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                           ABSTRACT 

 

Astrodynamic study of a body in the strong gravitating region of a stellar 

originated rotating Kerr black hole is the objective of this research work. An 

analysis of particle trajectory in the spacetime of a rotating Kerr black hole is 

performed and applied for designing an orbit for a spacecraft in these regions. 

Spherical Polar orbits are considered favorable for a realistic spacecraft 

approaching a black hole. Such orbits are found to be stable for lower altitudes for 

a particle approaching near the black hole. Spherical polar orbits at different radii 

are studied and the corresponding features of these orbits are computed using 

analytical and numerical techniques. Dragging of spherical polar orbits in the 

sense of the rotating black hole is calculated for stellar originated rotating Kerr 

black holes. The effect of frame dragging is studied for a gyroscope following an 

orbit in Kerr field. The dragging of stellar spherical polar orbits in the Galactic 

black hole Sgr A* is estimated using similar equations of geodesics in Kerr 

spacetime. The analogy of a spacecraft in the gravitating region of a stellar black 

hole with a star orbiting close to a supermassive black hole is established and seen 

to be two distinct but alike cases of the governing particle trajectory equations in 

Kerr spacetime. An effort has been made to understand the tidal forces near the 

rotating black holes by forming an orthonormal tetrad and employing the 

equations of parallel transport of a tetrad along a general Kerr geodesic and the 

tidal tensor is calculated for the first time for the specific case of a spherical polar 

orbit by identifying the set of parallel propagated vectors in these orbits. 
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Chapter 1 

Introduction to Black Holes 

 Since the advent of the General Theory of Relativity by Albert Einstein by 1915, 

the concepts of singularity and the concept of infinite curvature as a black hole 

has become a widely discussed concept. For many years, astronomers and 

astrophysicists have discussed the possibility of existence of such objects. 

Theoretical  as well as observational work has been conducted on the subject. In 

fact, many eminent scientists such as Schwarzchild, Kerr, Penrose, Hawking have 

explored the concept of black holes and all that it pertains. Even with the 

scientific and observational capabilities of the 21st century, the concept of black 

holes still remains a mystery to some extent.  

An object with highly strong gravitational field such that even light cannot escape 

from its surface and with a singularity at its centre is termed as a black hole. Here 

we discuss the spatial aspects related to these black holes, the theoretical 

developments on the subject, nature of the space-time around black holes as 

predicted by the mathematical theory of black holes, and also, the observational 

advancements in this field to date. 

 Black holes have been seen gaining ever more attention since the recent 

discoveries of black holes at the centre of galaxies like our own. Now it is widely 

starting to be believed that the supermassive black holes in galactic centers are the 

central engines for any and all of galactic formations. Black holes have finally 

started to enjoy the attention that they long deserved. They are no more the hidden 

monsters feeding away stellar companions, but on the contrary, they are now the 

objects closely related to the origin of galaxies and to the large scale structure 

formation in the universe. 

In case of stellar black holes, it is now known that it is the result of a gravitational 

collapse of a star (with mass ܯ >  ௦௨௡) at the end of its evolution. Such aܯ 3
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continuous gravitational collapse leads to an implosion and subsequent formation 

of a subspace called the event horizon of the black hole. A limiting radius ݎ௚ =

ܯܩ2  ܿଶ⁄ , called the gravitational radius or the event horizon, for a black hole of 

mass M exists such that the escape velocity of any particle leaving its boundary is 

equal to the speed of light. Thus no signal or particles can ever leave the boundary 

of the black hole. This makes it a challenge to identify a black hole in space, since 

it does not reflect or produce any signals to directly detect its presence.  

Einstein’s theory of Gravitation has successfully provided a framework to study 

the nature of space-time around black holes. We would intend to have a close 

look at the physical characteristics of space-time in the vicinity of stellar black 

holes and calculate the spacecraft trajectories in such extremely curved 

spacetimes. We conduct a numerical and computational study of the geodesics in 

strongly curved spacetime using the appropriate mathematical equations 

describing motion in these spacetimes as elaborated in the black hole theory. 

