowledge, these models are not ever developed for avalanche 

susceptibility mapping.  Hence, Probabilistic Frequency ratio and Fuzzy-FR 

models provide novelty to present investigation. 

Fuzzy logic (Zadeh, 1965) is commonly utilized to solve complicated and 

decision-making problems. The fuzzy-set concept is effectively and widely utilized 

in diverse disciplines of complex degree of uncertainties (Barpi, 2004; Bui et al., 

2012). In the fuzzy seti concept, an entity is a memberiof an entity seti if it has a 

membershipi degree of 1. On the other hand, if the entity has a membership degree 

of 0, then it is not a member of the entity set (Hines, 1997). This theory is idealized 

to map the spatial entities as the members of an entity set (Pourghasemi et al., 

2013).  

In natural hazard assessment, the FR value isithe ratio ofithe probabilities of 

hazard occurrence toithe nonioccurrence factors’ iattributes ofithe total area 

(Bonham-Carter, i1994; Pradhani and Lee, 2010). The FR-based methodology 

provides the capability to calculate the level of theirelationship between 

theidependent andiindependent parameters (Ohi et al., 2011). The FR modeli has 

ibeen successfullyi applied in applications such as iground subsidence hazard 

(Kimi et al., i2006; Leei et al., i2010; Bianchini et al., 2019; Rehman et al., 2020), 

landslide susceptibility (Pradhani and iLee, 2010; iUmar et al., i2014; Shahabi et 

al., 2014; Shahabi et al., 2015; ; Gholami et al., 2019; Ozdemir et al., 2020) and 

groundwater mapping (Ohi et al., 2011; iOzdemir, i2011; Naghibi et al., i2015; 

Falah et al., 2019).  The theoretical background of the fuzzy logic and frequency 

ratio method is described in the next sections. 

The research initiative presented in the present research is snow avalanche 

susceptibility mapping using GIS-based probabilistic Frequency Ratio (FR) 

iModel,iMulti-CriteriaiDecisioniAnalysis-AnalyticaliHierarchyiProcess (MCDA-

AHP) iModel and Fuzzy Frequency Ratio (Fuzzy-FR) Model.  

2.4 Research Gap 

Models/algorithms such as: Probabilistic FrequencyiRatio iModel, Fuzzy 

FrequencyiRatio (Fuzzy-FR) iModel, Fuzzy-AnalyticaliHierarchy Processi 

(Fuzzy-AHP) Model, iModified AnalyticaliHierarchy iProcess (M-AHP) Model 
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are not developed and utilized for avalanche susceptibility mapping. Application 

of the most popular & prominent statistical assessment technique the iarea underi 

the ireceiver operatingi characteristics (ROC-AUC) analysis is missing for the 

performance validation of the model in avalanche susceptibility mapping. 

2.5 Research objectives  

The main purpose ofLthis research is modelling and mapping of avalanche 

hazard using geospatial technology. A number of specific research objectives were 

identified in the context of geospatial modelling of avalanche hazard are: 

(i) To analyze the terrain and meteorological data of the study area for 

identification of the various parameters (constant and dynamic parameters) 

contributing towards avalanche occurrence.  

(ii) Development and implementation of geospatial models/algorithms for 

avalanche hazard mapping using avalanche occurrence parameters. 

(iii) Proposed geospatial models for avalanche susceptibility mapping are: 

Probabilistic Frequency Ratio Model,iMulti-CriteriaiDecisioniAnalysis-

AnalyticaliHierarchyiProcess (MCDA-AHP) iModel and Fuzzy-Frequency 

Ratio (Fuzzy-FR) Model,  

(iv) Evaluating the model's performance in the most appropriate fashion using 

GIS in combination with statistical tools. 

2.6 The process for the development and implementation of the proposed 

models 

2.6.1 Construction of avalanche related database 

A. Preparation of avalanche inventory map of documented snow 

avalanches 

a. In orderito obtain a comprehensive and detailed avalanche 

inventoryi map, exhaustive fieldisurveys and interpretations are 

carried out inithe avalanche-prone regions with well supported 

high-resolution satellite imagery and Survey of India (SoI) 

mapsheets. 
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B. Generation of vegetation cover map:  

a. Preparation of Landsat 8 OLI satellite image including layers stack, 

mosaick, sub-set, geo-reference and ortho-rectification. 

b. Preparation of vegetation thematic map followed by normalized 

difference vegetation index.  

C. Generation of avalanche occurrence terrain and meteorological 

parameters 

a. Preparation of digital elevation model including download and 

mosaic of the ASTER GDEM tiles. 

b. Generation of avalanche occurrence terrainiparameters such as 

islope, aspect, icurvature, elevation and terrain iroughness by using 

ithe spatial analyst tool. 

c. Generation of avalanche imeteorological iparameters isuch as snow 

depth, air itemperature, wind speed/direction and irelative ihumidity 

D. Generation of thematic layers 

a. Reclassification and generation of thematic layers from slope, 

aspect, curvature, elevation and terrain roughness parameters 

generated from ASTER GDEM data. 

b. Derivation of threshold values for reclassification by calculating the 

relationship between avalanche occurrence parameters and 

documented avalanche occurrence data. 

2.6.2 Geospatial modelling and mapping 

A. Frequency ratio model: 

a. Calculation of FR coefficients of each class of avalanche occurrence 

thematic layers 

b. Assign FR coefficients to each class of avalanche occurrence 

thematic layers 

c. Spatial overlay analysis of avalanche occurrence thematic layers to 

generate avalanche susceptibility index 

d. Generation of avalanche susceptibility map (zone-wise) by the 

reclassification of the avalanche index by applying (Jenks, 1967) 

natural break method 
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B. Multi-Criteria Decision Analysis-Analytical Hierarchy Process 

(MCDA-AHP) Model: 

a. Assign ratings toieach class of the avalanche occurrence thematic 

layers 

b. Construction of pairwise comparison matrix 

c. Calculation of weight values and consistency ratio 

d. Assignment of weight value to each class of the avalanche 

occurrence thematic layers 

e. Spatial overlay analysis of avalanche occurrence thematic layers to 

generate avalanche susceptibility index 

f. Generation of avalanche susceptibility map (zone-wise) by the 

reclassification of the avalanche index by applying (Jenks, 1967) 

natural break method 

C. Fuzzy Frequency Ratio (Fuzzy-FR) Model: 

a. Calculation of FR coefficients of each class of avalanche occurrence 

thematic layers 

b. Calculate the ifuzzy imembership value of each class ofithe 

avalanche occurrence thematic layers 

c. Representation of ifuzzy imembership ivalues into each class ofithe 

avalanche occurrence thematic layers 

d. Fuzzification of each raster avalanche occurrence factor 

e. Fuzzy overlay analysis [Fuzzy OR (Max) Operator] of avalanche 

occurrence thematic layers to generate avalanche susceptibility 

index 

f. Generation of avalanche susceptibility map (zone-wise) by the 

reclassification of the avalanche index by applying (Jenks, 1967) 

natural break method 

2.6.3 Evaluating the models' performance in the most appropriate 

fashion using GIS in combination with a statistical tool 

A. ROC-AUC Technique: Application of the area under the ireceiver 

ioperating characteristicsi (ROC-AUC) analysis for ivalidation of ithe 

avalanche susceptibility maps generated from Probabilistic Frequency 
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Ratio Model, Multi-Criteria Decision Analysis-Analytical Hierarchy 

Process (MCDA-AHP) Model and Fuzzy Frequency Ratio (Fuzzy-FR) 

Model 
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3. STUDY AREA AND DATA SET 

3.1 Study Area 

Lahaul-Spiti region of Himachal Pradesh, Indian Himalaya, is selected for 

implementation of the proposed geospatial models because this region is frequently 

affected by avalanche activities and documented avalanche locations dataset is 

available for a few parts of this region. The study area is among the high avalanche 

iprone regions in the WesterniHimalaya and most parts of the Lahaul region are 

prone to avalanche. The study area’s spatial extent is 76° 21' 29.73'' to 77° 47' 

57.44'' East Longitude and 32° 05' 30.09" to 33° 15' 20.85" North Latitude of 

highly complex mountainous zone having a mean altitude of 4701 m (Figure 3.1).  

 

Figure 3.1: Location map of the study area. 

An area of approximately 6651.17 Km2 covers and encloses the Lahaul Spiti 

district. The istudy area is imostly icovered by ithe snow in late iwinter iseason. In 

late summer, all the seasonal snow melted and the ground features are exposed 

with permanent snow or ice cover areas. An overview map of the area affected in 
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the western Himalayan region is presented in figure 3.2. Topographical attributes 

of the istudy iarea are given in table 3.1.  

 

Figure 3.2: Avalanche affects 40 percent of various road axes in the western 

Himalayan region. 

Table 3.1: Geographical attributes of the study area. 

Geographic information Study area 

Topography Very high complex and rugged mountainous 

terrain in NW Himalaya 

Location Longitude :760 21' 29.73'' to 770 47' 57.44'' E 

Latitude    :320 05' 30.09" to 330 15' 20.85" N 

Area 
6651.17 Km2 

Elevation 
 

1. Rangei 2302 m – 6443 m 

2. Meani 4701.8 m 

3. Standard deviation. 694.6 m 

Slope  
 

1. Rangei 00 – 83.050 

2. Meani 28.830 

3. Standard deviation. 14.310 



37 

 

3.2 Data Used 

Development of a model for avalanche susceptibility mapping required the 

identification of most prominent avalanche occurrence factors and collection of the 

related dataset. The analysis of avalanche susceptibility areas requires data of 

known avalanche locations and conditions (Pistocchi and Notarnicola 2013). 

Factually, the region based avalanche susceptibility mapping should be practical 

and appropriate. Snowpack data is sometimes essential to understand the snowpack 

stress for avalanche modelling (McClung and Schaerer 2006). But, the regular 

snowpack data of large area is generally not available because the conditions of 

snowpack vary significantly with time. In geospatial modelling, the snowpack may 

be used as an indicator of avalanche mapping. Otherwise, snow conditions are 

generally dependent on the morphological parameters of avalanche release areas. 

Various morphological parameters are elevation, islope,iaspect, icurvature, iterrain 

roughness and ivegetation cover. Therefore, we limited our consideration of these 

six parameters (Table 3.2). 

Schweizer et al. (2003) stated three types of parameters (1. Terrain, 2. 

Meteorological, and 3. Snowpack) on which avalanche occurrence depends. 

Amongst these three parameters, Terrain is the most influencing parameter, and 

easier to map due to its temporal stability (Snehmani et al. 2013). In this study, 

ASTER GDEM V2 (30m spatial resolution) has been utilized for the extraction of 

terrain parameters because as per the recent studies by Singh et al. (2016a and 

2016b) ASTER GDEM V2 is the most accurate DEM amongst all the freely 

available moderate resolution DEMs for this region. 

3.2.1 Terrain data 

The six avalanche occurrence parameters: ielevation, islope, iaspect, 

icurvature, terrain roughness and vegetation-cover (NDVI) were obtained from the 

ASTER GDEM V2 (30 m) (Table 3.2) and Landsat 8 OLI imagery (30 m × 30 m). 

The attributes of Landsati8 OLI bands are ishown iniTable 3.3. 
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Table 3.2: Occurrence parameters used in geospatial modelling of avalanche 

susceptibility, spatial resolution, and data sources. 

No. Parameter. Spatial 

resolution. 

Source 

1. Slopei 30 mi.×i30 mi ASTERi GDEMi. 

2. Aspecti 30 mi.×i30 mi ASTERi GDEMi. 

3. Curvaturei 30 mi.×i30 mi ASTERi GDEMi. 

4. Elevationi 30 mi.×i30 mi ASTERi GDEMi. 

5. Terrain roughnessi 30 mi.×i30 mi ASTERi GDEMi 

6. Vegetation.  30 mi.×i30 mi LANDSAT 8 OLI IMAGE. 

 

Table 3.3: Specifications of Landsat 8 OLI data 

No. Band. Spatial resolution.  

(m). 

Wavelength.  

(µm). 

1. Bandi1-Bluei. 30.  0.43-0.45. 

2. Bandi2-Bluei. 30.  0.45-0.51. 

3. Bandi3-Greeni. 30.  0.53-0.59. 

4. Bandi4-Redi. 30.  0.64-0.67. 

5. Bandi5-Near-infraredi(NIR). 30.  0.85-0.88. 

6. Bandi6-Shortwave infraredi(SWIR). 30.  1.57-1.65. 

7. Bandi7-Shortwave infraredi(SWIR). 30.  2.11-2.29. 

8. Bandi8-Panchromatici(PAN). 15.  0.50-0.68. 

9. Bandi9-Cirrusi. 30.  1.36-1.38. 

10. Bandi10-Thermal infraredi(TIR). 100.  10.60-11.19. 

11. Bandi11-Thermal infraredi(TIR). 100.  11.50-12.51. 
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3.2.2 Meteorological data 

Snow meteorological data (ambient temperature, wind speed, relative 

humidity and  snow depth) were collected from three observatory sites - Manali, 

Dhundi (located in the Pir Panjal range) and Patsio (located in great Himalayan 

range) and also from two AWS (Patsio and Beaskund). Upper Air station 

(RadioSonde) temperature profile data of Manali station was used for the 

computation of the average lapse rate during the study period. Wind data has been 

used for wind speed/direction map generation. Extensive field data of avalanche 

occurrence of the registered avalanche sites of study area of 25 years have been 

used for analysis weights and rating of causative factors.  

A detailed description of terrain and meteorological dataset and factors 

affecting the avalanche occurrence is presented in next chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

4. INFLUENCE OF TERRAIN AND METEOROLOGICAL 

PARAMETERS IN AVALANCHE OCCURRENCE 

4.1 Analysis of avalanche occurrence terrain parameters 

Susceptibility mapping of avalanche is very difficult and complex because 

several factors are influencing an avalanche. The factors influencing the avalanche 

behaviour including meteorological, snowpack, terrain attributes, natural triggers, 

and social activity (Selçuk, 2013; Bühler et al., 2013). Some of the various 

meteorological factors contributing to avalanche hazard as snowfall, snowpack, 

iwind, itemperature, raining, and iprecipitation intensity. Snowpackistructure is the 

result of succeeding snowfall events and its stability depends upon the cohesion 

and bonds between snow layers (Schweizer et al., 2003), vibrations and noise due 

to anthropogenic activity. The meteorological factors and snowpack structure are 

dynamic in nature and easily influenced by frequently changing weather 

conditions. However, the terrain factors are constant and suitable for avalanche 

susceptibility mapping for a long duration. These factors include ielevation, islope, 

iaspect, and icurvature. In order to prepare an avalanche susceptibility map, the FR 

model incorporates terrain factors and vegetation cover. The following subsections 

provide the details of each factor. 

4.1.1 Slope 

Terrain slope isian essential factor affecting avalanche occurrence 

(Maggionii and Gruberi 2003; Ghinoii and Chung, 2005). Statistically, it is 

generally accepted that most of avalanches activities occurred in a region where 

the slope angle ranges from 25º to 45º and rarely at the slope angle less than 25º 

(McClung and Schaerer, 2006; Selçuk, 2013). In Indian Himalaya, the majority of 

avalanche accidents took place in slopes angle between 30º and 45º (Ganju et. al., 

2002). In common weather conditions, the snowpack below 25º slope angle 

remains stable and shear stress instigated by gravity is not sufficient to the 

occurrence of an avalanche (Ancey 2009). The avalanche activity on the slope 

angle of more than 45º is minor because snow accumulation on steep slopes is very 

limited and not well anchored to slide. The slope of the study has been extracted 

from the ASTER GDEM V2. Subsequently, extracted slope values were grouped 
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into 4 categories, such as 0º - 12º, 12º - 28º, 28º - 45º and above 45º (Figure 5.2). 

While choosing the four slope classes, statistics presented in Table 5.1 was 

considered to modify the classes given by Albrecht et al. (1994) and adopted by 

Selçuk (2013). As in present study, none of the avalanche accident was observediin 

the area where theislope angle is less than 12° (Table 5.1), so instead of using 0°-

10° threshold as considered by Selçuk (2013) for no avalanche class, threshold 

limit 0° - 12° was used. Threshold limits for the rest of the slope classes were taken 

as considered by Selçuk (2013). The slope category ranges from 28º - 45º has a 

78% documented avalanche slope, followed by 18% for 12º - 28º. The slope class 

less than 12º shows no avalanche clues in the past. 

𝑆𝑙𝑜𝑝𝑒 = 𝐴𝑇𝐴𝑁(√([𝑑𝑧 𝑑𝑥⁄ ]2 + [𝑑𝑧 𝑑𝑦⁄ ]2)) × 57.29578 

𝐴𝑠𝑝𝑒𝑐𝑡 = 57.29578 × 𝐴𝑇𝐴𝑁2([𝑑𝑧 𝑑𝑦⁄ ] − [𝑑𝑧 𝑑𝑥⁄ ]) 

𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = −2(𝐷 + 𝐸) × 100 

𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 = 1 −  
√(∑𝑥)

2
+ (∑𝑦)

2
+ (∑𝑧)

2

𝑛
 

4.1.2 Aspect 

AspectLis a principal factor in avalanche occurrence (Ghinoi and Chung, 

2005). Aspect direction in snow-covered terrain is direct, influenced by the heat 

radiation and contributed aisignificant ieffect on the istability of the isnowpack. 

Aspect with respect to wind and sun is aisignificant ifactor in ithe release of 

iavalanches. While sunny slopes stabilize faster after brief instability, the shady 

ones remain in instability for a longer duration. Similarly, leeward slopes become 

dangerous, with the loading of additional snow and windward slopes stabilize fast 

with the depletion of snow. The past avalanche accidents in Indian Himalaya have 

shown that northern, eastern and southern slopes contribute almost equally in the 

irelease of iavalanches (Ganju et. al., 2002). Since the dominant wind, direction 

during winter is western; as a result, southern, eastern and northern slopes get 

additional drift snow. The past avalanche accidents revealed that NE-SE aspects 

had produced maximum avalanche accidents contributing by about 35% of the total 

avalanche accidents reported so far in Indian Himalaya (Ganju et. al, 2002). In ithe 
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ipresent aspect values were extracted from ASTER GDEM V2 and further 

reclassified into nine principal categories (Figure 5.2). Six out of nine aspect 

categories showed significant association with avalanche occurrence locations 

such as north, northeast, south, east, southeast and southwest, respectively (Table 

5.1).  

4.1.3 Elevation 

The elevation isian important terrainifactor in avalanche occurrence because 

snowpack varies with the elevation due to varying snowfall, wind and temperature 

(Guy and Birkeland, 2013; Selçuk, 2013). The wind speed increases at high 

elevation and helps in increasing the snow sliding. Higher elevation area receives 

heavy snowfall most of the time in the winter season and thus increasing the 

avalanche activity. The conditions on higher elevation areas are suitable for 

avalanche occurrence because this area is generally exposed to wind, sun, different 

snowpack conditions and minimum forest/vegetation cover (McClungi and 

iSchaerer, 2006). The avalanche activity at a lower elevation is minor because the 

snow at minor elevation often melts and changes to rain. The topographical 

characteristics of the Lahaul & Spiti region are seemly favorable for avalanches 

occurrence. Lahaul & Spiti region has a complex topography. The elevation of 

Lahaul & Spiti region ranges from 2302 m to 6443 m. In Western Indian Himalaya, 

most of the avalanches generally start at the elevation ranges from 2700 m and 

terminate at about 6000 m. In Lahaul & Spiti region, 98% of total documented 

avalanche sites have existed between the ielevation ranges from 3200 m to 5800 

m. The ielevation values were reclassified into 8 categories as shown in Figure 5.2. 

