Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN ## **End-Semester Examination 2021** Program/course: BA (Hons.) EconomicsSemester: VSubject: Applied EconometricsMax. Marks: 100Code: ECON 3012Duration: 3 Hrs No. of page/s : 5 ## **SECTION A** | Q1 | Answer all the questions. Each Question will carry 2 Marks | 10Qx2 | | |------|--|-------|-----| | Q1 | This wer air the questions. Each Question will early 2 warks | M=20 | CO | | | | Marks | | | i. | Econometrics means | [2] | CO1 | | | a. Statistical measurement c. Functional measurement | | | | | b. economic measurement d. All the above | | | | ii. | Which of the following statements is true concerning the population regression | [2] | CO1 | | | function (PRF) and sample regression function (SRF)? | | | | | a. The PRF is the estimated model | | | | | a. The PRF is the estimated model | | | | | b. The PRF is used to infer likely values of the SRF | | | | | c. Whether the model is good can be determined by comparing the SRF and the PRF | | | | | d. The PRF is a description of the process thought to be generating the data. | | | | iii. | When the estimated slop coefficient in the simple regression model $\hat{\beta}_2$, is zero, then | [2] | CO1 | | | a. $r^2 = 0$ c. $0 \le r^2 \le 1$ | | | | | | | | | | b. $r^2 \le 1$ d. $r^2 \le 0$ | | | | iv. | $u_i = Y_i - E($ | $Y \mid X_i$) is known as | [2] | CO1 | |-------|-------------------|--|-----|-----| | | a. | $\begin{array}{lll} \text{deviation of an expected } Y_i & c. & \text{deviation of an individual } X_i \\ \text{around its mean value} & \text{around its expected value} \end{array}$ | | | | | b. | $\begin{array}{lll} \text{deviation of an individual } Y_i & \text{d.} & \text{deviation of an individual } Y_i \\ \text{around its maximum value} & \text{around its expected value} \end{array}$ | | | | v. | If coefficien | [2] | CO1 | | | | a. | it is a perfect fit model c. $X = Y$ | | | | | b. | $X \le Y$ d. $E(Y) = E(X)$ | | | | vi. | | be interval estimation, $\alpha = 5\%$, this means that this interval includes the probability of | | CO1 | | | a. | 5% c. 105% | | | | | b. | 95% d. 100% | | | | vii. | $E(Y X_i)=f(X_i)$ | (i) is referred to as | [2] | CO1 | | | | onditional expectation c. Population regression line nction | | | | | b. In | tercept line d. Linear regression line | | | | viii. | For coefficie | ent of determination r ² for a regression model | [2] | CO1 | | | a. | $r^2 = 0$ c. $0 \le r^2 \le 1$ | | | | | b. | $r^2 \le 1$ d. $r^2 \le 0$ | | | | | | | | | | ix. | Systematic co | Systematic component of the equation, $Y_i = E(Y \mid X_i) + u_i$ is | | | | | | | |-----|---|--|---------------------------------------|-----------------------------------|----------------|-----|--|--| | | a. | u_i | c. | $E(Y \mid X_i)$ | | | | | | | | | | | | | | | | | b. | Y_i | d. | X_i | | | | | | X. | The least squa | [2] | CO1 | | | | | | | | a. | Point estimators | c. | Sample estimators | | | | | | | b. | Population estimators | d. | Interval estimators | | | | | | | | | Section B | | 4Qx5 | CO | | | | | Attempt all th | ne questions. Each questi | ion carries equ | al marks. | M= 20
Marks | СО | | | | Q2 | Distinguish b | etween Population Regr | ession Functio | n and Sample Regression Function. | [5] | CO2 | | | | Q3 | Describe mul | ticollinearity with suitab | ole example. | | [5] | CO2 | | | | Q4 | What do you heteroscedast | - | city? Examine | only one method of detection of | [5] | CO2 | | | | Q5 | Prove that me | on model is equal to zero. | [5] | CO2 | | | | | | | | 20v10 | | | | | | | | | At | carries equal marks. | 3Qx10
M=30
Marks | | | | | | | Q7. | From the regr
Prepare a tabl
affecting crud | | | | | | | | | | Crude Oil | Production | Write down only Level of Significance | | | | | | | | Price of C | rude Oil | 0.001 | | [10] | CO3 | | | | | Per Capita | Per Capita GDP 0.002 | | | | | | | | | | Throughputs | 0.052
0.345 | | | | | | | | Proved Re | | | | | | | | | | Population | | | | | | | | | | Carbon E | mission | 0.564 | | | | | | | | | | | | | | | | | | Source | SS | df | F | MS | | Number of ob | | | | |---|--|--|---|--|--|--|--|---|------|----| | | Model
Residual | 7938423.3
123989.99 | | 5 15876
9 4275. | | | Prob > F
R-squared | = 371.34
= 0.0000
= 0.9846 | | | | | Total | 8062413.3 | 37 34 | 4 23712 | 29. 805 | | Adj R-square
Root MSE | d = 0.9820
= 65.387 | | | | | ос | Coef. | Std. | Err. | t | P> t | [95% Conf | . Interval] | [10] | CO | | | p
im
ex
pgdp
co2
_cons | . 6252913
1236515
. 0050046 | 3 .046
5 .027
5 .002
7 .240 | 52552