1.1 History of Black Holes  

The term black hole was coined first by John A. Wheeler in 1967 [1], however the 

object existed in theory long before. The first formal theoretical description of 

these objects was given by Karl Schwarzschild when he found the exact solutions 

of Einstein equations for spherically symmetric distribution of mass in vacuum 

[2]. The physical existence of such objects remained as an open forum of 

discussion since the Schwarzschild solutions were discovered, and even Einstein 

did not approve the fact that the nature could be hiding objects of the size of 

gravitational radius.  

The work of Subramanian Chandrasekhar [3] on white dwarf stars in the thirties 

brought light to compact objects. Chandrasekhar’s work showed that a star less 

massive than 1.4 ܯ௦௨௡, at the end of its evolution, could balance the gravitational 

collapse by its electron degeneracy pressure and thus exist as a highly dense 

compact object termed as white dwarf stars.  



3 
 

Subsequent theoretical work by Landau in 1932 [4], Baade and Zwicky in 1934 

[5], Oppenheimer and Volkoff in 1939 [6] showed us that the neutron stars could 

also exist in nature and interestingly the limits on their radii was only a few times 

of the order of the gravitational radius ݎ௚. Without much of a delay, appeared the 

first paper by Oppenheimer and Snyder in 1939 [7] on the continuous 

gravitational collapse of massive stars to gravitational radius.  

The final stage of the massive stars were termed as frozen or collapsed stars and 

considered to be more of dead objects in space than object of any promising 

research. The scenario changed a decade later with contributions majorly from 

Kruskal [8], who obtained the complete solution of the Schwarzschild problem 

and removed the ‘spherical singularity’ at ݎ =  ௚ and presented a maximalݎ

singularity free extension of the Schwarzschild metric. 

The next astonishing development in the field of black holes was the work by Roy 

Kerr in 1965 [9] in which he introduced the Kerr metric describing the space-time 

around the more general rotating black hole. Kerr’s paper was a sensation in the 

physics community as even Einstein had doubts that such solutions could exist. 

This was a major breakthrough for relativists working on black holes as it 

provided complete solutions to rotating spacetime and give the equations of 

motion in rotating space-time using the principles of general relativity.   

Kerr’s solution was a milestone in the development of the theory of black holes. 

A few years later the term black hole was coined and apart from some hesitations 

it was widely accepted by the theoreticians. A substantial amount of work on 

black holes was developed in the following years. What was considered as an 

exotic object came to the main stream research, with theories developing on the 

formation, evolution, properties of black holes, its interactions with matter and 

classical fields, to two black holes collision, and black hole dynamics, which were 

all discussed at full length in the scientific community now. A Black hole no 

longer remained a strange dubious character but took the form of an entity 
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describing the ultimate form of compressed matter and extreme spacetime 

curvature. 

A black hole has been proven to be described by only three parameters, its mass, 

angular momentum  and its charge. The famous theorem ‘black hole has no hair’ 

stated this fact that a black hole has only three attributes required for its complete 

description [10]. Now the black hole theory been substantially developed, a 

search for black holes in the outer space was an obvious longing among both 

relativists and astrophysicists. 

 Neutron stars were discovered in the end of the sixties [11] and theoreticians like 

Zel’dovich and Zwicky were proven correct with these new findings. They further 

suggested that matter accretion onto black holes would be a powerful source of X-

ray emission [12] and with the advent of X-ray astronomy and X-ray satellites in 

parallel, technology was at hand to verify these predictions. Many galactic X-ray 

sources were starting to be identified by the 1970’s and supported the hypothesis 

that black hole binary systems could be the source behind such X-ray detections.  

Many X-ray sources were now discovered by the spatial satellites, the first being 

Sco X1 in the constellation Scorpio by a team led by Riccardo Giaconni [13] in 

1962. The powerful X-ray source near the constellation Cygnus, termed as 

Cygnus X-1, was first discovered in 1964 and is now considered as a strong 

candidate of a black hole binary system. It consists of an X-ray source and a 

companion star HD226868 with masses estimated 16 ܯ௦௢௟௔௥ and 20 ܯ௦௢௟௔௥ 

respectively [14]. Presently there are a number of such binaries with dark 

companions found in our galaxy [14], and advanced X-ray telescopes such as 

Chandra [15] are in the continuous search for such valuable discoveries.  

The discovery of stellar black hole candidates in the galaxy was a strong 

observational evidence of the black hole theory which was getting developed 

throughout sixties and seventies. Much advancement in the black hole theory 

were done during and after this period and a theoretical formulation of black hole 
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physics hence paved its way to the contemporary mainstream astrophysics 

research.    