Table 5.1 contains attributes of all the elevation classes. The elevation classes of 

less than 2800 m and above 5800 m showed no documented avalanche 

occurrence/activity over the study area in the past. While the elevation class of 

3800 m to 4300 m has a maximum number of avalanche activities. 

4.1.4 Curvature 

Curvature has deemed an important terrain factor in avalanche occurrence 

(Ghinoi and Chung, 2005). Generally, the convex slope is highly contributing to 

the avalanche release area than flat and concave (Yilmaz, 2007; Nefeslioglu et al., 

2013). The areas of a sudden change in the curvature also contribute to the release 
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of avalanches. A bowl-shaped formation zone holds more snow before releasing 

it, thus causing more destruction downhill than a flat open slope. Similarly, the 

shape of the crest line determines the pattern of snow accumulation at the 

avalanche formation zone.  The curvature values were derived using ASTER 

GDEM V2 and reclassified into ithree categories, such as iconcave, iconvex and 

iflat (Figure 5.2). Convex curvature showed a maximum relationship with 

documented avalanche locations (43.78%) than concave (33.48%) and flat 

(22.75%) curvature (Table 5.1). 

4.1.5 Vegetation cover 

Vegetation cover is also significant avalanche occurrence factor. Avalanches 

generally get released over barren slopes. Dense trees coverage holds the snow and 

protects against snow avalanches (Selçuk, 2013). In general, vegetation cannot stop 

the snow avalanches, but highly vegetation coverage controls the volume of snow 

contribution to the release of an avalanche. Grassy slopes release avalanches 

differently than those with shrubs. Landsat 8 images have been utilized for ithe 

preparation of aivegetation icover map. NDVI method wasiused for the extraction 

of vegetation icover values. TheiNDVI values were further reclassified into 4 

categories such as <0.1, 0.1-0.2, 0.2-0.3 and >0.4 (Figure 5.2). The vegetation 

cover increases with the increase in the values of NDVI. The vegetation-cover is 

dense when the NDVI values are greater than 0.2. Snow avalanches showed a 

significant relationship with <0.1 NDVI values because maximum avalanches have 

occurred (83.26%) in this category (Table 5.1).  

4.1.6 Terrain roughness 

Terrain roughness is a significant avalanche occurrence component. Terrain 

roughness reports a rugged and sporadic surface, which blocks the snowpack in the 

downward movement and prevents the formation of a consistent weak layer, 

important for fracture in the snowpack (McClung, 2001; Schweizeriet al., 2003). 

The terrain roughness is calculated using the ruggedness method of Sappington 

(2007). The study area with ruggedness values are classified into three classes of 

roughness (Figure 5.2). The spatial relationship between each class of terrain 

roughness with avalanche occurrences is shown in Table 5.1.  
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4.2 Analysis of avalanche occurrence meteorological parameters 

4.2.1 Air Temperature Map  

(a) Lapse rate () calculation 

Upper air data from three stations was used to calculate the temperature lapse 

rate in the study area for the same day. RadioSonde data gives the vertical profile 

of air temperature (t 0c) in the atmosphere with height (z km). So, the lapse rate can 

be determined by this equation (= dt/dz, 0c/km). Figure 4.1. Shows a typical 

vertical profile. 

 

Figure 4.1: Profile of air-temperature of 25-January-2018. 

(b) Generation of Temperature Map Using Single Point Interpolation 

Technique 

Variation of temperature with the altitude (one point temperature map) of the 

study area was calculated from the data of each station separately using the lapse 

rate equation, Tp = T0 + (hp - h0 ), where T0 and Tp are the known temperature at 

an altitude of h0 and derived temperature at an altitude of hp respectively. This 

equation makes the use of   calculated in the previous step and a high-resolution 

DEM was to calculate elevation variation (hp - h0), where T0 and Tp are the known 

temperature at an altitude of h0 and derived temperature at an altitude of hp 

respectively.  
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(c) Calculating the Distances and Inverse Distance Weights 

The euclidean distance of all the pixels from each station is calculated. If the 

coordinates of a pixel are (x, y, z) and the coordinates of the station as (xs, ys, zs) 

then Euclidean distance between these two is computed using the equation, ((xs-

x)2 + (ys-y)2 + (zs- z)2). The above equation is used while generating the distance 

maps for each station. These distances were normalized in the range of 0.0 – 1.0 in 

such a way that the sum of all three distances (distance of any pixel or point from 

all three field station) is 1.0. These normalized distance maps were finally 

converted into the inverse distance weights ranging from 1.0 - 0.0. All three 

distances weight maps are shown in figure 4.2. 

 
(a) Station 1                (b) Station 2               (c) Station 3 

Figure 4.2: Distance weights of the different stations 
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(d) Generating Weighted Temperature Map  

Weighted temperature map was generated by the following equation.  

Tweightedmap = Tmap1 * Wmap1 + Tmap2 * Wmap2 + Tmap3 * Wmap3 

This is the sum of the product of one point temperature map and inverse 

distance weights for all three stations. Where Tweightedmap is final temperature map 

and Tmap1, Tmap2 and Tmap3 are one point temperature map of three stations and 

Wmap1, Wmap2 and Wmap3 are weight maps for these stations respectively.  Weights 

at any point must satisfy the condition; Wmap1 + Wmap2 + Wmap3 = 1.0. 

 The flow chart of the methodology adopted is shown in figure 4.3. The air 

temperature map of the 25 January 2018 generated using this model is shown in 

figure 4.6 (a). 

 

Figure 4.3:  Flow chart of the temperature map generation 

4.2.2 Relative Humidity Map 

(a) Calculating dew-point temperature:  

The elevation adjustment has been taken place by converting the relative 

humidity (𝑅𝐻%) into dew-point temperature 𝑇𝑑 (℃) due to the linear variation of 
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dew-point temperature with elevation. Various steps followed for calculating the 

dew-point temperature as: 

Step 1. Calculated saturation vapor pressure (𝑒𝑠(𝑃𝑎) = 𝑎 exp [
𝑏𝑇

𝑐+𝑇
] ) by using air-

temperature  𝑇 (℃)  for water 𝑎 = 611.21 𝑃𝑎; 𝑏 = 17.502; 𝑐 = 240.97 ℃  and 

for ice 𝑎 = 611.15 𝑃𝑎; 𝑏 = 22.452; 𝑐 = 272.55 ℃ (Buck 1981). 

Step 2. The vapor pressure [𝑒 (𝑃𝑎)] was calculated by using (𝑅𝐻%) of the station, 

where 𝑅𝐻(%) = 100 [
𝑒

𝑒𝑠
]  

Step 3. The dew-point temperature is finally calculated as 𝑇𝑑 = [
𝑐 ln (𝑒 𝑎⁄ )

𝑏−ln (𝑒 𝑎⁄ )
]. 

(b) Lapse rate () calculation 

The lapse rate 𝑑(℃ 𝑚
−1) of dew-point temperature was calculated as  𝑑 =

0 [
𝑐 

𝑏
], where (0) is the vapor pressure coefficient. The vapor pressure coefficient 

is changing every month (Kunkel 1989). The vapor pressure coefficients for the 

months of January and February are reported as 0.41 and 0.42.   

(c) Dew-point temperature map by using single-point interpolation 

A single-point interpolation technique was used to obtain a dew-point 

temperature map. The same procedure followed, which was applied in the 

generation of the air-temperature map in section 4.2.1 (b). At here, the temperature 

was dew-point temperature and the lapse rate was dew-point lapse rate. 

(d) Weighted Dew-point Temperature Map 

The same procedure has been applied to generate the air-temperature map. 

The figure 4.4 represents the methodology and figure 4.6 (b) is the model output 

for the date 25-January-2018.  



48 

 

 

Figure 4.4: Flow chart to generate RH map 

4.2.3 Snow Depth Map 

(a) Snow depth map by using single-point interpolation 

Snow depth, Pp (cm) at an elevation of hp, is computed from  𝐻𝑝 =

 𝐻0 [
1+𝜇(ℎ𝑝− ℎ0)

1−𝜇(ℎ𝑝− ℎ0)
], where P0 is the station snow depth, h0 is the station elevation, 

and 𝜇 (km-1) is a snow depth adjustment factor. The value of the 𝜇 was found 0.65 

for the Pir Panjal range and for the greater Himalayan range, it was 0.52 (January 

and February) and 0.32 (March). These values of the 𝜇 were calculated from the 

snow depth data of the previous six years. 
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(b) Weighted Dewpoint snow depth Maps  

The same procedure has been applied to generate the air-temperature map. 

The methodology for generation of snow-depth map is given in figure 4.5 and the 

snow-depth map of 25 January 2018 is given in figure 4.6 (c).  

 

Figure 4.5: Snow depth map preparation workflow 
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Figure 4.6: (a) Air-Temperature (b) Relative-Humidity (c) Snow-Depth and (d) Wind-Speed 

maps  
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4.2.4 Wind Speed and Direction Map 

(a) Generating interpolated wind speed/direction map 

To map the wind over a domain, the spatially distributed values of the wind 

components (u, and v) at the grid of 7 km X 7 km from the automatic weather 

stations (AWS) have been used.  These u and v components were then 

independently interpolated using IDW.  The interpolated values of u and v were 

converted into speed and direction using the following equations as: 

 𝑤 = √[𝑢2 + 𝑣2 ] and  𝜃 =
3𝜋

2
− 𝑡𝑎𝑛−1(𝑣 𝑢⁄ ) respectively. 

(b)  Topographic correction of wind data:  

Wind data is topographically modified using slope, aspect and curvature to 

adjust the wind speed and direction. Terrain parameters such as slope (𝛽 ), 

curvature ( Ω𝑐) and aspect (𝜉) data was used for topographical correction.  

The slope in wind direction is defined as: 

Ω𝑠 = 𝛽 cos(𝜃 − 𝜉) 

Slope (Ω𝑠)  and curvature (Ω𝑐) are scaled by simulation for topographic correction 

of wind as −0.5 ≤ Ω𝑠 ≥ 0.5 and  −0.5 ≤ Ω𝑐 ≥ 0.5   

Modification of the wind speed has been done by a weighting factor  𝑊𝑤   as: 

 𝑊𝑤 =  1 +  𝛾𝑠Ω𝑠 +   𝛾𝑐Ω𝑐  

Where,  𝛾𝑠 is a slope and  𝛾𝑐  is a curvature weight. The value of weights is ranging 

from 0 to 1.  

The value of Ω𝑠 and Ω𝑐 have to establish as: 

 Ω𝑠 +  Ω𝑐 = 1 

The  𝛾𝑠  and 𝛾𝑐 weights are used as: 

 𝛾𝑠 =  𝛾𝑐 = 0.5 

Finally, the terrainimodified windispeed is calculated iusing the iequation 

 𝑊𝑡(𝑚𝑠
−1) =  𝑊𝑤 ×𝑊. 

Diverting factor  𝜃𝑑 for modification of wind direction is as: 
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 𝜃𝑑 = −0.5Ω𝑠 sin[ 2(𝜉 − 𝜃)]  

The topographic modification of the wind direction is done by adding the diverting 

factor as: 

 𝜃𝑡 = 𝜃 +  𝜃𝑑  

At last, the modified wind direction and wind speed are converted into  

𝑢 𝑎𝑛𝑑 𝑣 components. The workflow of the process is given in figure 4.6. Wind 

rose of all three stations are presented in figure 4.8.Wind maps of wind speed and 

direction presented in figures 4.6 (d) and 4.8.  

 

Figure 4.7: Process to generate terrain modified wind speed and direction 
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Figure 4.8: Wind rose of three automatic weather stations (AWS) 

 

Figure 4.9: Terrain-modified wind speed/direction 
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Assessment of observed and terrain modified wind speed at stations 1 and 3 

is given in figure 4.10 

 

Figure 4.10: Assessment of observed and terrain modified wind speed at stations 1 

and 3 with respect to RMSE, r2, and correlation coefficient  

Frequency distribution of avalanche occurrence with respect to 

meteorological parameters is given in figure 4.11.   

 

Figure 4.11: Frequency-distribution of avalanche occurrence with respect to 

meteorological parameters 
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5. GEOSPATIAL MODELLING AND MAPPING OF 

AVALANCHE HAZARD 

5.1 Rationale 

In chapter 4, the influence of terrain and meteorological parameters in 

avalanche occurrence was highlighted. Geospatial models for potential release area 

mapping of avalanches which integrates the terrain and meteorological parameters 

for generation of avalanche hazards map are presented in this chapter. Various 

iterrain iparameters such as islope, iaspect, icurvature, elevation, terrainiroughness, 

and ground cover with additional imeteorological parameters such as snow depth, 

airitemperature, wind speed/direction and relative humidity are used for integration 

in the geospatial models. The detailed methodology design, modelling and the 

workflow for the mapping of avalanche hazard are explained. The detailed 

methodologies adopted for the modelling and mapping of the avalanche hazard are 

given in the next sections. In the first part of the methodology, snow avalanche 

occurrence related datasets have been gathered and transformed into a database 

including topographical factors and documented data of past avalanche events. An 

avalanche inventory map was prepared; subsequently, the avalanche affecting 

factors were analyzed and reclassified into categories as per the required 

specification of the proposed geospatial models. The proposed geospatial models 

for the avalanche hazard mapping such as Probabilistic Frequency Ratio Model, 

Multi-Criteria Decision Analysis-Analytical Hierarchy Process (MCDA-AHP) 

Model and Fuzzy Frequency Ratio (Fuzzy-FR) Model are developed applied and 

discussed in the present study. This chapter is dividing into the sections as: 

preparation of avalanche inventory map, analysis of avalanche occurrence factors 

& generation of thematic GIS layers, avalanche susceptibility mapping, validation, 

results & discussion.  

5.2 Preparation of Avalanche inventory map 

The first and main fundamental part of the avalanche susceptibility mapping 

is to acquire the avalanche occurrence data. The scenario of avalanche ioccurrence 

in the ipast and ipresent is the source to the iprediction of avalanches, an avalanche 

inventoryi map iplays an importanti part in such a istudy. Furthermore, the 
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mapping of documented avalanche locations is essential to define the correlation 

between avalanche and occurrence factor. An avalanche inventory map gives the 

essential information for assessing avalanche susceptibility. Precise recognition of 

the location of snow avalanches is imperative for avalanche susceptibility 

mapping.  

To obtain comprehensive and detailed avalanche inventoryi map, exhaustive 

ifield isurveys and interpretations are accomplished in the avalanche-prone regions 

with well supported high-resolution satellite imagery and Survey of India (SoI) 

map sheets. A total number of 292 avalanche locations were demarcated in the 

avalanche inventory map. Afterward, the avalanche inventory map was categorized 

into two categories: (i) trainingi dataset and (ii) validation dataset. In training data, 

233 (80%) numbers for avalanche sites were selected at random and utilized to 

train the model. For validation of data, the remaining 59 (20%) number of 

avalanche locations were kept and used for the purpose of testing and validation of 

the results, respectively.  

5.3 Analysis of avalanche occurrence factors and generation of thematic GIS 

layers 

Avalanche formation conditions are crucial for the analysis of avalanche 

occurrence factors. Various significant avalanche occurrence conditions including 

meteorological, snowpack stability, topographical, natural triggers and 

anthropogenic activities. Understanding the snowpack stability is significant for 

avalanche susceptibility modelling, but the data is not thoroughly available for the 

present study area.  The frequency of naturally triggered avalanches is more 

strongly correlated to topographical factors than meteorological factors (Smith and 

McClung, 1997). Moreover, meteorological factors and snowpack stability depend 

on the weather condition, which keeps on changing continuously. Topographical 

factors are only constant factors in the avalanche susceptibility mapping. Six most 

prominent avalanche occurrence itopographical ifactors such as islope, iaspect, 

icurvature, ielevation, iterrain roughness, ground cover and four imeteorological 

iparameters such as airitemperature, snow depth, wind speed/direction and 

relativeihumidity are used for avalanche susceptibility mapping and summarized 

as following: 
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The slope is an important and the primary avalanche occurrence factor 

((Bühler et al., 2013; Ghinoii and iChung 2005; Snehmani et al., 2014). 

Statistically, it is generally accepted that most of avalanches activities occurred in 

a region where the slope angle ranges from 250 to 450 and rarely at the slope angle 

less than 250 (McClung and Schaerer, 2006, Selçuk, 2013). The ASTERiGDEM 

V2 was used to igenerate islope values using the maximum transformation in 

neighbor cell values technique (Burrough and McDonell, 1998). Subsequently, the 

reclassification method was used to discriminate the slope values into 4 categories, 

such as slope angle below 120, 120 - 280, 280 - 450 and above 450 (Figure 5.2). 

While choosing the four slope classes, statistics presented in Table 5.1 were 

considered to modify the classes given by Albrecht et al. (1994) and adopted by 

Selçuk (2013). As in the present study, none of the avalanche accidents were 

observed in theiarea where theislope angle is less than 12° (Table 5.1), so instead 

of using 0°-10° threshold as considered by Selçuk (2013) for no avalanche class, 

threshold limit 0° - 12° was used. Threshold limits for the rest of the slope classes 

were taken as considered by Selçuk (2013). Inithe present study area, theislope 

angle ranges ifrom 00 to 830. The slope category ranges from 280 - 450 has a 78% 

documented avalanche slope followed by 18% in 120 - 280. The slope class less 

than 120 showed no avalanche clues in the past. The attributes of all slope 

categories are mentioned in Table 5.1.  

Aspect is a principal parameter related to the avalanche occurrence (Ghinoii 

and iChung, 2005; Selçuk, 2013). The past avalanche accidents in Indian Himalaya 

have shown (Ganju et. al., 2002) that northern, eastern and southern slopes 

contribute almost equally in the release of avalanches. Since the dominant wind 

direction during winter months is westerly, as a result, southerly, easterly and 

northerly slopes get additional drift snow. The ASTER GDEM V2 was used to 

generate aspect values applying theialgorithm which incorporating the ivalues of 

the cell's ieight ineighbors (Burroughi and iMcDonell, 1998) and further 

reclassified into nine principal categories (Figure 5.2). Six out of nine aspect 

categories showed significant association with avalanche occurrence locations 

such as north, northeast, south, east, southeast and southwest, respectively (Table 

5.1).  
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The curvature has deemed as an important terrain factor in the release of 

avalanches (Maggionii and iGruber, 2003; iGhinoi and iChung, 2005; Snehmani 

et al., 2014). Generally, convex islopes are more iavalanche susceptible ithan flat 

and iconcave islopes (Nefeslioglu et al., 2013). The areas of a sudden change in 

the curvature also contribute to the release of avalanches. In the present study, the 

curvature values have been derived from ASTER GDEM using the second 

derivative value of the input cell × cell of surface (Moore et al., 1991) and 

reclassified into 3 principal categories such as concave, convex and flat (Figure 

5.2).  

Convex curvature showed a maximum relationship with documented 

avalanche locations (43.78%) than concave (33.48%) and flat (22.75%) curvature 

(Table 5.1). 

The elevation is a crucial terrain factor involves in the snow iavalanche 

ioccurrence because snowpacki ifrequently ivaries due to ivarying snowfall, iwind 

and temperature at idifferent elevationsi (McClung and Schaerer, 2006; Guy and 

Birkeland, 2013; Selçuk, 2013). The wind speed increases at high elevation and 

helps in increasing the snow sliding. Higher elevation area receives heavy snowfall 

most of the time in the winter season and thus increasing the avalanche activity. 