56814
71815
24767
07524
. 3615 | -4.43
13.39
-4.55
2.02
4.66
6.62 | 0.000
0.000
0.053 | -5.606331
.5298171
1792438
000061
.6297929
738.6027 | -2.06295
.7207655
0680591
.0100701
1.614581
1398.645 | | | | (| show the show the show the show the show the shows the show sh | nat Total sum R ² and inter intercept of | of squ
pret it. | are (TS | S)= ES | SS+ RSS | sum of square. | (| | | | | DomestEnergy | er capita (con | vided b
(% of e | 010 US
y finan
energy t | cial sec
use) (El |),
etor (% o
IM), | of GDP) (DCF |), | | СО | | | Domest Energy Foreign Gross c Industry | er capita (contic credit proving imports, net a direct investable) apital formaty, value adde | vided b
(% of e
tment, n
tion (an
ted (annu | 010 US by finance energy to enet infloa inual % ual % gr | (GP) cial secuse) (Elows (% growth rowth) | otor (% o
IM),
of GDP
n) (GCFI
(IVAR). | P) (FDIP),
R), and | | | СО | | | DomestEnergyForeignGross c | er capita (contic credit protic imports, net a direct investable) | vided b (% of e tment, n tion (anned (anne) df | 010 US by finance benergy the control by contro | (S\$) (GP)
cial sec
use) (EI
ows (%
growth
rowth) | otor (% o
IM),
of GDP
of (IVAR). | P) (FDIP),
R), and | | | CO | | | Domest Energy Foreign Gross c Industry | er capita (contic credit proving imports, net a direct investapital formaty, value adde | vided b (% of 6 tment, 1 tion (an tid (annum) df 6 32 | 010 US by finance energy to net infloa nual % ual % gr | (S\$) (GP) cial secuse) (El ows (% growth) (cial secuse) (148 cial secuse) (148 cial secuse) | otor (% o
IM),
of GDP
n) (GCFI
(IVAR). | P) (FDIP),
R), and
Number of obs | = 39
= 60.86
= 0.0000
= 0.9194 | | CO | | | Domest Energy Foreign Gross c Industry Source Model esidual | er capita (contic credit proving imports, net a direct invest apital format y, value adde | vided b (% of 6 tment, 1 tion (an tid (annum) df 6 32 | 010 US by finance energy to enet inflo mual % mual % gr MS 927.407 15.2384 | s\$) (GP) cial secuse) (El ows (% growth) country (148 153 5057 | otor (% o
IM),
of GDP
n) (GCFI
(IVAR). | P) (FDIP), R), and Number of obs F(6, 32) Prob > F R-squared Adj R-squared | = 39
= 60.86
= 0.0000
= 0.9194
= 0.9043
= 3.9036 | [10] | CO | | | Domest Energy Foreign Gross c Industry Source Model esidual Total | er capita (contic credit proving the credit proving the contic credit proving the continuous c | vided b (% of 6 tment, p ion (annual df 6 32 38 | 010 US by finance energy to enet infloating with the series of serie | (S\$) (GP) cial secuse) (EI ows (% growth rowth) (148 153 6057 t 1.23 2.82 3.96 0.54 0.74 0.91 | otor (% o
IM),
of GDP
of (IVAR). | P) (FDIP), R), and Number of obs F(6, 32) Prob > F R-squared Adj R-squared Root MSE | = 39
= 60.86
= 0.0000
= 0.9194
= 0.9043
= 3.9036 | [10] | СО | | | | | | (| OR | | | | | | | |------|---|-------------------------------------|---------|----------------------|--------------|----------------|--|----------------------|----------------|-------|-----| | | What do you mean by regression analysis? Describe any five assumption of classical linear regression model. | | | | | | | | | | | | | Section D | | | | | | | | 2Qx15 | CO | | | | Answer all questions. Each Question carries 15 Marks. | | | | | | | | M= 30
Marks | | | | Q12 | Write a report on the following results: | | | | | | | | | F4.53 | CO4 | | | In the following factors such | | regres | sion result | t, Car | bon En | nission (co2) is | estimated us | sing | [15] | | | | • oil c | onsumption (o | c), | | | | | | | | | | | _ | capita GDP (pg | | | , | | | | | | | | | _ | ort of goods an
ort of goods and | | , , , | and | | | | | | | | | Source | 55 | df | MS | | | Number of obs | | | | | | | Model
Residual | 1020938.61
21585.3769 | 4
29 | 255234.6
744.3233 | | | Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.9793 | | | | | | Total | 1042523.99 | 33 | 31591.63 | 59 | | Root MSE | = 27.282 | | | | | | co2 | Coef. | Std. | Err. | t | P> t | [95% Conf. | Interval] | | | | | | oc
pgdp | .1308342
0136371 | . 0144 | | . 03 | 0.000
0.006 | .1012106
0230202 | .1604579 | | | | | | om | .014613
0092261 | .0102 | 785 1 | . 42
. 52 | 0.166
0.605 | 0064089
0453181 | . 0356349 | | | | | | _cons | 294.4371 | 170.1 | .929 1 | .73 | 0.094 | -53.64647 | 642. 5206 | | | | | Q13. | | | | | | | | | | | | | | Illustrate Gauss–Markov theorem with properties of least square estimators. | | | | | | | | | [15] | CO4 | | | | | | (| OR | | | | | | | | | Describe cri | tically, proper | ties of | OLS estin | nators | s under | he normality as | sumption. | | | |