1.2  Mathematical Theory of Black Holes 

The Black hole theory is an important extension of the Einstein’s General Theory 

of Relativity [10], where the space-time curvature ܴఓఔ and the Energy Momentum 

ఓܶఔ tensor are  unified to give the Einstein’s Equation’s which in turn give the 

complete set of equations of motion in the particular space-time geometry given 

by the metric ݃ఓఔ. Einstein equation can be expressed as (ܩ = ܿ = 1) 

ఓఔܩ                                                                = ߨ8 ఓܶఔ                                        (1.1) 

Where, ܩఓఔ  is the Einstein tensor dervied by contracting the Riemann curvature 

tensor ܴఓఔఈఉ . 

The curvature tensor is calculated using the Christoffel symbols (Γఉఊఈ ) which are 

functions of the metric ݃ఓఔ: 

                                  ܴఔఈఉ
ఓ =  

డ୻ഌഁ
ഋ

డ௫ഀ
− డ୻ഌഀ

ഋ

డ௫ഁ
+  Γఘఈ

ఓ Γఔఉ
ఘ − Γఘఉ

ఓ Γఔఈ
ఘ                             (1.2) 

      

where the Christoffel symbols for the metric are given as: 

                               Γఒఓ
ఙ =  ଵ

ଶ
 ݃ఔఈ(డ௚ഋഌ

డ௫ഊ
+ డ௚ഊഌ

డ௫ഋ
− డ௚ഋഌ

డ௫ഌ
)                         (1.3) 

and the invariant line element is expressed as  

ଶݏ݀                                                   = ݃ఓఔ݀ݔఓ݀ݔఔ        (1.4)  

The form of line elements related to the study of black holes are the 

Schwarzschild line element expressed in Schwarzschild coordinates (ݐ, ,ݎ ,ߠ ߶) 

and the more general Kerr line element in the Boyer Lindquist coordinates 

,ݐ) ,ݎ ,ߠ ߶) discussed in the following subsections. 
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1.2.1 Schwarzschild Black Holes 

Karl Schwarzschild solved the Einstein’s equations for a spherical distribution of 

matter of mass M to obtain the space-time geometry which is given in the form of 

Schwarzschild metric (G = c = 1):  

ଶݏ݀   =  −ቀ1 − ଶெ
௥
ቁ ଶݐ݀ +  ቀ1 − ଶெ

௥
ቁ
ିଵ
ଶݎ݀ + ଶߠ݀ )ଶݎ + sinଶ    ଶ)          (1.5)߶݀ߠ

In case of a gravitational collapse of the above spherical distribution of mass to a 

size less than ݎ௚, in absence of any outward pressure, a black hole is expected to 

be formed. A Schwarzschild black hole is the typical case of a more general 

charged and rotating black hole. The gravitational field outside the Schwarzschild 

black hole asymptotically reaches the Newtonian field. However near the 

Schwarzschild radius the space-time is strongly curved and the equations of 

motion are no more purely Newtonian and are described by the general relativistic 

equations.  

The Schwarzschild line element (1.2) is independent in ݐ and ߶ coordinates, in 

other words the line element is cyclic in ݐ and ߶, therefore the corresponding 

conjugate momenta ݌௧ ≡ థ݌ and ܧ−  =  .are conserved along the trajectories ܮ± 

If we consider motion along the equator such that ݌ఏ = ௗఏ
ௗఒ

= 0, in this particular 

choice of coordinates we find the 4–vector of energy momentum as given by the 

rest mass of the particle,  

                                           ݃ఈఉ݌ఈ݌ఉ + ଶߤ  = ݃ఈఉ݌ఈ݌ఉ + ଶߤ  = 0                      (1.6) 

gives,  

                                 − ாమ

ቀଵିమಾೝ ቁ
+ ଵ

ቀଵିమಾೝ ቁ
ቀௗ௥
ௗఒ
ቁ
ଶ

+ ௅మ

௥మ
 + ଶߤ = 0    (1.7) 