The conditions on higher elevation areas are suitable for avalanche occurrence 

because this area generally exposed by wind, sun, different snowpack conditions 

and minimum forest/vegetation cover (McClung and Schaerer, 2006). In general, 

the avalanche activity at a lower elevation is minor because the snow at minor 

elevation often melts and changes to rain. The topographical characteristics of the 

Lahaul region are seemly favorable for avalanche occurrence. The study area has 

complex terrain, with the altitude ranges from 2302 m to 6443 m. In Western Indian 

Himalaya, maximum avalanches generally start at the elevation ranges from 2700 

m and terminate at about 6000 m. All slopes beyond 5500 m elevation are generally 

glaciated. In the Lahaul region, 98% of total documented avalanche sites have 

existed between the elevation ranges from 3200 m to 5800 m. In the present study, 

the elevation range was reclassified into 8 categories as shown in Figure 5.2. The 

attributes of all elevation categories are mentioned in Table 5.1. The elevation class 

of 3800 m to 4300 m has a maximum number of avalanche activities, which was 

followed by the elevation class of 4300 m to 4800 m. The elevation classes of less 
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than 2800 m and above 5800 m showed no avalanche occurrence/activity in the 

past.  

Vegetation cover is also significant factor in the iassessment of avalanche 

isusceptibility. Avalanches generally released on barren slopes. Dense trees 

coverage holds the snow and protects against snow avalanches (Selçuk, 2013). In 

general, vegetation cannot stop the snow avalanches, but highly vegetation 

coverage controls the volume of snow that contributes to the release of an 

avalanche. Grassy slopes release avalanches differently than those with shrubs. 

Based on the experienced judgment in Indian Himalaya, the forested areas would 

contribute to about only by 10% towards avalanche initiation. Shrubs, tall grass 

would contribute to about 30% towards avalanche initiation and the maximum of 

60% is from barren slopes. The application of vegetation cover in the preparation 

of the GIS-based imap was achieved with the ihelp of Landsat 8 OLI isatellite 

image. The NDVI method was iused for the extraction of vegetationicover values. 

The NDVI values were calculated using the formula from the equation (5.1) 

(Ke et al., 2015) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
                                                                                      (5.1) 

Where, 𝑁𝐼𝑅 and 𝑅 are the ienergy ireflected in the near iinfrared and red 

iportions of the electromagneticispectrum. 

The values of NDVI are further reclassified into 4 categories, such as <0.1, 

0.1-0.2, 0.2-0.3 and >0.4 (Figure 5.2). The vegetation cover increases with the 

increase in the NDVI values. The vegetation cover is dense with the NDVI values 

˃ 0.2. Snow avalanches showed a significant relationship with <0.1 NDVI values 

because maximum avalanches have occurred (83.26%) in this category of NDVI 

(Table 5.1).   

Terrain roughness is a significant avalanche occurrence component. Terrain 

roughness reports a rugged and sporadic surface, which blocks the snowpack in the 

downward movement and prevents the formation of a consistent weakilayer, which 

is crucial for fracture in the snowpacki (McClung, 2001; Schweizeri et al., 2003). 

In the present study, the terrain roughness is calculated using the ruggedness 

method of Sappington (2007). The study area with ruggedness values are classified 
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into three classes of roughness (Figure 5.2). The spatial relationship between each 

class of terrain roughness with avalanche occurrences is shown in Table 5.1.  

The Root iMean iSquare iError (RMSE) method was applied for calculation 

of errors in the reclassified avalanche occurrence parameters, which measure how 

accurate different calculated classes match with the real data. A variation was 

computed between the actual observation and the calculated value for each 

observation of a phenomenon. Then, each variation is squared up. The values 

calculated from sum of square was than divided by number of observations. 

Finally, a square root was calculated.  

The iroot imean isquare ierror values i.e., RMSE of the avalanche occurrence 

parameters were calculated using the following equation as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑥𝑖 − 𝑥𝑗)

2
      (5.2)

𝑁

𝑖=1

 

Where, 𝑥𝑖 is the value in reclassified avalanche occurrence parameters and 

𝑥𝑗 is the real value of the of the avalanche occurrence parameters. A total number 

of 233 points were considered for error calculation of all avalanche occurrence 

parameters. An average RMSE of all avalanche occurrence parameters is 

calculated as ± 0.71. An RMSE value of nearly ±0.5 indicates acceptable results.  

Snow-depth is considered as the most prominent meteorological parameter 

which influences avalanche occurrence. The downhill gravity increases with 

increasing the snow depth. With an increase in downhill gravity, the snowpack 

structure may fail and cause instability of snowpack. The histogram of snow-depth 

shows that maximum avalanche activities from 130 cm to 260 cm snow depth 

(figure 4.11a).  The frequency of avalanche activity in snow-depth more than 260 

cm is low because snow height remains for a short duration in winter. However, 

high weight is assigned in this category of snow-depth for hazard mapping. Air-

temperature is considered as the second most prominent meteorological parameter. 

The morphological condition of the snow depends upon the air-temperature. The 

metamorphic process is slow with decreasing the air temperature and weak 

snowpack structure may remain for a long time. Therefore, low air-temperature 
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continue for a long time, which remains a snow instability situation. Whereas, high 

air-temperature melts the snow to a large extent and reduce the snowpack stability. 

Relative-humidity causes an indirect effect on snowpack stability. Weak snow 

surface layers also cause due to higher humidity with low wind. These conditions 

affect the snowpack stability. Winds conditions are also responsible for the 

avalanche occurrence. High wind also affects the snowpack stability.  

Various kinds of GIS-based models developed and implemented inithe 

present study for avalanche hazard mapping are given as follows: 

1. Probabilistic frequency ratio model 

2. Multi-Criteria Decision Analysis-Analytical Hierarchy Process (MCDA-

AHP) Model 

3. Fuzzy Frequency Ratio (Fuzzy-FR) Model 

5.4 Probabilistic frequency ratio model for avalanche susceptibility mapping 

Figurei 5.1 showing the detailed flowichart of the imethodology adopted for 

this study. The methodology is followed as: (a) gathering and transformation of the 

data including topographic, meteorological factors and avalanche occurrence data 

into a database; (b) formulation of the inventory map; (c) generation and 

reclassification of avalanche occurrence factors; (d) calculation of FR coefficients 

of all categories of factors; (e) generation of release area map of avalanches based 

on the FR coefficients of all categories of factors. Finally, the results are evaluated 

using RA-index and ROC-AUC techniques. 

The probabilistic FR imodel is aibivariate istatistical model, that can provide 

the capability for calculating the relationships between theidependent and 

independentivariables (Ohi et al, i2011). The FR model still not used and tested for 

avalanche susceptibility mapping. Therefore, using the assumption of Ohiet al., 

(2011), the level of relation betweenidependent and independentivariables was 

calculated. The avalanche occurrences dataset was setias dependentivariables and 

avalanche occurrence factors are set as independent variables. Hence, the more FR 

value, the higher relationship between avalanches and their occurrence factor’s 

categories. Similarly lesser the FR value, weaker the relationship between 

avalanches and their occurrence factor’s categories. 
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Equation (5.3) can express the probabilistic FR model for avalanche hazard 

index (AHI): 

 

𝐴𝐻𝐼 =∑(𝐹𝑅)𝑖   (𝑖 = 1, 2, 3, ………𝑛)                                               (5.3) 

 

Where, AHI is the avalanche hazard index, 𝐹𝑅 is the frequency ratio values 

of each iclass iof an occurrence factor and 𝑛 is the itotal inumber of input factors.  

 

Using Equation (5.4), the FR value of each factor was calculated: 

 

𝐹𝑅 =

𝑁𝑝(𝑆𝑋𝑖)
∑ 𝑆𝑋𝑚
𝑖=1 𝑖

⁄

𝑁𝑝(𝑆𝑋𝑗)

∑ 𝑆𝑋𝑛
𝑗=1 𝑗

⁄

                                                                                  (5.4) 

Where, 𝑁𝑝(𝑆𝑋𝑖)  is ithe inumber of avalanches ipixels iniclass 𝑖  of 

ifactor (𝑋), 𝑁𝑝(𝑆𝑋𝑗) is the totalinumber of ipixels in that particular factor (𝑋𝑗), 𝑚 

is the inumber of iclasses in the factor 𝑋𝑖  and 𝑛 is the total inumber of ifactors. 

Figure 5.3 presents the example for calculating the FRIvalues of eachiclass 

of theifactor. Figure 5.3a representing the total inumber of avalanche location 

ipixels in aniimage, Figure 5.3b representing the total inumber of ipixels for class 

1 of factor A and Figure 5.3c representing the total inumber of avalanche location 

pixels for class 1 of factor A. In present study, avalanche occurrence locations are 

considered as dependent variables and terrain factors with vegetation cover values, 

which influencing the avalanche occurrence are considered as independent 

variables.  

Avalanche occurrence data was considered as a dependent variable. While, 

terrain, meteorological factors and vegetation cover values were considered as 

independent variables. The level of correlation between the avalanche occurrences 

and each class of the avalanche occurrence factors were calculated. Table 5.1 

describes the calculated FR values forieach iclass of the avalanche occurrences 
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ifactor. Using these values, the thematic layers were reclassified and added in GIS 

to obtain the avalanche isusceptibility imap (Figure 5.4).
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Figure 5.1: Flow chart of frequency ratio modelling for avalanche susceptibility mapping
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Figure 5.2: Avalanche occurrence terrain parameters: (A) Slope, (B) Aspect, (C) 

Curvature, (D) Elevation, (E) Vegetation, and (F) Terrain Roughness 
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Table 5.1: FR values in the each class of avalanche occurrence terrain factors. 

Factor Class 

No. of 

Pixels in 

Class 

% of Pixels 

in Class 

Avalanche 

occurrence in class FR 

Number % 
S

lo
p
e 

0-12 

12-28 

28-45 

>45 

1063674 

2424234 

2820771 

1053553 

14.5 

32.9 

38.3 

14.3 

0 

44 

182 

7 

0.0 

18.9 

78.1 

3.0 

0.0 

0.6 

2.0 

0.2 

A
sp

ec
t 

Flat 

N 

NE 

E 

SE 

S 

SW 

W 

NW 

394 

885958 

866318 

974675 

972011 

872758 

933351 

940738 

916029 

0.0 

12.0 

11.8 

13.2 

13.2 

11.9 

12.7 

12.8 

12.4 

0 

38 

30 

38 

35 

34 

26 

16 

16 

0.00 

16.3 

12.9 

16.3 

15.0 

14.6 

11.2 

6.9 

6.9 

0.0 

1.4 

1.1 

1.2 

1.1 

1.2 

0.9 

0.5 

0.6 

C
u
rv

at
u
re

 

Concave 

Flat 

Convex 

2529797 

2170362 

2662073 

34.4 

29.5 

36.2 

78 

53 

102 

33.5 

22.8 

43.8 

1.0 

0.8 

1.2 

E
le

v
at

io
n

 

<2800 

2800-3300 

3300-3800 

3800-4300 

4300-4800 

4800-5300 

5300-5800 

>5800 

54807 

284256 

553951 

1004255 

1641751 

2318163 

1399584 

105465 

0.7 

3.9 

7.5 

13.6 

22.3 

31.5 

19.0 

1.4 

0 

4 

36 

60 

52 

48 

33 

0 

0.00 

1.7 

15.5 

25.8 

22.3 

20.6 

14.2 

0.0 

0.0 

0.4 

2.1 

1.9 

1.0 

0.7 

0.8 

0.0 

N
D

V
I 

<0.1 

0.1-0.2 

0.2-0.3 

>0.3 

6035049 

997811 

277598 

51774 

82.0 

13.6 

3.8 

0.7 

194 

31 

7 

1 

83.3 

13.3 

3.00 

0.4 

1.0 

1.0 

0.8 

0.6 
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Table 5.2: FR values in the each class of avalanche occurrence meteorological 

factors 

Factor Class 

No. of 

Pixels in 

Class 

% of 

Pixels in 

Class 

Avalanche 

occurrence in class FR 

Number % 

T
em

p
er

at
u
re

 

< -11 

-11 - -7 

-7 - -3 

-3 - 1 

1 -5 

>5 

501316 

859463 

1265073 

1610167 

1880392 

1245821 

6.8 

11.7 

17.2 

21.9 

25.5 

16.9 

14 

57 

56 

41 

35 

30 

6.0 

24.5 

24.0 

17.6 

15.0 

12.9 

0.9 

2.1 

1.4 

0.8 

0.6 

0.8 

S
n
o
w

 D
ep

th
 

< 80 

80-130 

130-180 

180-230 

230-280 

280-330 

>330 

376697  

626978 

938779 

1247037 

1526098 

1661993 

984650 

5.1 

8.5 

12.8 

16.9 

20.7 

22.6 

13.4 

6 

47 

49 

39 

37 

32 

23 

2.6 

20.2 

21.0 

16.7 

15.9 

13.7 

9.9 

0.5 

2.4 

1.6 

1.0 

0.8 

0.6 

0.7 

W
in

d
 S

p
ee

d
 a

n
d
 D

ir
ec

ti
o
n
 < 2.4 

2.4 - 4.8 

4.8 - 7.2 

7.2 - 9.6 

9.6 - 10.8 

>10.8 

506316 

866763 

1259973 

1606267 

1873492 

1249421 

6.9 

11.8 

17.1 

21.8 

25.4 

17.0 

7 

18 

35 

54 

77 

42 

3.0 

7.7 

15.0 

23.2 

33.0 

18.1 

0.4 

0.7 

0.9 

1.1 

1.3 

1.1 

R
el

at
iv

e 
H

u
m

id
it

y
 

(R
H

%
) 

< 50 

50 - 64 

64 - 78 

78 - 92 

>92 

1723495 

2197610 

1701125 

615215 

1124787 

23.4 

29.8 

23.1 

8.4 

15.3 

38 

48 

52 

19 

76 

16.3 

20.6 

22.3 

8.2 

32.6 

0.7 

0.7 

1.0 

1.0 

2.1 
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Figure 5.3: Diagram showing the example process for calculating the FR value of 

each class of the avalanche occurrence factor 

 

Figure 5.4: Avalanche susceptibility map of the study area generated using the 

FR model 
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Figure 5.5: Avalanche susceptibility map of the study area obtained using FR model 

with observed avalanche polygons overlaid     

 

Figure 5.6: Partly comparison of avalanche susceptibility maps of terrain and 

meteorological-based parameters (A: Terrain-based avalanche hazard map; B: 

Hybrid (Terrain + Meteorological)-based avalanche hazard map) 
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5.5 Multi-Criteria Decision Analysis-Analytical Hierarchy Process (MCDA-

AHP) Model 

5.5.1 MCDA-AHP Model 

Multiicriteria decisionianalysis (MCDA) is a commonly applied model in 

GIS-based decisionimaking problems (Jiang & Eastman 2000). However, the AHP 

model developed by Saaty (1980) is most popular among several numbers of 

models suggested for MCDA problems. A notable characteristic of the AHP model 

is the ability to assess both qualitative and quantitative parameters and possible 

alternatives on an equitable basis of preference scale. This model is used 

extensively and efficiently in numerous applications including natural hazard 

assessment (Nefeslioglu et al. 2013; Selçuk 2013; Snehmani et al. 2014), 

debrisiflow vulnerability assessment (Yangi et al., i2011; Chen et al., i2015), 

landslide isusceptibility mappingi (Kayastha et al. 2013; Shahabi et al. 2015), 

suitability assessment and modelling (Zhang et al. 2015; Qaddah & Abdelwahed 

2015). The AHP model solves the decisionimaking problemsiby arranging the 

iproblems in aihierarchy. The AHP model is utilized for assigning the ratings a set 

oficriteria. This model is also useful in selecting the best from a range of 

alternatives. The criteria rating and weighting of each criteria is carried in the entire 

objective (Boroushaki & Malczewski 2008). The theoretical background of the 

AHP model has been presented in Nefeslioglu (2013). The approach to use 

theiAHP model usually outlined in the steps as: The first step ofithe approach isito 

define the unstructured problem and conclude the type of information required. In 

the second step, develop the decisionihierarchy from theitop, with the objective 

and splitting downithrough the intermediateilevels to the lowestilevel. In the third 

step, construct a pairwise comparison matrix of a set of criteria using Saaty’s 

importancei or preferenceivalue scale (Table 5.2) and estimate the relativeiweight 

value of eachicriterion by calculatingieigenvalues and eigenvectors. A pairwise 

comparison matrix is defined by Saaty (1987) as equation (5.5): 
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𝐴 =

[
 
 
 
 
 
 
𝑎11 𝑎12   ⋯ 𝑎𝑎1𝑛

𝑎21 𝑎22  ⋯ 𝑎2𝑛

𝑎31 𝑎32  ⋯ 𝑎3𝑛

⋮ ⋮ ⋮

𝑎𝑛1 𝑎𝑛2 𝑎𝑛𝑛 ]
 
 
 
 
 
 

 = 

[
 
 
 
 
 
 

1 𝑤1/𝑤2   ⋯ 𝑤1/𝑤𝑛

𝑤2/𝑤1 1             ⋯ 𝑤2/𝑤𝑛

𝑤3/𝑤1 𝑤3/𝑤2    ⋯ 𝑤3/𝑤𝑛

⋮ ⋮ ⋮

𝑤𝑛/𝑤1 𝑤𝑛/𝑤2 1 ]
 
 
 
 
 
 

             (5.5) 

Where, A isithe pairwiseicomparison imatrix, which entry 𝑎𝑖𝑗  expressing 

howimuch the criteria 𝑥𝑖 is preferring with criteria𝑥𝑗. When allicriteria are already 

iknown, eachicomparison value 𝑎𝑖𝑗  equals to 𝑤𝑖/𝑤𝑗 . The upper located entries 

used for comparison with reference to the diagonal of the pairwise comparison 

matrix. 

Table 5.3: The importance value scale (Saaty, 1980). 

Importancei Definitioni Explanationi 

11 Equal importancei Contributioni to iobjective is iequal 

31 Moderate importancei Attributei is islightly ifavoured over 

anotheri 

51 Strong importancei Attributei is istrongly ifavoured 

over anotheri 

71 Very strong importancei Attributei is ivery istrongly 

ifavoured over anotheri 

91 Extreme importancei Evidencei favouringi one attributei 

is of the highesti possiblei order of 

affirmationi 

2,4,6,8 Intermediate valuesi When compromise is ineeded 

The lower located entries are determined by calculating and implementing a 

reciprocal operation using equation (5.6). 

𝑎𝑗𝑖 =
1

𝑎𝑖𝑗
                                                                                                                    (5.6) 

In the fourth step, icheck the iconsistency ratio (CR) ofithe ijudgments. The 

CRishould be calculatedifor evaluating the consistencyiwith the pairwise 

comparison matrix.  The CRivalue shouldibe less than 0.1. Saaty (1987) defined a 

formula to determine the CR is given in equation (5.7) as: 
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𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                                                    (5.7) 

Where, 𝐶𝐼   is the consistencyiindex and  𝑅𝐼  is the randomiconsistency 

iindex. The consistencyi indeximeasures the ideviation from consistencyi and 

idefined as (Saatyi 1987) iniequation (5.8): 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 −𝑁

𝑁 − 1
                                                                                                        (5.8) 

Where, 𝜆𝑚𝑎𝑥  is the ilargest ieigenvalue and 𝑁  is theiorder of the 

comparisonimatrix. 

The irandom iconsistency iindex (Saatyi 2000) is the iindex of irandomly 

igenerated matricesi and idepends iupon the inumber of elements ibeing icompared 

(Table 3). If CR exceedsi a valuei of 0.1, the ipairwise icomparison imatrix is 

recommended to be irevised and reevaluate the judgments or preferences (Saaty & 

Vargas 1991). 

