

**Enrolment No:** 

**Course Name** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

**End Semester Examination, 2021** 

Programme Name: B. Tech APE,ASE,ECE,EEE,RSE

: Basic Electronics and Electrical Engineering

Course Code :ECEG 1004

Semester : I
Time : 03 hrs

Max. Marks: 100

## SECTION A $(5Q \times 4M = 20M)$

| S. No.    | All Questions are compulsory.                                                                                                                                                         | Marks | CO  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1       | Write major applications of a p-n junction diode? Discuss its important properties/behavior of V-I curve during reverse bias operation.                                               | 4     | CO1 |
| Q 2       | Perform the following number system conversion: $(1101001101.1010)_2 = (\_)_8 = (\_)_{16}$                                                                                            | 4     | CO2 |
| Q 3       | Determine the current across the load of 4 + j3 ohm connected to 230 V power supply of 50 Hz frequency.                                                                               | 4     | CO2 |
| Q 4       | Determine the Node volatge $\mathbf{Vb}$ for the given network shon in Figure 1. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               | 4     | CO3 |
| Q 5       | For $i = 100  Sin  (157t + 60^{\circ})$ , Amp, Determine the RMS current, Average current, Frequency and phase of the current source.                                                 | 4     | CO4 |
|           | SECTION B (4X10 = Marks)                                                                                                                                                              |       |     |
| Q6        | Sketch the input-output charateristcs alongwith the opearting regions of common emitter NPN configuration?                                                                            | 10    | CO2 |
| Q7<br>(a) | For a series RL circuit obtain the effective impedance and draw the phasor diagram for the same.  A 230 V, 50 HZ sinusoidal supply is connected across a (i) resistance of 25 Ω, (ii) | 5     | CO3 |

|      | inductance of 0.5 H, and (iii) capacitance of 100 µH. Determine the impedance and                                                         |    |     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| (b)  | voltage across each elements.                                                                                                             | 5  |     |
| Q8   | Determine the output Boolean expression for the given logic gate circuit shown in Figure 2.                                               | 10 | CO3 |
| Q 9  | Fig 2  Determine the current through $1\Omega$ resistance in Figure 3 using Thevenin's theorem.                                           |    |     |
|      | $\begin{array}{c c}  & & & & & & \\  & & & & & & \\  & & & & $                                                                            |    |     |
|      | Figure 3.                                                                                                                                 | 10 | CO1 |
|      | Using Norton theorem, Find the current in 8 ohm resistor of the network shown in Figure.4 $\frac{4\Omega}{40V} = \frac{5\Omega}{8\Omega}$ | 10 | CO1 |
|      | Figure 4. SECTION-C (2x20 M = 40 M)                                                                                                       |    |     |
|      | SECTION-C $(2x20 \text{ M} = 40 \text{ M})$                                                                                               |    |     |
| Q 10 | Design a full adder circuit from combination of half adders. Also draw the truth table for the full adder to verify the circuit.          | 20 |     |

|       |                                                                                                                                                                                                                                                                                                                                                                                                                              |    | CO3 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Q11 A | (i)Design a complete circuit schematic for a full-wave bridge rectifier that gives a DC output of 52 V, 100 Hz for an AC input of 230 V, 50 Hz.  (ii )For the transistor configuration shown in figure 2 below identify the type of biasing. Determine the operating point of the transistor, if $V_{CEsat} = 0.5 \text{ V}$ $V_{CC} = +12\text{V}$ $R_C = 4 \text{ k}\Omega$ $R_B = 100$ $R_E = 1 \text{ k}\Omega$ Figure 5 | 10 | CO4 |
| B (i) | OR Draw and explain negative and positive series clipper circuits with their input and output voltage waveforms, respectively.  In a bridge full wave rectifier circuit shown in Figure (6), assume Load resistance $R_L = 500~\Omega$ , uses a transformer turn ratio= 5:1, forward resistance ( $R_f$ ) of each diode is $1\Omega$ .                                                                                       | 10 |     |
|       | Figure (6)  Determine: (1) maximum current (2) Average current or DC current (3) RMS current or AC current (4) Output DC voltage (5) AC and DC power                                                                                                                                                                                                                                                                         |    |     |