Name:

S. No.

Q1

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2021

Course: Numerical Methods

Program: B.Sc. (Hons.) Mathematics

Course Code: MATH 3021

Instructions: Scientific calculator is allowed.

Semester: V Time: 03 hrs.

Max. Marks: 100

Marks

CO

SECTION A (5 X 4 = 20)

Evaluate the smallest positive root of $x^3 - 5x + 3 = 0$ by Newton Raphson Method.

All questions are compulsory.

Q1	Evaluate the smallest positive root of $x^3 - 5x + 3 = 0$ by Newton Raphson Method.						4	CO1	
Q2	Find the missing terms in the given table								
	X	45	50	55	60	65	7	4	CO2
	Y	3.0		2.0		-2.4			
Q3	Evaluate	$e \Delta^{10}[(1-ax)]$	$x)(1-bx^2)$	$(1-cx^3)$	$1-dx^4$)	,		4	CO2
Q4	Using Trapezoidal rule, calculator $\int_0^1 \frac{1}{1+x^2} dx$ using 5 intervals.							4	СОЗ
Q5	Use Euler's method to solve for $y(0.4)$, considering step-length $h = 0.2$, given that $\frac{dy}{dx} = 1 + y^2$, with initial condition $y(0) = 0$.							4	CO5
			Q 1-Q3 ar	(4	ECTION B X 10 = 40) ry and Q4	have internal	choice		
Q1	Differentiate between round off error and truncation error with help of an example.								
	The diameter and altitude of a can in the shape of a right circular cylinder are measured 4cm and 6cm respectively. The possible error in each measurement is 0.01cm. Find the maximum possible relative error in computation of its volume.								CO1
Q2	Three neighbors make a fruit salad for a summer picnic. One person uses three pounds of strawberries plus five pounds of grapes plus one pound of melon at a cost of \$20. A second person uses three pounds of strawberries plus two pounds of grapes plus two pounds of melon at a cost of \$21. The last neighbor uses four pounds of strawberries plus three pounds of grapes plus three pounds of melon at a cost of \$30. Using Gauss Jordan method find how much does each fruit cost?						10	CO4	
Q3	Solve the following using Gauss Seidal Method.								
	$-2x_1 + 3x_2 + 10x_3 = 22$								
	$2x_1 + 20x_2 - 2x_3 = -44$								CO4
	$10x_1 + 2x_2 + x_3 = 9$								

Using Newto following table x $f(x)$ (a) Use four $h = 0.1$, (b) Use Modgiven that	-4 1245	-1 33 Q1 is com	0 5 SEC (2 X pulsory and	TION-C 20 = 40) d Q2 have	ynomial f 2 9		help of	10	CO2
following tab $ \begin{array}{c} x \\ f(x) \end{array} $ (a) Use four $h = 0.1$,	-4 1245	-1 33 Q1 is com	formula fin 0 5 SEC (2 X) pulsory and	TION-C 20 = 40) d Q2 have	2	5	help of	10	CO2
f(x) (a) Use four h = 0.1,	1245 th order Ru	33 Q1 is com	5 SEC (2 X pulsory and	20 = 40) d Q2 have					
(a) Use four h = 0.1,	th order Ru	Q1 is com	SEC (2 X pulsory and	20 = 40) d Q2 have	9	1335			,
h = 0.1, (b) Use Mod	th order Ru		(2 X pulsory and	20 = 40) d Q2 have					
h = 0.1, (b) Use Mod		nge-Kutta	method to s	1 ^	e internal (choices			
(a) Evaluate	t		onsidering			10+10	CO5		
solution. OR									
A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines $x = 0$ and $x = 1$, and a curve through the points with the following coordinates									
X	0.00	0.25	0.50	0.75	1.00				
Estimate the volume of the solid formed using Simpson's rule. (b) A slider in a machine moves along a fixed straight rod. Its distance x cm along the								10+10	CO3
t 0	0.1	0.2	0.3	0.4	0.5	0.6			
x 30	0.13 31.62	2 32.87	33.64	33.95	33.81	33.24			
OR									
From the following table, find x, correct to two decimal places for which y is max and find this value of y									
x 1.2 1.3 1.4 1.5 1.6									
	the lines x = x y Estimate the (b) A slider rod is give of the slide t	the lines x = 0 and x = x 0.00 y 1.0000 Estimate the volume of the slider in a machine rod is given below for of the slider when i): t 0 0.1 x 30.13 31.62 From the following table find this value of y x 1.2	the lines $x = 0$ and $x = 1$, and a cur $x = 0.00 = 0.25$ $y = 1.0000 = 0.9896$ Estimate the volume of the solid for (b) A slider in a machine moves all rod is given below for various various of the slider when i): = 0.1 second to $x = 0.1 = 0.1$ From the following table, find x , co find this value of $y = 0.0000000000000000000000000000000000$	A solid of revolution is formed by rotating abothe lines $x = 0$ and $x = 1$, and a curve through $x = 0.00 = 0.25 = 0.50$ $y = 1.0000 = 0.9896 = 0.9589$ Estimate the volume of the solid formed using $x = 0.0000000000000000000000000000000000$	A solid of revolution is formed by rotating about the x-athe lines $x = 0$ and $x = 1$, and a curve through the points $x = 0.00 = 0.25 = 0.50 = 0.75$ y $1.0000 = 0.9896 = 0.9589 = 0.9089$ Estimate the volume of the solid formed using Simpson's (b) A slider in a machine moves along a fixed straight rod is given below for various values of the time t. Fit of the slider when i): = 0.1 second ii) $t = 0.6$ second.	A solid of revolution is formed by rotating about the x-axis the area the lines $x = 0$ and $x = 1$, and a curve through the points with the factorial $x = 0.00 - 0.25 - 0.50 - 0.75 - 1.00$ y $1.0000 - 0.9896 - 0.9589 - 0.9089 - 0.8415$ Estimate the volume of the solid formed using Simpson's rule. (b) A slider in a machine moves along a fixed straight rod. Its dist rod is given below for various values of the time t. Find the veloc of the slider when i): $= 0.1$ second ii) $t = 0.6$ second.	A solid of revolution is formed by rotating about the x-axis the area between the the lines x = 0 and x = 1, and a curve through the points with the following coox x 0.00 0.25 0.50 0.75 1.00 y 1.0000 0.9896 0.9589 0.9089 0.8415 Estimate the volume of the solid formed using Simpson's rule. (b) A slider in a machine moves along a fixed straight rod. Its distance x cm at rod is given below for various values of the time t. Find the velocity and access of the slider when i): = 0.1 second ii) t = 0.6 second. t	A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines x = 0 and x = 1, and a curve through the points with the following coordinates x 0.00 0.25 0.50 0.75 1.00 y 1.0000 0.9896 0.9589 0.9089 0.8415 Estimate the volume of the solid formed using Simpson's rule. (b) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 0.1 second ii) t = 0.6 second. t	A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines $x = 0$ and $x = 1$, and a curve through the points with the following coordinates $x = 0.00 = 0.25 = 0.50 = 0.75 = 1.00$ $y = 1.0000 = 0.9896 = 0.9589 = 0.9089 = 0.8415$ Estimate the volume of the solid formed using Simpson's rule. (b) A slider in a machine moves along a fixed straight rod. Its distance x cm along the rod is given below for various values of the time t. Find the velocity and acceleration of the slider when i): = 0.1 second ii) $t = 0.6$ second.