Table 5.4: Random consistency index (Saaty, 2000); n = order of the matrix. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59 

In the fifth step, use theipriorities calculated fromlthe judgments to rating the 

ipriorities in the levelt below. Repeat this in the level below for each element, add 

its rating values and get its overallipriority. 

The final output is a summationi of the product of ifactor iweight values and 

ifactor’s priority ratings. The ifactor weight values are calculated in the pairwise 

comparison matrix and the resulting indices is calculated using the equation (5.9) 

as follows: 

𝑍 =∑(𝑤𝑖𝑥𝑖)                                                                                                           (5.9)

𝑛

𝑖=1

 

 

Where, 𝑍 idenotes the summationi of the product of criteria weight value 𝑤𝑖 

and ifactor’s priority ratings 𝑥𝑖. 
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5.5.2 Avalanche susceptibility mapping using MCDA-AHP model 

The MCDA-AHP imodel is implemented in GIS to generate iavalanche 

isusceptibility imap of the Lahaul-Spiti. Theireclassified thematic layersiof 

avalanche occurrence terrain factors (Figure 5.2) are employediin GIS and iratings 

are iassigned to ieach class or criteria of thematic layers using a scale from 1 to 9 

(Table 5.5). The ratings iassigned to eachiclass of the factors are based on 

documented avalanche locations and expert’s judgments of the study region. 

Subsequently, the weight values of each avalanche occurrence factor are calculated 

using a pairwise comparison matrix.  

Table 5.5: Assignment of ratings for each terrain-based thematic layer/criteria. 

Thematic Layer Category Rating Weight 

Slope 

 

 

<120 1 0.41 

120-280 3 

280-450 9 

>450 5 

Elevation < 2800 1 0.05 

2800-3300 3 

3300-3800 7 

3800-4300 5 

4300-4800 5 

4800-5300 3 

5300-5800 1 

>5800 2 

Aspect Flat 1 0.14 

North 9 

Northeast 9 

East 3 

Southeast 5 

South 3 

Southwest 2 

West 2 

Northwest 7 

Curvature Concave 2 0.28 

Flat 3 

Convex 5 

Terrain roughness <0.001 2 0.09 

0.001-0.003 5  
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0.003-0.005 4  

0.005-0.01 7  

0.01-0.03 5  

0.03-0.05 3  

0.05-0.1 1  

>0.1 1  

NDVI <0.1 5 0.03 

0.1-0.2 3 

0.2-0.3 2 

>0.3 2 

Air Temperature < -11 2 0.25 

-11 - -7 5 

-7 - -3 7 

-3 - 1 9 

1 -5 4 

>5 3 

Snow Depth < 80 3 0.56 

80-130 5 

130-180 8 

180-230 9 

230-280 7 

280-330 5 

>330 3 

Wind speed and 

direction  

< 2.4 9 0.13 

2.4 - 4.8 5 

4.8 - 7.2 7 

7.2 - 9.6 5 

9.6 - 10.8 0 

>10.8 0 

Relative Humidity 

(RH%) 

< 50 2 0.06 

50 - 64 4 

64 - 78 6 

78 - 92 5 

>92 9 
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Table 5.6: Assignment of ratings for each meteorological-based thematic layer/criteria. 

Thematic Layer Category Rating Weight 

Air Temperature < -11 2 0.25 

 -11 - -7 5  

 -7 - -3 7  

 -3 - 1 9  

 1 -5 4  

 >5 3  

Snow Depth < 65 3 0.56 

65-130 5 

130-195 8 

195-260 9 

>260 6 

Wind Speed and 

Direction 

< 2.4 3 0.13 

2.4 - 4.8 5 

4.8 - 7.2 6 

7.2 - 9.6 7 

9.6 - 10.8 9 

>10.8 9 

Relative Humidity 

(RH%) 

< 50 2 0.06 

50 - 64 4  

64 - 78 6  

78 - 92 5  

>92 9  

In MCDA-AHP model, calculation of the avalanche occurrence factor 

weight values plays a crucialirole for the generation of the avalanche isusceptibility 

map. The eigenvector values are calculated in pairwise comparison and occurrence 

factors are ranked considering the importance rangingifrom 01 to 09. After 

computing theipairwise comparisonimatrix, the weight values of the ifactors are 

icalculated (Table 5.5). 
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Table 5.7: Pairwise comparison matrix and weight values of each terrain-based 

layer using MCDA-AHP 

Layer S C A TR E GC Weight value 

S 1 2 3 5 7 9 0.41 

C 1/2 1 3 4 5 7 0.28 

A 1/3 1/3 1 2 3 5 0.14 

TR 1/5 1/4 1/2 1 2 3 0.09 

E 1/7 1/5 1/3 1/2 1 2 0.05 

GC 1/9 1/7 1/5 1/3 1/2 1 0.03 

Consistency ratio (CR) 0.0118 

S: Slope, C: Curvature, A: Aspect, TR: Terrain roughness, E: Elevation, GC: 

Ground cover 

Table 5.8: Pairwise comparison matrix and weight values of each meteorological-

based layer using MCDA-AHP 

Layer Snow 

Depth 

Temperature Wind Speed 

& Direction 

Relative 

Humidity 

Weight 

value 

Snow Depth 1 3 7 9 0.56 

Temperature 1/3 1 3 5 0.25 

Wind Speed & 

Direction 

1/7 1/3 1 2 0.13 

Relative 

Humidity 

1/9 1/7 1/3 1 0.06 

Consistency ratio (CR) 0.0639 

Slope factor is assigned the highest weight value. Curvature, aspect and 

terrain roughness are also found effective avalanche occurrence factors. Other 

factors, such as elevation and ground cover are identified as less important for 

avalanche susceptibility. Inithe MCDA-AHP model, theiCR value indicates the 

consistency of the judgments in pairwiseicomparison matrix. The CR valueishould 

beiless than 0.1. The CRivalue of the pairwise comparison matrix is calculated 

using equation (5.7) and estimated as 0.0118, far lessithan 0.1, confirming a valid 

consistency of judgments. Finally, the integration of the avalanche occurrence 
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ifactors and their iclasses in the avalanche susceptibility iindex (ASI) using 

equation (5.9) is given in equation (5.10) is: 

𝐴𝑆𝐼𝑡𝑒𝑟𝑟𝑎𝑖𝑛 =∑(0.41 ∗ 𝑆 + 0.28 ∗ 𝐶 + 0.14 ∗ 𝐴 + 0.09 ∗ 𝑇𝑅 + 0.05 ∗ 𝐸 + 0.03 ∗ 𝐺𝐶)  (5.10)

𝑛

𝑖=1

 

 

𝐴𝑆𝐼𝑚𝑒𝑡 =∑(0.56 ∗ 𝑆𝐷 + 0.25 ∗ 𝑇 + 0.13 ∗𝑊 + 0.06 ∗ 𝑅𝐻)                                    (5.11)

𝑛

𝑖=1

 

Where, 𝐴𝑆𝐼𝑡𝑒𝑟𝑟𝑎𝑖𝑛  is terrain-based avalanche susceptibility index S, C, A, 

TR, E and GC are slope, curvature, aspect, terrain roughness, elevation and ground 

cover factors thematic layers with a rating score of factor’s each class. 

Where, 𝐴𝑆𝐼𝑚𝑒𝑡 is meteorology-based avalanche susceptibility index  SD, T, 

W and RH are snow depth, air temperature, wind, and relative humidity thematic 

layers with a rating score of each factor class
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Figure 5.7: Flow chart of MCDA-AHP modelling for avalanche susceptibility mapping 

 

Figure 5.8: Partly comparison of avalanche susceptibility maps of terrain and meteorological-based 

parameters (A: Terrain-based avalanche hazard map; B: Hybrid (Terrain + Meteorological)-based 

avalanche hazard map) 
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5.6 Fuzzy Frequency Ratio (Fuzzy-FR) Model for Avalanche Susceptibility 

Mapping 

5.6.1 Theoretical background of fuzzy set theory and frequency ratio method 

(a) Fuzzy set theory 

The ifuzzy set itheory (Zadeh, i1965) is extensively applied to complex 

problems, whichi are difficulti to state precisely in crispivalues. It is also capable 

of permitting the vague information (Feizizadehi et al., i2014).  Fuzzyilogic allows 

to handle the notion of partial truth in which the factors can be characterized with 

the degrees of truth and false (Barpi, 2004).  The fuzzy logic is helpful in the 

development of expert knowledge-based and naturally vague large complex 

systems. In the geospatial mapping and management process, the fuzzy logic is 

capable of utilizing the spatial entities on a map as memberships of a spatial entity 

or a crisp set (Feizizadeh et al., 2014).  However, a spatial object of the set can 

assign to imembership ivalues ibetween 0 and 1, iwhich defines aidegree of 

imembership.       

A fuzzy set is defined as a set of systematic pairs in equation (5.11) 

(Feizizadeh et al., 2014): 

𝐴{𝑧,𝑀𝐹(𝑧)}, 𝑧𝜖𝑍                                                                                                   (5.11) 

𝑀𝐹(𝑧) is a membership function (MF) of the set 𝐴, 𝑍 indicates a space of 

entities. Figure 5.9 shows a linear membership function (LMF), which comprises 

the basis for the MFs. This function has four parameters, such as 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑 that 

determine the shape of the function. These parameters signify the smallest, the 

most promising and the largest favorable values to define a fuzzy entity (Kahraman 

et al., 2003).  The LMF is defined using this concept is given in equation (5.12):  

𝜇𝐴(𝑥) =

{
 
 
 
 

 
 
 
 

0 𝑥 < 𝑎

𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

1 𝑏 < 𝑥 < 𝑐

𝑑 − 𝑥

𝑑 − 𝑐
𝑐 ≤ 𝑥 ≤ 𝑑

0 𝑥 > 𝑑

                                            (5.12)(Kainz, 2008) 
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The different shaped membership functions such as the trapezoidal, S & L-

shaped and triangular can also be created for the appropriate purpose by using the 

proper values of 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑 respectively (Kainz, 2008). 

 

 

Figure 5.9: Linear membership function 

(b) Frequency ratio method 

FR represents theiprobability of theioccurrence of a particular event 

(Bonham-Carter, i1994). In avalanche susceptibility mapping, this method isibased 

onithe calculation of the relationshipibetween observed avalanche occurrences and 

each avalanche occurrence ifactor. Suppose, for an event 𝑋  and related event 

factorsiattributed to 𝑌, the frequencyiratio of 𝑌 is given in equation (5.13) (Oh et 

al., 2011): 

𝑃{𝑋|𝑌} =
𝑃{𝑋 ∩ 𝑌}

𝑃{𝑌}
                                                                                     (5.13) 

The formula behind FR can also be expressed by the given equation (5.14): 

𝐹𝑅𝑖𝑗 =

𝑁𝑝(𝑆𝑋𝑖)
∑ 𝑆𝑋𝑚
𝑖=1 𝑖

⁄

𝑁𝑝(𝑆𝑋𝑗)

∑ 𝑆𝑋𝑛
𝑗=1 𝑗

⁄

                                                                                     (5.14)     
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Where, 𝑁𝑝(𝑆𝑋𝑖)  denotes the totalinumber of avalanche occurrenceipixels 

iniclass 𝑖  of avalanche occurrenceifactor  𝑋 ; 𝑁𝑝(𝑆𝑋𝑗)  denotes the totalinumber 

ofipixels in the iavalanche occurrenceifactor 𝑋𝑗; 𝑚 is the inumber oficlasses in the 

avalanche occurrenceifactor 𝑋𝑖; 𝑛 is theinumber of avalanche occurrenceifactors. 

In the present study, avalanche occurrence locations are considered as 

dependent variables and terrain factors with vegetation cover values, which 

influence the avalanche occurrence, are considered as independent variables.  

5.6.2 Methodology for fuzzy-frequency ratio modelling 

The overall methodology is summarized in the flow chart presented in Figure 

5.10.  The flow chart shows the construction of avalanche related database and 

procession stages of avalanche susceptibility mappingiusing the Fuzzy-FRimodel.  

In the first part of the methodology, the snow avalanche occurrence related datasets 

were gathered and transformed into a database, including topographical factors and 

documented data of past avalanche events. An avalanche inventory map was 

prepared; subsequently, the avalanche occurrence factors were analysed and 

reclassified. FR coefficients for each of these factor categories are computed and 

normalizediin [0, 1] to expressitheir FM degrees and termed as “Fuzzy membership 

functions” (Bonham-Carter, 1994). Finally, the fuzzy overlay analysis combines 

the avalanche occurrence factors to obtain an avalanche susceptibilityimap using 

the FuzzyiOR ioperator. The results of avalanche susceptibility mapping using the 

Fuzzy-FR model were compared with documented avalanche occurrence locations 

byicalculating the areaiunder the ROCicurve analysis technique. The detailed 

methodology is presented in the next subsections.  

5.6.3 Fuzzy-Frequency Ratio Modelling for avalanche susceptibility mapping 

In Fuzzy-Frequency iRatio modelling for iavalanche isusceptibility 

imapping, the pixel of the GIS layer of the avalanche occurrence factor is 

considered as susceptible to avalanches. The pixel values are ranges from 0 to 1. 

The value 0 signifies ‘not susceptible to avalanche,’ and the value 1 signifies 

‘highly susceptible to avalanche’. The valuesirange from 0i to 1 can be chosen with 

the idegree of imembership of an entity set. The values of theidegree of 

membership of an entity set can be derived on theibasis of subjectiveijudgment 

(Bonham-Carter, 1994). These values can also be obtained from frequency ratio or 
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multiicriteria decisionianalysis methods, such as an ianalytical ihierarchy iprocess 

(AHP). Herein, the FR method is applied to derive the FM values. 

 

Figure 5.10: Flow chart of fuzzy-FR modelling for avalanche susceptibility 

mapping
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Figure 5.11: Partly comparison of avalanche susceptibility maps of terrain and 

meteorological-based parameters (A: Terrain-based avalanche hazard map; B: 

Hybrid (Terrain + Meteorological)-based avalanche hazard map) 

5.6.3.1 Frequency ratio values for each class of avalanche occurrence factors 

The FRivalues for eachiclass of theifactor are calculated by using the formula 

in equation (5.14), respectively. The avalanche occurrence location dataset was 

considered as dependent variables and terrain factors with vegetation cover values, 

which influence the avalanche occurrence, were considered as 

independentivariables. Using the FR method, the irelationship betweeni avalanche 

ioccurrence locations and ieach class of the occurrence factors were calculated and 

shown in Table 5.6.  

5.6.3.2 Fuzzification of FR based avalanche occurrence factors 

To fuzzify the avalanche occurrence factors, the FRivalues for eachiclass of 

avalanche occurrence ifactor are inormalized in [0, 1] to iexpress their 

imembership idegrees using the formula given in equation (5.15): 

µ (𝐶𝑖𝑗) =
𝐹𝑅𝑖𝑗 −𝑀𝑖𝑛(𝐹𝑅𝑖𝑗)

𝑀𝑎𝑥(𝐹𝑅𝑖𝑗) −𝑀𝑖𝑛(𝐹𝑅𝑖𝑗)
[𝑀𝑎𝑥 (µ(𝐶𝑖𝑗)) − 𝑀𝑖𝑛 (µ(𝐶𝑖𝑗))] +𝑀𝑖𝑛 (µ(𝐶𝑖𝑗)) (5.15) 

Where, µ (𝐶𝑖𝑗) is the FM value; 𝐹𝑅𝑖𝑗 is the FR value of a class of avalanche 

occurrence factor; 𝑀𝑖𝑛(𝐹𝑅𝑖𝑗) is theiminimum FR value of an occurrence ifactor; 
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𝑀𝑎𝑥(𝐹𝑅𝑖𝑗) is theimaximum FR value of an occurrence factor; 𝑀𝑎𝑥 (µ(𝐶𝑖𝑗)) and 

𝑀𝑖𝑛 (µ(𝐶𝑖𝑗)) are the maximum and minimum normalization limits. 

Therefore, for all factors, the membership functions are obtained and each 

class of avalanche occurrence factor was assigned a membership function. The 

membership functions were used to create a relationshipibetween theiselected 

factors and the idegree of the imembership of avalanche and no-avalanche 

ilocations. The membership function layers for avalanche susceptibility are 

generated using the fuzzy linear membership function i.e. “FuzzyLinear ({min}, 

{max})” for avalanche occurrence factor maps (Figure 5.2). 

5.6.3.3 Fuzzy overlay analysis to obtain fuzzified avalanche susceptibility 

index 

Fuzzy overlay analysis has the capability to combine various reclassified 

occurrence factors to calculate the natural hazard (Kirschbaum et al., 2015). 

iBonham-Carteri (1994) described five fuzzy operators for combining the 

occurrence factors such as “Fuzzy OR”, “Fuzzy AND”, “Fuzzy Product”, “Fuzzy 

Sum” and “Fuzzy Gamma”.  The “Fuzzy OR” operatori functions was iused to 

icombine the imembership functions of the occurrence factors to obtain the 

fuzzified index to express the possibility of belonging to avalanche or not. The 

reason for using the “Fuzzy OR” operator to combine the membership functions 

was to take the maximum value at each point to estimate the effectiveness factors 

representing the possibility of the avalanche occurrence. The remaining 

operatorsisuch as: “Fuzzy AND”, “Fuzzy Product”, “Fuzzy Sum” and “Fuzzy 

Gamma” can also be utilized to icombine the imembership functions of the 

occurrence ifactors to igenerate the avalanche isusceptibility imap. In this study, 

all the membership functions of the avalanche occurrence factors are combined 

using the “Fuzzy OR” operator given in equation (5.16): 

µ𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  = 𝑀𝐴𝑋(µ𝐴, µ𝐵 , µ𝐶 , …… )                                                                 (5.16)                                                         

Where, µ𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛   is the combination of the maximum values of each 

membership function of the factor, µ𝐴 is theimembership function for factor A at a 
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particularilocation,  µ𝐵  is the membership function for factor B, µC  is the 

membership function for factor  C, and so on. 

The final fuzzified avalanche susceptibility index was obtained using equation 

(5.16) and expressed in equation (5.17):  

µ𝐴𝑆𝐼 = 𝑀𝐴𝑋(µ𝑆𝑙𝑜𝑝𝑒 , µ𝐴𝑠𝑝𝑒𝑐𝑡 , µ𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 , µ𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛,µ𝑇𝑒𝑟𝑟𝑎𝑖𝑛 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠,µ𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛) (5.17)                                                         

Where,  µASI   the calculated avalanche susceptibility index and 

µSlope, µAspect , µCurvature , µElevation,µTerrain roughness,µVegetation    are the 

membership values for slope, aspect, curvature, elevation, terrain roughness, 

vegetation.  

Subsequently, the performance of the avalanche susceptibility map is 

discussed in the next section. 

Table 5.9: Spatial relationship between each terrain-based avalanche conditioning 

factor, avalanche occurrence and fuzzy membership values 
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Table 5.10: Spatial relationship between each meteorological-based avalanche 

conditioning factor, avalanche occurrence and fuzzy membership values 
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6. RESULTS AND DISCUSSION 

6.1 Probabilistic Frequency Ratio Model 

The level of relationshipibetween avalanches occurrence and their ifactors 

was calculated using the FR imodel. Various avalanche occurrence factors 

considered are topographical, vegetation cover and meteorological. The 

relationship between avalanche occurrences and slope (Table 5.1) shows that a 

slope angle of 28º to 45º has higher avalanche probabilities. For slope values below 

12º, the FR value was 0, which indicated a lesser iprobability of avalanche 

ioccurrence. The islope values from 12º to 28º, the ratio was 0.57, which indicated 

a moderate iprobability of avalanche ioccurrence. While in the aspect, avalanches 

are abundant on north and east facingislopes. Lowest FR values were observed on 

the westifacing slopes. Theicurvature valuesirepresent the topographical 

imorphology and ranges from negative to positive. A positive value signifies 

convex curvature. Whereas, the negativeiand zeroivalues represent theiconcave 

and flat surfaces. Convex curvature has a higher probability of avalanche 

occurrence (Table 5.1). 

Concave curvature has a moderate probability of avalanches and flat has a 

low FR value of 0.77 (Table 5.1), which means a low iprobability of iavalanches 

inithat class of curvature. In elevation, the FRivalue of elevation below 2800 m 

and above 5800 m was 0, whichiindicates a lesser probability of avalanche 

ioccurrence. The FR values in elevation ranges from 3300m to 3800 m and 3800 

m to 4300 m were 2.05 and 1.89, which indicated a higher iprobability of avalanche 

ioccurrence. In the vegetation index, the FR ivalue for iNDVI below 0.1 was 1.02, 

which indicated aihigh iprobability of avalanche ioccurrence. TheiFR value above 

0.3 was 0.61, which indicated ailow iprobability of avalanche ioccurrence in 

NDVI. With decreases in the NDVI values, the probability of avalanche increases.  

Similarly, the FR values/coefficients of correlation between avalanche 

occurrence and meteorological parameters are presented in table 5.2.  

Based upon the FR coefficients, all the considered and above discussed 

factors were reclassified and subsequently utilized in GIS using the spatial 

overlaying technique to generate a release area map of the avalanche. The final 
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release area map of avalanches was further reclassified into 5 relative susceptibility 

zones based on the Jenks (Jenks, 1967) natural break method as: (i) No, (ii) Low, 

(iii) Moderate, (iv) Moderateitoihigh, and (v) Veryihigh isusceptibility. Figures 5.5 

and 5.6 present the contribution of various avalanche susceptibility classes in the 

study area. Two types of avalanche release area maps were generated (i) based on 

terrain parameters and (ii) hybrid (terrain + meteorological) parameters. Partly 

maps of both types are shown in figure 5.6.  Initially, the scenario-based 

comparison has been made between terrain and hybrid parameter based avalanche 

release area. In hybrid parameters based avalanche release area map, the pixels are 

better classified in particular avalanche release zones than a terrain-based map. A 

statistical assessment technique ROC-AUC was also used to compare the results 

from both types of parameters.  

The ROC-AUC technique determines the correlation betweenithe avalanche 

isusceptibility map and ithe avalanche iinventory imap of the documented 

avalanche occurrence locations. Popularly, ROC-AUC values ranging from 0.5 to 

1.0 is used for estimating the prediction accuracy (Yesilnacari and iTopal, i2005). 

The ROC-AUC value ranges from 0.9 to 1.0 is the ideal situation for prediction 

accuracy (Regmii et al., 2014). The ROC-AUC value of the avalanche 

susceptibilityiindex was icalculated by 100 subdivisions of the totalinumber of 

pixelsiin theistudy iarea and the cumulative percentage of documented avalanche 

occurrences.  

Validation of the release area map has been performed by icalculating 

isuccess and iprediction rates. The training data has been applied for the calculation 

of the success rate. While, the validation data has been applied for calculation of 

prediction rate. The values of success rate help to define the correlation of 

avalanche susceptibility map with the documented avalanche locations. The value 

of the prediction rate determines the accuracy of the model predicting the 

avalanches. For validation, 233 i.e. 80% avalanche occurrence data, has been 

applied for training the model. While, the remained 59 i.e., 20% are employed for 

validation.  

The isuccess irate and iprediction rate are calculated for verification and 

ivalidation of the results. The success rates of the probabilistic FR model of terrain 
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and hybrid (terrain+ meteorological) parameters are calculated as 0.9241 and 

0.9321. Therefore, success accuracies of the probabilistic FR model for terrain and 

hybrid parameters are demonstrated as 92.41% and 93.21%. The predictionirate of 

the FRimodel of the terrain and hybrid parameters are calculated as 0.8913 and 

0.8974. Hence, the prediction accuracies for terrain and hybrid parameters are 

demonstrated as 89.13% and 89.74%, respectively. Figures 6.1 and 6.2 present 

ROC-AUC of success and prediction rate of avalanche susceptibility index for both 

types of occurrence parameters. Through ROC-AUC analysis, the hybrid (terrain 

+ meteorological)-based model demonstrated better results than terrain-based. 

 

Figure 6.1: ROC curve for success rate and prediction rate of terrain-based 

avalanche susceptibility index 
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Figure 6.2: ROC curve for success rate and prediction rate of terrain and 

meteorological parameters based avalanche susceptibility index 

6.2 Multi-Criteria Decision Analysis-Analytical Hierarchy Process (MCDA-

AHP) Model  

Avalanche susceptibility mappingirequires analysisiof the terrain and 

meteorological factors together. In this study, both terrain and meteorological 

factors are considered. Various input terrain ifactors such as islope, iaspect, 

icurvature, ielevation, iterrain iroughness and ground cover for iavalanche 

isusceptibility imapping of the Lahaul region are iderived from the iASTER 

iGDEM iV2 and Landsat 8 OLI imagery. An avalanche inventory map of 

documented avalanche locations is also compiled.  The slope is considered as the 

primary and one of the most significant avalanche occurrence factors, which is 

reclassified into five classes, such as : <12, 12-28, 28-45, and >55 degrees. The 

ratings are assigned to these slope classes on the basis of documented avalanche 

locations and expert’s judgments. 
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The slope class with angle ranges from 28-45 degrees is found to be the most 

prominent and hence maximum rating is assigned to this class (Table 5.4). Aspect 

is classified into inine iclasses, such as: Flat, iNorth, iNortheast, iEast, iSoutheast, 

iSouth, iSouthwest, iWest and iNorthwest, respectively. According to documented 

avalanche locations and field knowledge, northern slope classes are considered 

more important for avalanche occurrence and hence maximum ratings are assigned 

to these classes (Table 5.4).   

Curvature values are reclassified into threeiclasses such as: iconcave, iflat 

and iconvex. As per the reference of documented avalanches, the convex curvature 

values have a high probability of avalanche occurrences than flat and concave. 

Hence, the convex curvature has assigned high ratings than flat and concave 

curvature (Table 5.4). The elevation is iclassified into six classes such as: <2800, 

2800-3300, 3300-3800, 3800-4300, 4300-4800, 4800-5300, 5300-5800 and >5800 

respectively. According to the documented avalanche locations, maximum 

avalanches have occurred in the elevation class of 3300-3800, 3800-4300, 4300-

4800, 4800-5300 and 5300-5800. Hence, higher ratings are assigned to these 

classes than others (Table 5.4).  Terrain roughness is ireclassified into eight classes 

such as: <0.001, 0.001-0.003, 0.003-0.005, 0.005-0.01, 0.01-0.03, 0.03-0.05, 0.05-

0.1 and >0.1. After correlating the terrain roughness classes with documented 

avalanche locations and an expert’s knowledge, the roughness classes of 0.001-

0.003, 0.005-0.01 and 0.01-0.03 are found more important in avalanche occurrence 

than other classes of this factor, hence, has assigned higher ratings than other 

classes of roughness (Table 5.4). The NDVI map generated from Landsat 8 OLI 

satellite image is reclassified into four classes as :< 0.1, 0.1-0.2, 0.2-0.3 and >0.3. 

As per the analysis of the document, the higher ratings are assigned to < 0.1 than 

other classes (Table 4).  

The reclassification, rating and weight values of meteorological parameters 

are presented in table 5.6 and 5.8. 

Subsequently, theseireclassified factors layers are employed in MCDA-

AHPimodel and weightivalues of each avalanche occurrence factor are 

calculatediusing pairwiseicomparison or preferenceimatrix. The preference matrix 

is shown in Table 5.7 and 5.8, respectively. In the pairwise preference matrix, the 
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highest preference was given to the slope factor as compared to other factors. The 

preference for each factor is given on the basis of 1 to 9 scale (Saaty 1980) and is 

shown in Table 5.2. After computing the preference values in the matrix, the weight 

values assigned to the islope, iaspect, icurvature, ielevation, iterrain iroughness and 

ground cover are given as: 0.41, 0.14, 0.28, 0.05, 0.09 and 0.03 (Table 5.7). 

Similarly, the weight values assigned to meteorological parameters snow 

depth, air itemperature, iwind speed & direction and irelative ihumidity as: 0.56, 

0.25, 0.13 and 0.06 (Table 5.8). Hence, the highestiweight value is assigned to the 

slopeifactor and lowest for ground cover in terrain-based. In meteorological-based, 

the highest value has been assigned to snow depth due to a high correlation with 

avalanche occurrence. The consistency ratio of the matrix is calculated as 0.0118, 

which confirmed as valid consistency of preferences or judgments. After 

incorporating these factor weight values and assigned a score to each class of the 

factors, these factor layers are integrated with GIS using equation (5.10) to obtain 

an avalanche susceptibility index.  

The resulting avalanche susceptibility index is classified intoifive 

susceptibility zones or levels using the inatural ibreaks (Jenks) imethod. The 

Jenksimethod is a dataigrouping scheme intended toidetermine theibest 

organization of valuesiby interactively icomparing the sumiof the 

squaredidifference betweeniobserved valuesiwithin eachiclass and classimeans 

(Jenks 1967). The Jenks method is also known as a Jenks optimization method. 

The avalanche susceptibility index is classifiediinto five susceptibilityizones or 

levels as: no, low, imoderate, moderate to ihigh and ivery ihigh.  

Although the MCDA-AHP model provides great benefits with respect to the 

complex decision problems and arrangement of spatial data, determination of 

prediction rate/accuracy is also crucial for ivalidation of the imodel results. The 

validationiprocess is performed to determine the prediction rate of the MCDA-

AHP based avalanche susceptibility map. A popular statistical assessment 

technique, the areaiunder the iROC curve is utilized inithis process. This ROC-

AUC method is one of the most popular methods for calculating the prediction rate 

(Yesilnacar & Topali i2005; iVan Den Eeckhauti et al. i2006; Baezai et al. i2010).  

To generate the prediction rate curve or ROC curve, the cumulative percentage of 
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observed or documented avalanche locations are plotted against the obtained 

avalanche susceptibility index and the area under a ROC curve values are 

calculated (Figure 6.4). An ideal situation or result would have an areaiunder the 

curveiequal to 1. The areaiunder a ROC curve ranging from 0.5 to 1 is a good fit 

and less than 0.5 indicates an irregular fit (Hanley & McNeil 1983). The value of 

the areaiunder a ROCicurve is calculated as 0.9097 for terrain-based and 0.9342 

for hybrid based maps ((Figure 6.4). The validation resultsiimply that the overall 

prediction rate of the avalanche susceptibility maps based on terrain and hybrid 

maps are 90.97% and 93.42, which means that the total avalanche pixels are 

properly categorized by the avalanche susceptibility mapping model and 

demonstrated the acceptable agreement relating to avalanche susceptibility map. 

However, as per the ROC-AUC technique, the hybrid parameters based map 

demonstrated better results than terrain-based. 

 

Figure 6.3: ROC curve analysis of prediction rate for avalanche hazard index based 

on terrain and meteorological parameters 
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6.3 Fuzzy Frequency Ratio (Fuzzy-FR) Model 

To create the fuzzyimembership functions of the avalanche occurrence 

factors, the FR valuesiwere calculated forieach classiof theifactors onithe basis of 

the equations (5.13) and (5.14). FR values calculatedifor eachiclass of the 

avalanche occurrence ifactors are shown in Table 5.9 and 5.10.  These FR values 

depict the spatialirelationship between the avalanche occurrenceiand avalanche 

occurrence factors. In slope classes, the class of the angle ranges 28-45 degrees has 

the highest FR value of 2.04 than other slope classes (Table 5.9) and indicated a 

very high possibility of the avalanche. In the aspect factor, the avalanche activities 

were abundant in the inorth, inortheast, east and isoutheast ifacing and lower in the 

case of west and northwest aspect angles (Table 5.9).  The curvature factor 

represents the topographical morphology. A zero-curvaturei value iindicates the 

flat isurface. Negative icurvature values indicate concave surface and positive 

curvature values indicate a convex surface. The FR value for flat curvature 

indicated the lowest probability of avalanches than the concave surface and convex 

surface (Table 5.9). 

For elevation factor, the FRivalue ofithe elevation classes of the value below 

2800 m and above 5800 m indicated a very low probability of avalanches. The FR 

values of the elevation classes 3300 m-3800 and 3800 m-4300 m indicated a very 

high probability of the avalanches. The FR values of classes for elevation ranges 

4300-4800, 4800-5300 and 5300-5800 were calculated indicated high to moderate 

probability of the avalanches (Table 5.9). The FR value for NDVI indicated the 

iprobability of the avalanche ioccurrence increasesi with aidecrease in the NDVI 

values (Table 5.9). In the case of the terrain ruggedness factor, the FR values for 

low and moderate raggedness class indicated a high probability of the avalanches 

than high ruggedness class (Table 5.9).  Similarly, the correlation of meteorological 

parameters with avalanche occurrences is also presented in table 5.10. 

These FR valuesifor eachiclass of the occurrence ifactors were normalized 

to a scale from 0 to 1 to express their fuzzy membership functions using the formula 

given in equation (5.15). The fuzzy membership functions of eachiclass ofithe 

occurrence factorsiare shown in the Table 5.9 and 5.10. The value 0 is allocated to 

the lowest observed avalanche occurrence classes and the value 1 allocated to the 
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highest observed avalanche occurrence classes of the factors. The representation 

of a fuzzy set for each avalanche occurrence factor was obtained and shown in 

Table 6.3. Subsequently, the thematic GIS layersiwere created on theibasis of the 

fuzzy set of the iavalanche occurrence factors. To construct fuzzified index maps 

for each avalanche occurrence factors, a fuzzy linear membership “FuzzyLinear 

({min}, {max})” function was applied. A fuzzy overlay technique using a fuzzy 

OR (Max) operator in fuzzy mathematics was applied to combine all the fuzzified 

maps of the avalanche occurrence factors to create an avalanche susceptibility map.  

The final release area map of avalanches was further reclassified into 5 

relative susceptibility zonesibased on the Jenks (Jenks, 1967) naturalibreak method 

as: (i) No, (ii) Low, (iii) Moderate, (iv) Moderateitoihigh, and (v) Very ihigh 

susceptibility. The Jenksimethod is a dataigrouping scheme intended toidetermine 

theibest organization of valuesiby interactively icomparing the sumiof the 

squaredidifference betweeniobserved valuesiwithin eachiclass and classimeans 

(Jenks 1967). The Jenks method is also known as a Jenks optimization method. 

Table 6.1: Fuzzy set of avalanche occurrence factors 

Occurrence factor Fuzzy set 

µs Slope  (0/1, 0.28/2, 1/3, 0.10/4) 

µs Aspect (0/1, 1/2, 0.80/3, 0.91/4, 0.84/5, 0.91/6, 0.65/7, 

0.40/8, 0.41/9) 

µs Curvature (0.46/1, 0/2, 1/3) 

µs Elevation (0/1, 0.22/2, 1/3, 0.92/4, 0.49/5, 0.32/6, 0.36/7, 

0/8) 

µs Terrain roughness (0.65/1, 1/2, 0/3) 

µs Vegetation (NDVI) (1/1, 0.92/2, 0.46/3, 0/4) 

µs Snow depth (0/1, 1.0/2, 0.58/3, 0.26/4, 0.16/5, 0.05/6, 0.11/7) 

µs Air temperature (0.20/1, 1.0/2, 0.53/3, 0.13/4, 0.0/5, 0.13/6) 

µs Wind speed/direction (0.0/1, 0.33/2, 0.56/3, 0.78/4, 1.0/5, 0.78/6) 

µs Relative humidity (0.0/1, 0.0/2, 0.21/3, 0.21/4, 1.0/5) 

The final avalanche susceptibility map indicates that the north, northeast and 

northwest parts of the Lahaul-Spiti region have the highest avalanche risk. The 

higher susceptibility zones concentrate in the middle of the study area and along 

the River and its torrents. The moderate susceptibility zones are in the middle and 
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lower reaches and some in the upper reaches, most of which are located on both 

sides of high susceptibility zones. 

The avalanche susceptibility map was evaluated by comparison of theimap 

withiboth the trainingidata of avalanche occurrence locations that wereiused for 

constructing theimodels and withithe avalanche occurrence locationsithat were not 

usediduring theimodel construction phase from the avalanche inventory map. 

A ROC-AUC analysis technique was used to ivalidate the iresults. For 

validation of the results by the ROC-AUC technique, the successirate and the 

predictionirate wereicalculated. The trainingi data of the documented avalanche 

occurrence locations was used to icalculate the successirate of the avalanche 

susceptibility map. The validation data of the documented occurrence locations 

was used toicalculate the predictionirate of the iavalanche susceptibility map.  

 In this study, 233 (80%) of randomly selected avalanche locations from 

inventory maps used to train theimodel andithe iremaining 59 (20%) wereiused for 

validation of the model results.  The successirate and predictionirate of the Fuzzy-

FRimodel of terrain and hybrid parameters was calculated (Figure 6.4 and 6.5). 

The success rate of the Fuzzy-FR model based on terrain and hybrid parameters 

were calculated as 0.9407 and 0.9454. Hence, the success accuracy of the model 

based on terrain and hybrid parameters are determined as 94.07% and 94.54%. The 

prediction rate of the Fuzzy-FR model based on terrain and meteorological 

parameters are calculated as 0.9176 and 0.9201. Hence, the prediction accuracy of 

the Fuzzy-FR model based on terrain and hybrid parameters is determined as 

91.76% and 92.01%, respectively. 

The accuracy assessment of the model has been demonstrated that the hybrid 

parameters (terrain + meteorological) improved the results of the applied 

geospatial models for avalanche isusceptibility imapping. The results from 

prediction rate directed to avoid any kind of activities in high potential avalanche 

release areas. The human activity should be avoided in the moderate avalanche 

potential areas to minimize the threat. A risk inspection should be carried out in 

the lowisusceptibility zones to ensure the noithreat of avalanche occurrence to 

humankind and other related infrastructure. This is also suggested that the dynamic 

avalanche models should be further utilized to quantify the avalanche risk and run-
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out areas of ipotential iavalanche sites. The iavalanche isusceptibility imap 

obtained can be a better reference for planners and engineers to design and develop 

control structures. This avalanche susceptibility map presents helpful information 

so that consciousness can be accorded to higher avalanche susceptibility zones for 

any kind of infrastructure development in the near future. The avalanche 

susceptibility map will be useful for concerned experts in disaster management, 

planning and mitigation purposes.  

 

Figure 6.4: ROC curve for success rate and prediction rate of terrain-based 

avalanche susceptibility index 
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Figure 6.5: ROC curve for success rate and prediction rate of terrain and 

meteorological parameters based avalanche susceptibility index 

6.4 Comparison of results between FR, MCDA-AHP and Fuzzy-FR models 

The present research focused on three geospatial models such as frequency 

ratio, multi-criteria analyticali hierarchy iprocess and fuzzy-frequency 

ratioimodels for avalanche isusceptibility imapping. Five iterrain iparameters such 

as islope, aspect, icurvature, elevation and vegetation icover as constant 

iparameters, whereas dynamic parameters i.e., imeteorological parametersi such as 

snow depth, airitemperature, wind speed/direction and irelative ihumidity are used 

in all geospatial models for avalanche susceptibility indexing. The generated 

avalanche susceptibility index are further reclassified into avalanche susceptibility 

zones by using Jenks (1967) natural break method.  

Results from all three geospatial models are assessed using the most popular 

statistical assessment technique i.e., areaiunder theireceiver operating 

characteristics (ROC-AUC) technique. The ROC-AUC technique determines the 

correlation betweenithe avalanche isusceptibility mapi and the avalanche 
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iinventory imap of the documented avalanche occurrence locations. Popularly, 

ROC-AUC values ranging ifrom 0.5 to 1.0 is used for estimating the prediction 

accuracy (Yesilnacari and iTopal, i2005). The ROC-AUC value ranges from 0.9 to 

1.0 is the ideal situation for prediction accuracy (Regmi et al., 2014). The ROC-

AUC value of the avalanche susceptibilityi indexi was icalculated by 100 

subdivisions of the totalinumber of pixelsiin the studyiarea and the cumulative 

percentage of documented avalanche occurrences.  

Validation of the release area map has been performed by icalculating 

isuccess and predictionirates. The training data has been applied for the calculation 

of the success rate. While, the validation data has been applied for calculation of 

prediction rate. The values of success rate help to define the correlation of 

avalanche susceptibility map with the documented avalanche locations. The value 

of the prediction rate determines the accuracy of the model predicting the 

avalanches. For validation, 233 i.e., 80% avalanche occurrence data has been 

applied for training the model. While, the remained 59 i.e. 20% are employed for 

validation.  

The successirate and predictionirate are calculated for verification and 

ivalidation of the results. The success rates of the probabilistic FR model of terrain 

and hybrid (terrain+ meteorological) parameters are calculated as 0.9241 and 

0.9321. Therefore, success accuracies of the probabilistic FR model for terrain and 

hybrid parameters are demonstrated as 92.41% and 93.21%. The prediction rate of 

the FR model of the terrain and hybrid parameters are calculated as 0.8913 and 

0.8974. Hence, the prediction accuracies for terrain and hybrid parameters are 

demonstrated as 89.13% and 89.74%, respectively. 

Similarly, the prediction rates of the MCDA-AHP model of the terrain and 

hybrid parameters are calculated as 0.9097 and 0.9342. Therefore, the prediction 

accuracies of AHP model based on terrain and hybrid parameters are determined 

as 90.97% and 93.42%. For the MCDA-AHP model, only the prediction rate has 

been calculated because of only expert judgments and regional knowledge used for 

derivation of weight values for each avalanche occurrence parameter. There is no 

need to use a sample dataset for training the iMCDA-AHP imodel. So, the 

successirate was not considered in the MCDA-AHP model. 
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 Finally, the successirate and predictionirate of the Fuzzy-FR imodel of 

terrain and hybrid parameters was also calculated. The successirate of the Fuzzy-

FR imodel based on terrain and hybrid parameters were calculated as 0.9407 and 

0.9454. Hence, the success accuracy of the model based on terrain and hybrid 

parameters are determined as 94.07% and 94.54%. The prediction rate of the 

Fuzzy-FR model based on terrain and meteorological parameters are calculated as 

0.9176 and 0.9201. Hence, the prediction accuracy of the Fuzzy-FR model based 

on terrain and hybrid parameters are determined as 91.76% and 92.01%, 

irespectively. 

The accuracy iassessment ofithe three imodels has been demonstrated 

thatithe hybrid parameters (terrain + meteorological) improved the results of the 

applied geospatial models for avalanche isusceptibility imapping. The ROC-AUC 

of successirate and predictionirate of FR modeli are presented in figures 6.3 and 

6.4. The ROC-AUC ofithe predictionirate of MCDA-AHP is shown in ifigure 6.5. 

Finally, the ROC-AUC of successirate and prediction rate of Fuzzy-FR model are 

shown in figures 6.6 and 6.7  

The accuracy assessment of these three models proves that the Fuzzy-FR 

model provides better results than the probabilistic FR model and MCDA-AHP 

model. However, the probabilistic FR model and MCDA-AHP model also shown 

acceptable results.  
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7. CONCLUSION AND FUTURE RESEARCH 

7.1 Conclusion 

A snow avalanche is a severe threatito lifeiand property in the mountainous 

snow covered regions. Thus, avalanche release area mapping is one of the 

preliminary steps in the screening of hazardous area and minimizing the loss. GIS 

has become an important instrument in the last two decades for natural hazard 

assessment and susceptibility mapping. In the present research, a GIS-based FR, 

MCDA-AHP and Fuzzy-FR models were applied for release area mapping of the 

avalanche hazard of the study area (Lahaul region). Most prominent terrain and 

meteorological avalanche occurrence parameters were incorporated in GIS models 

for release area mapping of snow avalanches. These parameters were reclassified 

and utilized as per the configuration of GIS models. The generated release area 

maps of the avalanche were further reclassified intoifive zones, such as - 

noisusceptibility, ilow susceptibility, imoderate susceptibility, moderate to highi 

susceptibility and very highisusceptibility, respectively. ROC-AUC technique was 

usedito evaluate the accuracy of theimodel results. The validation ofithe 

performance of the geospatial models such as the Probabilistic Frequency Ratio 

iModel, iMulti iCriteria iDecision iAnalysis-Analytical iHierarchy iProcess 

(MCDA-AHP) iModel and Fuzzy-Frequency Ratio by utilizing the ROC-AUC 

technique was performed by utilizing the ROC-AUC technique.  

The GIS models in present research mayihelp in the earlyistages of 

avalancheirisk mapping. These models may be considered as an enhancement of 

basic assessment approach based on imorphological and meteorological 

iparameters. The application of these models usually based on terrain and 

meteorological parameters to detect vulnerable site that works better than a basic 

slope, icurvature and roughness ithreshold. It has been already recommended to 

test different parameter settings (Bühler iet al., i2013). Theistudy by Bühler iet al. 

(2013) for avalanche release areas was only on the basis of thresholds values 

applied on three terrain parameters. The selection of threshold values were based 

on expert judgments. These authors suggest that the potential avalanche release 

areas (PARAs) usually detected by basic ibinary morphologicalicriteria for 
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threshold values of slope ibetween 130˚ and 160˚, planicurvature values<=5 and 

roughness values of <=0.5. The model was not trained for occurrence parameters 

using documented iavalanche ioccurrence data of the iHimalaya iregion. While, 

the present imodel is ibased on the data-driven iapproach and iexpert judgments. 

Training of the models has been done for occurrence parameters using documented 

avalanche data of the study area. 

PARAs can usually be related to morphological analysis. This approach may 

considered as relatively intuitive in the avalanche hazard assessment. The similar 

example of hazard assessment system was discussed by Maggioni and Gruber 

(2003). These authors suggest that the potential avalanche release areas (PARAs) 

usually detected by basic ibinary morphologicalicriteria for threshold values of 

slope ibetween 130˚ and 160˚, planicurvature values<=5 and roughness values of 

<=0.5. Their approach was commonly used as a screening criterion for the 

detection of PARAs (Eckert et al. 2007a, b). In a few cases, the approach was sown 

to conform to the observed avalanches. To the best of information, however, a 

thoroughly outcome of this basic threshold based approach against observed 

releases of avalanches has not been carried out. 

As a result, the avalanche susceptibility maps show good prediction capacity, 

thus proving its usefulness for designing and development of future infrastructure 

by avoiding the highly susceptible zones. Direct recognition of avalanche location 

based on the avalanche inventory map of previously avalanche activities mayibe 

suitable whereithese are strongly indicative of avalanches that occurred throughout 

theitime spent byithe field surveyors. These hazardous locations needed to be, 

verified by field surveys. To quantify the risk for the settlements, infrastructures 

and delineations of run-out, the dynamic models may be further utilized. 

As per the results of the prediction rate, this is proposed that anthropogenic 

and other related activitiesishould be avoided in theihigh and very high 

isusceptibility zones. This is further suggested to do not initiate development 

projects in these susceptibility zones. In the moderate isusceptibility zones, ihuman 

activity shouldiavoid these zones. The standards for engineering controls shouldibe 

implemented where possible. The risk assessment imust also be performed inithe 

lowisusceptibility zones to iensure the ithreat of avalanche occurrence to 
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humankind and other related infrastructure. This is also suggested that the dynamic 

avalanche models should be further utilized to quantify the avalanche risk and 

potential avalanche run-out areas. The iavalanche isusceptibility imap obtained in 

this istudy can be a better referencei for iplanners and iengineers to design and 

develop control structures. This avalanche susceptibility map presents helpful 

information so that consciousness can be accorded to high and veryihigh avalanche 

isusceptibility zones of theistudy area for the high and very high susceptible zones 

for any kind of infrastructure development in the near future. The avalanche 

susceptibility map will be useful for concerned experts in disaster management, 

planning and mitigation purposes. 

The fuzzy logic with frequency ratio method (Fuzzy-FR) is appropriate for 

avalanche susceptibility mapping, where documented avalanche locations data is 

limited or unavailable. This method is to be adopted when documented data is 

confined and experts could not go to the affected areas for detailed exploration of 

avalanche sites. Therefore, present approach is considered as very useful in 

inaccessible large areas for the initial screening of potential avalanche affected 

sites. The models results are assessed using ROC-AUC technique. It is found that 

the Fuzzy-FR model is applicable for avalanche susceptibility mapping over the 

mountainous region of Lahaul-Spiti. The resultant avalanche susceptibility map 

could be easily utilized efficiently to design control structures, prepare avalanche 

risk maps, planning and mitigation purposes. In such cases, the knowledge of the 

topographical and meteorology is beneficial. 

The membership functions of avalanche occurrence factors used in the 

present model can also be inferred from expert judgment-based method i.e. 

analytical hierarchy process (AHP). In this approach, an expert knowledge can be 

easily included in the fuzzy approach. 

Moreover, the model with fuzzy membership functions calculated in this 

study may be used in other study areas or valleys of Himachal Pradesh with similar 

geomorphological, meteorological and snowpack conditions, where documented 

avalanche occurrences data is limited or does not exist. The Fuzzy-FR model 

would need revision when applied in areas with different conditions. In such cases, 

the model could be easily revised by modifying the fuzzy membership functions.  
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7.2 Future research 

As per the present research, it is found that the Fuzzy-FR model 

demonstrated the better results than probabilistic FR and MCDA-AHP models. 

Therefore, it is recommended to incorporate the model in a GIS environment to 

develop a geospatial tool to the automated mapping of the potential avalanche 

release areas of avalanche susceptibility in Western Indian Himalaya. 

The automated tool may also be implemented and publish as a geospatial 

web service in a GIS server from geospatial models for automatic avalanche 

mapping susceptibility inithe WebGIS environment. 

The present research was focused on the utilization of the most prominent 

avalanche occurrence terrain, imeteorological and isnowpack parameters. A few 

numbers of distributed stations are available in the study area to collect 

meteorological data. In future, if number of stations increased then training the 

models using meteorological data from more distributed stations will be added 

advantage to obtain more precise results. In the future, if more meteorological 

parameters and highly densified data will available as covering the region may 

integrated in the Fuzzy-FR model which may become the integrated model for 

release area mapping of the avalanches for highly accurate results. Fuzzy-

AnalyticaliHierarchy Process (Fuzzy-AHP) Model, iModified iAnalytical 

HierarchyiProcess (M-AHP) Model may also be developed and utilized for 

avalanche susceptibility mapping by taking the reference of the present research.  

This is also suggested that the dynamic avalanche models should be further 

utilized to quantify the avalanche risk and ipotential avalanche run-out areas. 

Theiavalanche susceptibility imap obtained can be a better ireference for iplanners 

and iengineers to design and develop control structures. The avalanche 

susceptibility map will be useful for concerned experts in disaster management, 

planning and mitigation purposes. 

 

 

 

 

 



107 

 

8. REFERENCES 

Aksoy, B., Ercanoglu, M., 2012. Landslide identification and classification by 

object-based image analysis and fuzzy logic: An example from the Azdavay 

region (Kastamonu, Turkey). Computers and Geosciences, 38: 87-98 

Albrecht V.M., Jaeneke G., Sommerhoff W., Kellermann, 1994. Wetter-Lawinen, 

In: Deutscher, Osterreichischer A, herausgeber. Alpin-Lehrplan 9: 1–198 

Ancey, C., 2001. Snow avalanches. In: Balmforth, N., Provenzale, A. (Eds.), 

Geomorphological Fluid Mechanics: Selected Topics in Geological and 

Geomorphological Fluid Mechanics, 319 – 338. 

Ancey C., 2009. Snow avalanches. In: Delage P, Schrefler B, editors. Wiley & 

Sons, New York. Available online at 

http://www.lhe.epfl.ch/articles/2009WILEY2.pdf  

Baeza C, Lantada N, Moya J. 2010. Validation and evaluation of two multivariate 

statistical models for predictive shallow landslide susceptibility mapping of 

the Eastern Pyrenees (Spain). Environ Earth Sci. 61:507–523. 

Bahadur J., 2004. Himalayan Snow and Glaciers: Associated Environmental 

Problems, Progress and Prospects. Concept Publishing Company, New 

Delhi, India 

Barbolini M., Natale L., Tecilla G., Cordola M., 2001. Linee guida metodologiche 

per la perimetrazione delle aree esposte al pericolo di valanghe. AINEVA. 

Available online at http://www.aineva.it/pubblica/Quaderno_Finale.pdf  

Barbolini M., Pagliardi M., Ferro F., Corradeghini P., 2011. Avalanche hazard 

mapping over large undocumented areas. Natural Hazards, 56(2):451–464.   

Barpi F., 2004. Fuzzy modelling of powder snow avalanches. Cold Region Science 

& Technology, 40 (3): 213-227 

Bianchini, S., Solari, L., Del Soldato, M., Raspini, F., Montalti, R., Ciampalini, A. 

and Casagli, N., 2019. Ground subsidence susceptibility (gss) mapping in 

grosseto plain (tuscany, italy) based on satellite insar data using frequency 

ratio and fuzzy logic. Remote Sensing, 11(17), p.2015. 



108 

 

Biskupic M., Barka I., 2010. Spatial modelling of snow avalanche run-outs using 

GIS. GIS Ostrava, 2010:1-11.  Ostrava, Czech Republic. Available online at 

http://www.gis.vsb.cz/GIS_Ostrava/GIS_Ova_2010/sbornik/Lists/Papers/E

N_3_4.pdf  

Bonham-Carter, G.F., 1994. Geographic Information Systems for Geoscientists: 

Modeling with GIS. Pergamon Press, Ottawa. 

Boroushaki S, Malczewski J. 2008. Implementing an extension of the analytical 

hierarchy process using ordered weighted averaging operators with fuzzy 

quantifiers in ArcGIS. Comput Geosci. 34:399–410. 

Brundl M., Etter H.J., Steiniger M., Klingler C., Rhyner J., Ammann W.J., 2004. 

IFKIS—a basis for managing avalanche risk in settlements and on roads in 

Switzerland. Natural Hazards Earth System Sciences, 4:257–262  

Buck A. L., 1981. New equations for computing vapor pressure and enhancement 

factor. Journal of Applied Meteorology, vol. 20, Issue 12, pp.1527-1532 

Bühler, Y., Hüni, A., Christen, M., Meister, R. and Kellenberger, T., 2009. 

Automated detection and mapping of avalanche deposits using airborne 

optical remote sensing data. Cold Regions Science and Technology, 57(2–

3):99-106.doi: 10.1016/j.coldregions.2009.02.007 

Bühler Y., Kumar S., Veitinger J., Christen M., Stoffel A, Snehmani, 2013. Nat. 

Hazards Earth Syst. Sci., 13: 1321–1335 

Bühler, Y., Bieler, C., Pielmeier, C., Wiesmann, A., Caduff, R., Frauenfelder, R., 

Jaedicke, C. and Bippus, G., 2014b. All-weather avalanche activity 

monitoring from space?, Proceedings of the International Snow Science 

Workshop, 2014, Banff, Canada, pp. 795-802. 

Bühler, Y., Meier, L. and Ginzler, C., 2015. Potential of operational, high spatial 

resolution near infrared remote sensing instruments for snow surface type 

mapping. IEEE Geoscience and remote sensing letters, 12(4): 821-825 

Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B., 2012. Spatial 

prediction of landslide hazards in Hoa Binh province (Vietnam): a 

comparative assessment of the efficacy of evidential belief functions and 

fuzzy logic models. Catena, 96:28-40. doi:10.1016/j.catena.2012.04.001 



109 

 

Burrough, P. A., and R. A. McDonell. 1998. Principles of Geographical 

Information Systems. New York: Oxford University Press. 

Caduff, R., Wiesmann, A., Bühler, Y., 2015. Continuous monitoring of snowpack 

displacement at high spatial and temporal resolution with terrestrial radar 

interferometry. Geophys. Res. Lett. 01. 

http://dx.doi.org/10.1002/2014GL062442. 

Campbell C., Gould B., Newby J., 2012. Zoning with the avalanche terrain 

exposure scale. Proceedings of 2012 International Snow Science Workshop. 

Anchorage, Alaska, 450–457. Available online at 

http://www.arc.lib.montana.edu/snow-science/objects/issw-2012-450-

457.pdf  

Chen X., Chen H., You Y., and Liu J. 2015. Susceptibility assessment of debris 

flows using the analytic hierarchy process method - A case study in Subao 

river valley, China; Journal of Rock Mechanics and Geotechnical 

Engineering, 7 (4): 404-410 

Chang A.T., Foster, J.L., Hall, D.K., Rango, A. and Hartline, B.K., 1982. Snow 

water equivalent estimation by mircowave radiometry. Cold Regions Science 

and Technology, 5: 259-267 

Choubin, B., Borji, M., Mosavi, A., Sajedi-Hosseini, F., Singh, V.P. and 

Shamshirband, S., 2019. Snow avalanche hazard prediction using machine 

learning methods. Journal of Hydrology, 577, p.123929. 

Christen M., Kowalski J., Bartlet P., 2010. RAMMS: Numerical simulation of 

dense snow avalanches in three-dimensional terrain. Cold Regions Science 

and Technology, 63:1-14 

Christiansen, H.H., 2001. Snow-cover depth, distribution and duration data from 

northeast Greenland obtained by continuous automatic digital camera. 

Annals of Glaciology, 32: 102-108.doi: 10.3189/172756401781819355 

Chrustek, P. and Wezyk, P., 2009. Using high resolution LiDAR data to estimate 

potential avalanche release areas on the example of Polish mountain regions, 

Proccedings of the International Snow Science Workshop, 2009, Davos, 

Switzerland, pp. 495-499. 



110 

 

Chung C-J.F., Fabbri A.G., 1993. The representation of geoscience information for 

data integration. Natural Resources Research, 2(2):122–139. DOI: 

10.1007/BF02272809 

Chung C.F., Fabbri A.G., 1999. Probabilistic prediction models for landslide 

hazard mapping. Photogrammetric Engineering and Remote Sensing, 

65(12):1389–1399 

De Scally, F.A. & Gardner, J.S., 1994. Characteristics and mitigation of the snow 

avalanche hazard in Kaghan Valley, Pakistan Himalaya. Natural Hazards, 

9(1-2):197-213 

Falah, F. and Zeinivand, H., 2019. GIS-based groundwater potential mapping in 

khorramabad in lorestan, Iran, using frequency ratio (FR) and weights of 

evidence (WoE) models. Water Resources, 46(5), pp.679-692. 

Deems, J.S., Gadomski, J., Vellone, D., Evanczyk, R., LeWinter, A., Birkeland, K. 

and Finnegan, D.C., 2014. Mapping starting zone snow depth with a 

groundbased Lidar to improve avalanche control and forecasting, 

Proceedings of the International Snow Science Workshop, 2014, Banff, 

Canada, pp. 101-108. 

Deems, J.S., Painter, T.H. and Finnegan, D.C., 2013. Lidar measurement of snow 

depth: a review. Journal of Glaciology, 59: 467-

479.doi:10.3189/2013JoG12J154 

Delparte D.,Jamieson B., Waters N., 2008. Statistical runout modeling of snow 

avalanches using GIS in Glacier National Park, Canada. Cold Region 

Science and Techonology, 54:183-192 

DLR, 2014. E-SAR. The experimental airborne SAR system of DLR. 

Dong, C., 2018. Remote sensing, hydrological modeling and in situ observations 

in snow cover research: A review. Journal of Hydrology, 561, pp.573-583. 

Dozier J., 1989a. Remote sensing of snow in visible and near-infrared wavelengths. 

Theory and Applications of Optical Remote Sensing. John Wiley and Sons, 

New York. 



111 

 

Dozier J., 1989b. Spectral signature of alpine snow cover from the landsat thematic 

mapper. Remote Sensing of Environment, 28(0): 9-22.doi: 10.1016/0034-

4257(89)90101-6 

Eckerstorfer, M., Malnes, E., Frauenfelder, R., Domaas, U. and Brattlien, K., 2014. 

Avalanche debris detection using satellite-borne radar and optical remote 

sensing, Proceedings of the International Snow Science Workshop 2014, 

Banff, Canada, pp. 122-128. 

Eckerstorfer, M., Solbø, S.A. and Malnes, E., 2015. Using "structure-from-motion" 

photogrammetry in mapping snow avalanche debris. In: K. Kriz (Editor), 

Wiener Schriften zur Geographie und Kartographie. University of Vienna, 

Vienna, pp. 171-187. 

Eckerstorfer, M. and Malnes, E., 2015. Manual detection of snow avalanche debris 

using high-resolution Radarsat-2 SAR images. Cold Regions Science and 

Technology, 120, 205-218 

Eckerstorfer, M., Bühler, Y., Frauenfelder, R. and Malnes, E., 2016. Remote 

sensing of snow avalanches: Recent advances, potential, and limitations, 121, 

126-140. 

Eckert N., Parent E., Bêlanger L., Garcia S., 2007. Hierarchical Bayesian 

modelling for spatial analysis of the number of avalanche occurrences at the 

scale of the township. Cold Regions Science and Technology, 50 (1–3): 97–

112.  

Feick, S., Mitterer, C., Dreier, L., Harvey, S. and Schweizer, J., 2012. Automated 

detection and monitoring of glide-snow events using satellite-based optical 

remote sensing Proceedings of the International Snow Science Workshop, 

2012, Anchorage, Alaska, pp. 603-609. 

Feizizadeh, B., M. S. Roodposhti, P. Jankowski, and T. Blaschke. 2014. “A GIS-

based Extended Fuzzy Multi-criteria Evaluation for Landslide Susceptibility 

Mapping.” Computers and Geosciences 73: 208–221. doi:10.1016/j.cageo. 

2014.08.001. 



112 

 

Fuchs S., Bründl M., 2005. Damage Potential and Losses Resulting from Snow 

Avalanches in Settlements of the Canton of Grisons, Switzerland. Natural 

Hazards, 34: 53–69  

Fuchs S., Thöni M., McAlpin M.C., Gruber U., Bründl M., 2007. Avalanche 

Hazard Mitigation Strategies Assessed by Cost Effectiveness Analyses and 

Cost Benefit Analyses—evidence from Davos, Switzerland. Natural 

Hazards, 41(1):113-129 

Furdada G., Marti G., Oller P., Garcia C., Mases M., Vilaplana J.M., 1995. 

Avalanche mapping and related GIS applications in the Catalan Pyreness. 

Surveys in Geophysics, 16 (5-6): 681-693. DOI: 10.1007/BF00665748 

Ganju A., Thakur N.K., Rana V., 2002. Characteristics of avalanche accidents in 

western Himalayan region, India, International Snow Science Workshop 

(2002: Penticton, B.C.), 200207  

Ganju A., Dimri A.P., 2004. Prevention and Mitigation of Avalanche Disasters in 

Western Himalayan Region. Natural Hazards 31: 357–371.   

Gardner J.S., Saczuk E., 2004. Systems for hazards identification in high mountain 

areas: an example from the Kullu District, Western Himalaya. Journal of 

Mountain Science, 1:115–127.   

Gauthier, D., Conlan, M. and Jamieson, B., 2014. Photogrammetry of fracture lines 

and avalanche terrain: Potential applications to research and hazard 

mitigation projects, Proceedings of the International Snow Science 

Workshop, 2014, Banff, Canada, pp. 109-115. 

Ghinoi A, Chung CJ, 2005. STARTER: a statistical GIS-based model for the 

prediction of snow avalanche susceptibility using terrain features’’ 

application to Alta val Badia, Italian dolomites. Geomorphology, 66 (1–

4):305–325. 

Gholami, M., Ghachkanlu, E.N., Khosravi, K. and Pirasteh, S., 2019. Landslide 

prediction capability by comparison of frequency ratio, fuzzy gamma and 

landslide index method. Journal of Earth System Science, 128(2), pp.1-22. 

Gilany, N. and Iqbal, J., 2019. Simulation of glacial avalanche hazards in Shyok 

Basin of Upper Indus. Scientific reports, 9(1), pp.1-14. 



113 

 

Gleason J.A., 1994. Terrain parameters of avalanche starting zones and their 

effects on avalanche frequency. International Snow Science Workshop 

(ISSW), Snowbird, Utah, USA, 393-404. Available online at 

http://www.arc.lib.montana.edu/snow-science/objects/issw-1994-393-

404.pdf  

Gruber U., Bartelt P., 2007. Snow avalanche hazard modelling of large areas using 

shallow water numerical methods and GIS, Environmental Modelling and 

Software, 22 (10): 1472–1481. DOI:10.1016/j.envsoft.2007.01.001 

Guy Z.M., Birkeland, K.W., 2013. Relating complex terrain to potential avalanche 

trigger locations. Cold Regions Science and Technology, 86: 1–13.  

Hall D.K., Riggs, G.A., Salomonson, V.V., DeGirolamo, N.E., Bayr, K.J. and Jin, 

J.M., 2002. MODIS snow-cover products. Remote Sensing of Environment, 

83: 181-194 

Hanley JA, McNeil BJ. 1983. A method of comparing the areas under receiver 

operating characteristic curves derived from the same cases. Radiology. 

148:839–843. 

Hebertson E.G., Jenkins M.J., 2003. Historic climate factors associated with major 

avalanche years on the Wasatch Plateau, Utah. Cold Regions Science and 

Technology, 37(3):315–332. DOI: 10.1016/S0165-232X(03)00073-9 

Hendrikx, J., Peitzsch, H.E. and Fagre, D.B., 2012. Time-lapse photography as an 

approach to understanding glide avalanche activity, Proceedings of the 

International Snow Science Workshop, 2012, Anchorage, Alaska, pp. 872-

877. 

Hendrikx J., Owens I., Carran W., Carran A., 2004. Overview of the spatial 

distribution of avalanche activity in relation to meteorological and 

topographic variables in an extreme maritime environment. Proceedings of 

the International Snow Science Workshop. Jackson Hole, Wyoming, USA, 

299-307. Available online at http://www.arc.lib.montana.edu/snow-

science/objects/issw-2004-299-307.pdf  

Hervas J., 2003. Recommendations to deal with snow avalanches in Europe. EC-

JRC  



114 

 

Hines J.W., 1997. Fuzzy and neural approaches in engineering. Wiley, New York, 

NY 

Huang, S., Li, X., Wang, Y., 2012. A new model of geo-environmental impact 

assessment of mining: a multiple-criteria assessment method integrating 

Fuzzy-AHP with fuzzy synthetic ranking. Environmental Earth Science 66, 

275–284. 

Instanes, A., Lønne, I. and Sandaker, K., 2004. Location of avalanche victims with 

ground-penetrating radar. Cold Regions Science and Technology, 38(1): 55-

61 

Jaccard C., 1990. Fuzzy factorial analysis of snow avalanches. Natural Hazards, 

3(4):329-340. 

Jarsve, K., Devoli, G. and Schuler, T.V., 2019, January. Uncertainties of 

Simulating Debris Avalanches Using RAMMS. In Geophysical Research 

Abstracts (Vol. 21). 

Jenks G.F. 1967. The Data Model Concept in Statistical Mapping. International 

Yearbook of Cartography 7: 186–190. 

Jiang H, Eastman JR. 2000. Application of fuzzy measures in multi-criteria 

evaluation in GIS. Int J Geog Inf Sci. 14:173–184. 

Jomelli V., Delval C., Grancher D., Escande S., Brunstein D., Hetu B., Filion L., 

Pech P., 2007.  

Kahraman, C., U. Cebeci, and Z. Ulukan. 2003. “Multi-criteria Supplier Selection 

using Fuzzy AHP.” Logistics Information Management 16 (6): 382–394. 

doi:10.1108/09576050310503367. 

Kainz, W. 2008. Fuzzy Logic and GIS. Vienna: University of Vienna. 

http://homepage.univie.ac.at/wolfgang.kainz/ 

Lehrveranstaltungen/ESRI_Fuzzy_Logic/File_2_Kainz_Text.pdf. 

Kavzoglu T., Sahin E.K., Colkesen I., 2014. Landslide susceptibility mapping 

using GIS-based multi-criteria decision analysis, support vector machines, 

and logistic regression. Landslides, 11(3):425-439 



115 

 

Kayastha P, Dhital MR, Smedt FD. 2013. Application of the analytical hierarchy 

process (AHP) for landslide susceptibility mapping: a case study from the 

Tinau watershed, west Nepal. Comput Geosci. 52:398–408. 

Kim Ki-Dong., Lee S., Oh Hyun-Joo, Choi Jong-Kuk., Won Joong-Sun. 2006. 

Assessment of ground subsidence hazard near an abandoned underground 

coal mine using GIS. Environ. Geol. 50, 1183–1191. DOI: 10.1007/s00254-

006-0290-5 

Kirschbaum, D., T. Stanley, and S. Yatheendradas. 2015. “Modeling Landslide 

Susceptibility over Large Regions with Fuzzy Overlay.” Landslides 1–12. 

doi:10.1007/s10346-015-0577-2. 

Koenderink, J.J. and van Doorn, A.J., 1991. Affine structure from motion. Journal 

of the Optical Society of America. A, Optics and image science, 8(2): 377-

385 

Lato, M.J., Frauenfelder, R. and Bühler, Y., 2012. Automated detection of snow 

avalanche deposits: segmentation and classification of optical remote sensing 

imagery. Nat. Hazards Earth Syst. Sci., 12(9): 2893-2906.10.5194/nhess-12-

2893-2012 

Larsen, S.Ø., Salberg, A.-B. and Solberg, R., 2013. Automatic avalanche mapping 

using texture classification of optical satellite imagery, EARSeL, pp. 399-

410. 

Lee, S., Oh, H.J., and Kim, K.D. 2010. “Statistical spatial modeling of ground 

subsidence hazard near an abandoned underground coal mine.” Disaster 

Advances 3:11–23. 

Maggioni, M., Gruber, U., Stoffel, A. 2002. Definition and characterisation of 

potential avalanche release areas. 22nd Annual Esri International User 

Conference, San Diego Available online at 

http://avalanchemapping.org/linksresearch.htm  

Maggioni M., Gruber U., 2003. The influence of topographic parameters on 

avalanche release dimension and frequency. Cold Regions Science and 

Technology, 37 (3): 407–419. DOI: 10.1016/S0165-232X(03)00080-6 



116 

 

Maggioni, M. 2004. Avalanche release areas and their influence on uncertainty in 

avalanche hazard mapping. Ph.D. thesis, University of Zürich, Zürich. 

Available online at 

http://www.geo.uzh.ch/fileadmin/files/content/abteilungen/gis/research/phd

_theses/thesis_MargheritaMaggioni_2005.pdf  

Malnes, E., Eckerstorfer, M., Larsen, Y., Frauenfelder, R., Jonsson, A., Jaedicke, 

C. and Solbø, S.A., 2013. Remote sensing of avalanches in northern Norway 

using Synthetic Aperture Radar, Proceedings of the International Snow 

Science Workshop 2013, Grenoble - Chamonix, Mont Blanc, France, pp. 

955-959. 

Malnes, E., Eckerstorfer, M. and Vickers, H., 2015. First Sentinel-1 detections of 

avalanche debris. The Cryosphere Discuss., 9: 1943-1963.doi: 10.5194/tcd-

9-1943-2015 

Martinez-Vazquez, A. and Fortuny-Guasch, J., 2008. A GB-SAR Processor for 

Snow Avalanche Identification. Geoscience and Remote Sensing, IEEE 

Transactions on, 46(11): 3948-3956.10.1109/TGRS.2008.2001387 

McCammon I., Häegeli P., 2007. An evaluation of rule-based decision tools for 

travel in avalanche terrain. Cold Region Science Technology, 47(1–2):193–

206  

McClung D.M., Mears A.I., 1995. Dry-flowing avalanche run-up and run-out. 

Journal of Glaciology, 41: 359-372 

McClung, D. M. 2001. “Characteristics of Terrain, Snow Supply and Forest Cover 

for Avalanche Initiation caused by Logging.” Annals of Glaciology 32: 223–

229. 

McClung D.M, Schaerer P., 2006. The avalanche handbook, third edition. The 

Mountaineers Books, Seattle, WA, USA  

Mears A.I., 1992. Snow-Avalanche hazard analysis for land-use planning and 

engineering. Bulletin 49, Colorado Geological Survey, Denver  

Meer, M.S. and Mishra, A.K., 2020. Observational study of a severe snowfall 

avalanche over a state in North India in November 2019 using GIS. Journal 

of Earth System Science, 129(1), pp.1-5. 



117 

 

Naghibi S.A, Pourghasemi H.R., Pourtaghi Z.S., Rezaei A., 2015. Groundwater 

qanat potential mapping using frequency ratio and Shannon’s entropy models 

in the Moghan watershed, Iran. Earth Science Informatics. 8 (1): 171-186. 

DOI: 10.1007/s12145-014-0145-7 

Naaim M., Faung T., Naaim-Bouvet F., 2003. Dry granular flow modelling 

including erosion and deposition. surveys in geophysics, 24:569-585 

Naaim M., Naaim-Bouvet F.,Faug T., Bouchet A., 2004. Dense snow avalanche 

modeling: flow, erosion, deposition and obstacle effects. Cold Regions 

Science and Technology, 39:193-204 

Nefeslioglu H.A., Sezer E.A., Gokceoglu C., Ayas Z., 2013. A modified analytical 

hierarchy process (M-AHP) approach for decision support systems in natural 

hazard assessments  

Nolin A.W., 2010. Recent advances in remote sensing of seasonal snow. Journal 

of Glaciology, 56(200): 1141-1150 

Norwegian Geotechnical Institute NGI, 2015. Towards an automated snow 

property and avalanche mapping system (ASAM) - Avalanche recognition 

and snow variable retrieval. version 2 (Technical report). NGI Report no. 

20130092-04-R. 127. 

Oh, H.J., Kim, Y.S., Choi, J.K., Lee, S. 2011. “GIS mapping of regional 

probabilistic groundwater potential in the area of Pohang City, Korea.” 

Journal of Hydrology 399(3-4): 158– 172. 

doi:10.1016/j.jhydrol.2010.12.027. 

Oller P. et al., 2010. Using AVAL-1D to simulate avalanches in the eastern 

Pyrenees. Cold Regions Science and Technology, 64:190-198 

Ozdemir A., 2011. GIS-based groundwater spring potential mapping in the Sultan 

Mountains (Konya, Turkey) using frequency ratio, weights of evidence and 

logistic regression methods and their comparison. Journal of Hydrology, 411 

(3-4):290–308. DOI:10.1016/j.jhydrol.2011.10.010 

Ozdemir, A., 2020. A Comparative Study of the Frequency Ratio, Analytical 

Hierarchy Process, Artificial Neural Networks and Fuzzy Logic Methods for 



118 

 

Landslide Susceptibility Mapping: Taşkent (Konya), Turkey. Geotechnical 

and Geological Engineering, pp.1-29. 

Peitzsch, H.E., Hendrikx, J., Fagre, B.D. and Reardon, B., 2010. Characterizing 

wet slab and glide slab avalanche occurence along the Going-to-the-sun road, 

Glacier national park, Montana, USA, Proceedings of the International Snow 

Science Workshop 2010, Squaw Valley, pp. 651-659. 

Perla R., Cheng T.T., McClung D.M., 1980. Two-parameter model of snow-

avalanche motion. Journal of Glaciology, 94:197-207 

Perla R., 1984. Particle simulation of snow avalanche motion. Cold Regions 

Science and Technology, 9:191-202 

Pistocchi A., Notarnicola C., 2013. Data-driven mapping of avalanche release 

areas: a case study in South Tyrol, Italy. Natural Hazards, 65(3): 1313-1330 

Pourghasemi H.R, Pradhan B., Gokceoglu C., Moezzi K.D., 2013. A comparative 

assessment of prediction capabilities of Dempster-Shaferand weights-of-

evidence models in landslide susceptibility mapping using GIS. Geomatics. 

Natural Hazards and Risk, 4(2): 93-118. 

doi:10.1080/19475705.2012.662915 

Pradhan, B., and Lee, S. 2010. “Delineation of landslide hazard areas on Penang 

Island, Malaysia, by using frequency ratio, logistic regression, and artificial 

neural network models.” Environmental Earth Sciences 60(5):1037–1054. 

Doi:10.1007/s12665-009-0245-8. 

Prokop, A., 2008. Assessing the applicability of terrestrial laser scanning for spatial 

snow depth measurements. Cold Regions Science and Technology, 

54(3):155-163.doi: 10.1016/j.coldregions.2008.07.002 

Prokop, A., Schön, P., Singer, F., Gaëtan, P., Naaim, M., Thibert, E., 2013. 

Determining avalanche modelling input parameters using terrestrial laser 

scanning technology. Proceedings of the International Snow Science 

Workshop, 2013, Chamonix Mont-Blanc, France, pp. 770–774. 

Rango A. and Itten K.I., 1976. Satellite potentials in snowcover monitoring and 

runoff prediction. Nordic Hydrology, 7: 209-230 



119 

 

Rao M. et al., 1988. Impact of avalanche problems in some of the hill areas of 

Himachal Pradesh (1988), National Seminar on Hill Area Development, 27–

29 Jun 1988 Shimla (HP).  

Rees, G.W., 2006. Remote sensing of snow and ice. CRC Press, Taylor & Francis 

Group, 277 pp. 

Regmi A.D., Devkota K.C., Yoshida K., Pradhan B., Pourghasemi H.R., 

Kumamoto T., Akgun A., 2014. Application of frequency ratio, statistical 

index, and weights-of-evidence models and their comparison in landslide 

susceptibility mapping in Central Nepal Himalaya. Arabian Journal of 

Geosciences, 7 (2): 725-742. DOI: 10.1007/s12517-012-0807-z 

Rahmati, O., Ghorbanzadeh, O., Teimurian, T., Mohammadi, F., Tiefenbacher, 

J.P., Falah, F., Pirasteh, S., Ngo, P.T.T. and Bui, D.T., 2019. Spatial 

Modeling of Snow Avalanche Using Machine Learning Models and Geo-

Environmental Factors: Comparison of Effectiveness in Two Mountain 

Regions. Remote Sensing, 11(24), p.2995. 

Rehman, S., Sahana, M., Dutta, S., Sajjad, H., Song, X., Imdad, K. and Dou, J., 

2020. Assessing subsidence susceptibility to coal mining using frequency 

ratio, statistical index and Mamdani fuzzy models: evidence from Raniganj 

coalfield, India. Environmental Earth Sciences, 79(16), pp.1-18. 

Saaty, T.L., 1980. The Analytical Hierarchy Process. McGraw-Hill, New York.  

Saaty TL. 1987. How to handle dependence with the analytic hierarchy process. 

Mathematical Modelling. 9:161–176. 

Saaty TL. 2000. The Fundamentals of decision making and priority theory with the 

analytic hierarchy process, Vol (VI). Pitsburg: RWS publications; 478 pp. 

Saaty TL. 2008. Decision making with the analytic hierarchy process. Int J Serv 

Sci. 1:83–98. 

Sailer R. et al., 2008. Snow avalanche mass-balance calculation and simulation-

model verification. Annals of Glaciology, 48: 183-192 

Sappington, J. M., K. M. Longshore, and D. B. Thompson. 2007. “Quantifying 

Landscape Ruggedness for Animal Habitat Analysis: A Case Study using 



120 

 

Bighorn Sheep in the Mojave Desert.” The Journal of Wildlife Management 

71 (5): 1419–1426. doi:10.2193/2005-723. 

Scherer, D., Hall, D.K., Hochschild, V., König, M., Winther, J.-G., Duguay, C.R., 

Pivot, F., Mätzler, C., Rau, F., Seidel, K., Solberg, R. and Walker, A.E., 

2013. Remote sensing of snow cover. In: C.R. Duguay and A. Pietroniro 

(Editors), Remote Sensing in Northern Hydrology: Measuring 

Environmental Change. American Geophysical Union, pp. 7-38. 

Schweizer J., Jamieson J.B., Schneebeli M., 2003. Snow avalanche formation. 

Review of Geophysics, 41: 10-16.  

Schweizer J., Mitterer C., Stoffel L., 2009. On forecasting large and infrequent 

snow avalanches. Cold Region Science & Technology, 59(2–3):234–241  

Schweizer J., Bartelt P., Herwijnen AV., 2015. Snow avalanches: Snow and Ice-

Related Hazards, Risks, and Disasters 

Selçuk L., 2013. An avalanche hazard model for Bitlis Province, Turkey, using 

GIS based multicriteria decision analysis, Turkish Journal of Earth Sciences, 

523-535  

Shahabi H, Khezri S, Ahmad B.B., Hashim M, 2014. Landslide susceptibility 

mapping at central Zab basin, Iran: A comparison between analytical 

hierarchy process, frequency ratio and logistic regression models. Catena. 

115, 55–70. 

Shahabi H., Hashim M., Ahmad B.B., 2015. Remote sensing and GIS-based 

landslide susceptibility mapping using frequency ratio, logistic regression, 

and fuzzy logic methods at the central Zab basin, Iran. Environmental Earth 

Sciences. 73, 12:8647-8668 

Sharma S.S., Ganju A. 2000. Complexities of avalanche forecasting in Western 

Himalaya – an overview; Cold Regions Science and Technology, 31: 95 – 

102.  

Sharma S.S., Mathur P., Snehmani., 2004. Change detection analysis of avalanche 

snow in Himalayan region using near infrared and active microwave images. 

Adv Space Res 33:259– 267.   



121 

 

Singh M.K., Gupta R.D., Snehmani, Bhardwaj A., Ganju A., 2016a. Scenario-

Based Validation of Moderate Resolution DEMs Freely Available for 

Complex Himalayan Terrain. Pure and Applied Geophysics, 173, 463–485. 

DOI: 10.1007/s00024-015-1119-5 

Singh M.K., Gupta R.D., Snehmani, Kumar S., Ganju A., 2016b. Assessment of 

freely available CartoDEM V1 and V1.1R1 with respect to high resolution 

aerial photogrammetric DEM in high mountains, 31, 943-955. Geocarto 

International. DOI: 10.1080/10106049.2015.1094524 

Sinickas, A., and Jamieson, B. 2014. “Comparing methods for estimating ß points 

for use in statistical snow avalanche runout models.” Cold Regions Science 

and Technology 104-105: 23-32. doi:10.1016/j.coldregions.2014.04.004.   

Smith, M. J., and D. M. McClung. 1997. “Avalanche Frequency and Terrain 

Characteristics at Rogers’ Pass, British Columbia, Canada.” Journal of 

glaciology 43: 165–171. 

Snehmani, Singh M.K., Gupta R.D., Ganju A., 2013. DTM Generation and 

Avalanche Hazard Mapping using Large Format Digital Photogrammetric 

Data and Geomatics Technique. Journal of Remote Sensing and GIS, 4(2): 

4-13. ISSN: 2230-7990 

Snehmani, Bhardwaj A., Pandit A., Ganju A., 2014. Demarcation of potential 

avalanche sites using remote sensing and ground observations: a case study 

of Gangotri glacier. Geocarto International, 29 (5), 520-535. DOI: 

10.1080/10106049.2013.807304 

Snowi and Avalanchei Studyi Establishmenti (SASE). 2010. iInternal ireport on 

iavalanche hazardi mitigation ischeme. 

Snowi and Avalanchei Studyi Establishmenti (SASE). 2014. Internal ireport on 

iavalanche hazardi mitigation ischeme. 

Snowi and Avalanchei Studyi Establishmenti (SASE). 2016. Internal ireport on 

iavalanche hazardi mitigation ischeme. 

Snowi and Avalanchei Studyi Establishmenti (SASE). 2018. Internal ireport on 

iavalanche hazardi mitigation ischeme. 



122 

 

Sovilla, B., McElwaine, J.N., Schaer, M. and Vallet, J., 2010. Variation of 

deposition depth with slope angle in snow avalanches: Measurements from 

Vallée de la Sionne. Journal of Geophysical Research: Earth Surface, 

115(F2): F02016.10.1029/2009JF001390 

Stoffel A., Meister R., Schweizer J., 1998. Spatial characteristics of avalanche 

activity in an Alpine valley: A GIS approach. Annals of Glaciology, 26:329-

336 

Tedesco, M., 2015. Remote sensing of the Cryosphere. The Cryosphere Science 

Series. Wiley-Blackwell. 

Tracy L., 2001. Using GIS in avalanche hazard management. Proceedings of the 

2001 ESRI International User Conference, San Diego. 

Tsai, Y.L.S., Dietz, A., Oppelt, N. and Kuenzer, C., 2019. Remote sensing of snow 

cover using spaceborne SAR: A review. Remote Sensing, 11(12), p.1456. 

Umar Z., Pradhan B., Ahmad A., Jebur M.N., Tehrany M.S., 2014. Earthquake 

induced landslide susceptibility mapping using an integrated ensemble 

frequency ratio and logistic regression models in West Sumatera Province, 

Indonesia. Catena, 118: 124–135. DOI:10.1016/j.catena.2014.02.005 

Vallet, J., Skaloud, J. and Koelbl, O., 2000. Development of a Helicopter-Based 

Integrated System for Avalanche Mapping and Hazard Management. The 

International archives of photogrammetry. Remote sensing and spatial 

information sciences, 33: 565-572 

Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, 

Vandekerckhove L. 2006. Prediction of landslide susceptibility using rare 

events logistic regression: a case-study in the Flemish Ardennes (Belgium). 

Geomorphology. 76:392–410. 

Van Herwijnen, A. and Simenhois, R., 2012. Monitoring glide avalanches using 

timelapse photography, Proceedings of the International Snow Science 

Workshop, 2012, Anchorage, Alaska, pp. 899-903. 

Van Herwijnen, A., Berthod, N., Simenhois, R. and Mitterer, C., 2013. Using 

timelapse photography in avalanche research, Proceedings of the 

International Snow Science Workshop, 2013, Grenoble, France, pp. 950-954. 



123 

 

Van Herwijnen, A. and Fierz, C., 2014. Monitoring snow cornice development 

using time-lapse photography, Proceedings of the International Snow 

Science Workshop, 2014, Banff, Canada, pp. 865-869. 

Vogel, S., Eckerstorfer, M. and Christiansen, H.H., 2012. Cornice dynamics and 

meteorological control at Gruvefjellet, Central Svalbard. The Cryosphere, 

6:157-171.doi:10.5194/tc-6-157-2012 

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J. and Reynolds, J.M., 

2012. "Stucture-from-Motion" photogrammetry: A low-cost, effective tool 

for geoscience applications. Geomorphology, 179: 300-314.doi: 

10.1016/j.geomorph.2012.08.021 

Wiesmann, A., Wegmueller, U., Honikel, M., Strozzi, T. and Werner, C.L., 2001. 

Potential and methodology of satellite based SAR for hazard mapping., 

IGARSS 2001. IEEE, Sydney, Australia. 

Wiesmann, A., Caduff, R., Strozzi, T., Papke, J. and Mätzler, C., 2014. Monitoring 

of dynamic changes in alpine snow with terrestrial radar imagery, IGARSS 

2014. IEEE, pp. 3662-3665. 

Wirz, V., Schirmer, M., Gruber, S., Lehning, M., 2011. Spatio-temporal 

measurements and analysis of snow depth in a rock face. The Cryosphere, 

5:893-905.doi: 10.5194/tc-5-893-2011. 

Xiong, K., Adhikari, B.R., Stamatopoulos, C.A., Zhan, Y., Wu, S., Dong, Z. and 

Di, B., 2020. Comparison of different machine learning methods for debris 

flow susceptibility mapping: A case study in the Sichuan Province, China. 

Remote Sensing, 12(2), p.295. 

Xiao, X., Zhang, T., Zhong, X., Shao, W. and Li, X., 2018. Support vector 

regression snow-depth retrieval algorithm using passive microwave remote 

sensing data. Remote sensing of environment, 210, pp.48-64. 

Yang Q.L., Gao J.R., Wang Y., and Qian B.T. 2011. Debris flows characteristics 

and risk degree assessment in Changyuan Gully, Huairou District, Beijing; 

Procedia Earth and Planetary Science, 2:262-271. 



124 

 

Yariyan, P., Avand, M., Abbaspour, R.A., Karami, M. and Tiefenbacher, J.P., 

2020. GIS-based spatial modeling of snow avalanches using four novel 

ensemble models. Science of the Total Environment, 745, p.141008. 

Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: a comparison of 

logistic regression and neural networks methods in a medium scale study, 

Hendek region (Turkey). Engineering Geology, 79 (3-4): 251–266. 

DOI:10.1016/j.enggeo.2005.02.002 

Yilmaz A. 2007. Environmental Geology. Cumhuriyet University, Faculty of 

Engineering Publications, Sivas, Publication No: 107. 

Zadeh L.A., 1965. Fuzzy sets. Information and Control, 8(3): 338-353 

Zhang J, Su Y, Wu J, Liang H. 2015. GIS based land suitability assessment for 

tobacco production using AHP and fuzzy set in Shandong province of China. 

Comput Electron Agricu. 114:202–211. 

Zischg, A., Fuchs, S., Keiler, M., and Meibl, G., 2005. Modelling the system 

behaviour of wet snow avalanches using an expert system approach for risk 

management on high alpine traffic roads, Natural Hazards and Earth System 

Science, 5, 821-832. 

 

 

 



125 

 

APPENDICES 

APPENDIX 1: FIRST PAGE OF PLAGIARISM REPORT 

 



126 

 

APPENDIX -2: CURRICULUM VITAE 

SATISH KUMAR 

Development Manager (GIS System) 

Town and Country Planning Department, 

Government of Haryana, Sector 18 A,  

Chandigarh-160018 

Contact No.: +91-7009975441 

Email id: satish894@gmail.com 

 

1. EDUCATION: 

• Pursuing Ph.D. in Computer Science & Engineering from University of 

Petroleum and Energy Studies, Dehradun.  

• M. Tech. in Computer Science & Engineering from Punjab Technical 

University Jalandhar with first division. 

• B. Tech. in Computer Science & Engineering from Punjab Technical 

University Jalandhar with first division. 

• 12th from Himachal Pradesh Board of School Education Dharamshala with first 

division. 

• 10th from Himachal Pradesh Board of school Education Dharamshala with first 

division. 

2. WORK EXPERIENCE: (11 Years and 07 Months) 

Sr.

No. 

Organization Period Months 

From To 

1 

Town and Country Planning 

Department, Govt. of Haryana, 

Chandigarh 

Mar, 

2016 

Till 

date 

52 

Months 

2. 

Defence Research & Development 

Organization (DRDO), Ministry of 

Defence, SASE-RDC, Chandigarh 

Nov, 

2012 

Feb, 

2016 

38 

Months 

3. 

Punjab Remote Sensing Centre (A 

Govt. of Punjab Enterprises), PAU 

Campus, Ludhiana 

Apr, 

2012 

Nov, 

2012 

07 

Months 

4. 

Defence Research & Development 

Organization, Ministry of Defence, 

SASE-RDC, Chandigarh  

Apr, 

2009 

Mar, 

2012 

36 

Months 

5. Longowal College, Punjab 
Oct, 

2008 

Mar, 

2009 

06 

Months 

mailto:satish894@gmail.com


127 

 

3. TECHNICAL SKILLS: 

• Remote Sensing (Optical and Microwave), Geographical Information System 

(GIS), Enterprise WebGIS, Photogrammetry, Satellite Image Processing and 

Analysis and Spatial Databases. 

• Language: C++, C#, ASP.NET, SQL, JavaScript, HTML and Python 

• Packages, APIs and Libraries: OpenGeoSuite, Geoserver, OpenLayers, 

GeoEXT, ArcGIS Server, ArcGIS, LPS, ErdasImagine, ENVI, ArcObjects, 

ArcGIS APIs, GeoEXT APIs, OpenLayers APIs, Google APIs, and ArcPy  

• Database: PostgreSQL, SQL Server 2008, ArcSDE, PostGIS and  MS Access 

• OGC Standards: KML, GML, CSW, WMS, WFS, WCS, WPS, TMS, WMS-

C, WMTS and REST web services 

• Operating Systems: Microsoft Windows XP, Windows7, Linux. 

4. WORK PROFILE: 

• WebGIS development, Management of Spatial Database, Satellite Image 

Processing and analysis related tasks.  

• Manage technical team including allocation of work responsibilities and 

workflow management 

• Development of models/algorithms for snow covers mapping and monitoring of 

parts of NW Himalayas using multispectral, multi-temporal and multi 

resolution satellite data.  

• Development of an Advanced Algorithm for Fire Detection, Validation, and 

Characterization using satellite imagery (Under INSAT-3D Utilization 

Program-ISRO Sponsored Project).  

• Extraction of high-resolution Digital Elevation Models (DEMs) from Cartosat-

1 Pan Ortho Stereo pair satellite imagery using stereo correlation technique and 

its accuracy assessment/validation in Manali and nearby region, a part of NW-

Himalaya. 

• Creation of digital database of rural water supply sources in Sangrur district 

using Remote Sensing and GIS. 

• Creation of digital database of Sikkim using Remote Sensing & GIS. 

• Satellite Data Used: AWiFS, MODIS, LISS, Cartosat-1, PAN, Landsat7 

ETM+, Landsat 8, etc. 

 

 

 

 



128 

 

5. PROFESSIONAL TRAININGS:  

Sr.

No. 

Organization Period Training Detail(s) 

From To 

1. Indian Institute of Remote Sensing, 

Dehradun (ISRO)  
Aug 5, 

2012 

Aug 9, 

2012 

Open-Source GIS 

Software Solutions 

(WebGIS) 

2 Defence Research & Development 

Organization, Ministry of Defence, 

SASE RDC Chandigarh 

Jul 

2014 

Jul 

2014 

Geospatial 

Technology 

3. Defence Research & Development 

Organization, Ministry of Defence, 

SASE RDC Chandigarh 

Jul 8, 

2013 

Jul 12, 

2013 

Geospatial 

Technology 

4. Defence Research & Development 

Organization, Ministry of Defence, 

SASE RDC Chandigarh 

Jul 4, 

2011 

Jul 8, 

2011 

Remote Sensing & 

GIS 

5. Defence Research & Development 

Organization, Ministry of Defence, 

SASE RDC Chandigarh 

Jul 5, 

2010 

Jul 9, 

2010 

Remote Sensing & 

GIS 

6. Defence Research & Development 

Organization, Ministry of Defence, 

SASE-RDC, Chandigarh  

Jul 6, 

2009 

Jul 10, 

2009 

Remote Sensing & 

GIS 

7. 
Punjab Remote Sensing Centre, 

Ludhiana 

Jul, 

2007 

Jan, 

2008 

Creation of Digital 

Database using 

Remote Sensing & 

GIS 

 

6. PERSONAL DETAIL: 

• Date of Birth: 29-10-1984 

• Marital Status: Married 

• Sex: Male 

• Nationality: Indian 

• Permanent Address: S/o Shri Parkash Chand Sapehia, Village Kanol, PO 

Chanour, Tehsil Dehra, District Kangra, Himachal Pradesh-177113 

 

 



129 

 

7. REFERENCES:  

• Dr. Snehmani, Scientist ’F’, Joint Director, DRDO, SASE, Research & 

Development Centre (Ministry of Defence), Himparisar, Sector-37A, 

Chandigarh, Email id: snehmani@sase.drdo.in, snehmani@gmail.com, 

Contact number: +91-9417839240, 172-2699804-270 

• Dr. Pankaj Kumar Srivastava, Professor, Department of Petroleum Engineering 

and Earth Sciences, University of Petroleum and Energy Studies, Dehradun, 

India, Email id: pksrivastava@ddn.upes.ac.in, Contact number: +91-

9758218896 

 

 

 

Date: 14/07/2020 

Place: CHANDIGARH                                                              SATISH KUMAR  

                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:snehmani@gmail.com
mailto:pksrivastava@ddn.upes.ac.in


130 

 

APPENDIX -3: LIST OF PUBLICATIONS 

1. Satish Kumar, Snehmani, Pankaj Kumar Srivastava, Akshay Gore, Mritunjay 

Kumar Singh, 2016. Fuzzy Frequency Ratio Model for Avalanche 

Susceptibility Mapping. International Journal of Digital Earth, 9 (12): 1168-

1184. 

DOI:10.1080/17538947.2016.1197328. IF: 3.985 

2. Satish Kumar, Pankaj Kumar Srivastava, Snehmani, 2017. GIS Based MCDA-

AHP Modelling for Avalanche Susceptibility Mapping of Nubra Valley 

Region, Indian Himalaya. Geocarto International, 32 (11): 1254-1267.  

DOI:10.1080/10106049.2016.1206626. IF:2.365 

3. Satish Kumar, Pankaj Kumar Srivastava, Snehmani, 2018. Geospatial 

Modelling and Mapping of Snow Avalanche Susceptibility. Journal of the 

Indian Society of Remote Sensing, 46 (1): 109-119. DOI:10.1007/s12524-017-

0672-z. IF: 0.869 

4. Satish Kumar, Pankaj Kumar Srivastava, Snehmani, Sanjay Bhatiya, 2019. 

Geospatial Probabilistic Modelling for Release Area Mapping of Snow 

Avalanches. Cold Regions Science and Technology, 165: 102813. DOI: 

10.1016/j.coldregions.2019.102813. IF: 2.767 

 

 

 

 

 

https://doi.org/10.1016/j.coldregions.2019.102813
https://doi.org/10.1016/j.coldregions.2019.102813