7 
 

By the equivalence principle, we know that regardless of mass all test particles 

follow the same world lines, so we consider the quantities in terms of per unit 

mass,  ܧෘ ܧ =  ⁄ߤ ෨ܮ ,  ܮ=  ⁄ߤ  and ߣ = ߬ ⁄ߤ  . With these substitutions we deduce the 

change of ݎ coordinate with respect to proper time without the rest mass 

appearing in the equation,  

                                    ቀௗ௥
ௗఛ
ቁ
ଶ

= ෩ ܧ ଶ − (1 − ൫1(ݎ/ܯ2 +   ଶ ൯     (1.8)ݎ/෨ଶܮ

                                                                 = ෨ଶܧ − ෨ܸ ଶ(ݎ)                                       (1.9) 

where  

                                            ෨ܸ (ݎ) = ቂ ቀ1 − ଶெ
௥
ቁ ቀ1 + ௅෨మ

௥మ
ቁቃ
ଵ/ଶ

    (1.10) 

is the effective potential in the Schwarzschild space-time .   

 

 

 

 

 

 

    

               

Fig 1.1 Effective potential of Schwarzschild Black hole  ෨ܸ        vs log(r/M.) (ݎ)

Fig.1 shows the variation of effective potential for different ܮ෨/ܯ values, here x-

axis is log and plotted on the y-axis is the effective potential ෩ܸ  ܯ/ݎ  
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Newtonian limit (หࡱ෩ − ૚ห  ≪ ૚,ࡹ/࢘ ≪ ૚, ࢘/෨ࡸ ≪ ૚) , the particle orbits are 

Keplerian and depending on their energies are either reflected off by the effective 

potential or are trapped in the effective potential well and move back and forth 

between periastron and apastron. 

In the case of relativistic orbits:  

a) Orbits with periastron at  ࢘ ≫  are Keplerian in form except for the  ࡹ

periastron shift as observed in Mercury’s orbit. 

b) Orbits with periastron at ࢘ ≤ ૚૙ࡹ differ significantly from Keplerian 

orbits. 

c) As seen from Fig 1 for  ࡸ෨  ≤ ૛√૜ ࡹ , there is no periastron and any 

particle will get pulled into the region  ࢘ = ૛ࡹ .  

d) For  ૛√૜  ≤ ≥ ࡹ/෩ ࡸ   ૝  there are orbits in which the particle moves 

between the periastron and apastron and any particle with ࡱ෩૛  ≥ ૚ coming 

from ࢘ = ∞  gets pulled into the region ࢘ = ૛ࡹ. 

e) For ࡸ෨/ࡹ > 4 there are bound orbits with and moreover particles coming 

from ࢘ = ∞ with energies less than  ࢂ෩࢞ࢇ࢓ will reach a periastron and 

return to ࢘ = ∞,  and particles with energies greater than ࢂ෩࢞ࢇ࢓ coming in 

from ࢘ = ∞ will eventually get pulled into the region  ࢘ = ૛ࡹ.  

f) The stable orbits exist at the minimum of the effective potential and the 

most tightly bound stable orbit exist for ࡸ෨/ࡹ = ૛√૜ at ࢘ = ૟ࡹ , these 

inner-most stable circular orbits are also studied closely for the accretion 

of matter around compact objects such as Neutron stars. 

 

Another key feature of the motion in Schwarzschild spacetime is that even though 

an incoming particle takes a finite amount of proper time ࣎ to reach the 

surface ݎ =  of a Schwarzschild black hole, the coordinate time ࢚ elapsed in ,ܯ2

this journey comes out to be infinite [10,16].This however is a manifestation of 

the singularity inherent of the Schwarzschild coordinates and it can be removed 

with a proper choice of coordinate system such as the one given by Kruskal [8].  
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1.2.2 Kerr Black Holes 

The more general case, a rotating black holes is described by the Kerr Metric, 

discovered by Roy Kerr in 1963 [9]. Kerr metric is an analytic description of the 

spacetime around a rotating black hole and provides framework for developing 

equations of motion in a rotating geometry. Many new facets and properties of 

these objects and the related spacetime are distinctly identified with the aid of 

Kerr metric. The metric written in Boyer Lindquist coordinates [17], a 

generalization of Schwarzschild coordinates, for a black hole of massࡹ, angular 

momentum ࡿ and charge ࡽ, is as follows,  

 

ଶݏ݀ =  − ୼
ఘమ

ݐ݀] − asinଶ ߠ  ݀߶]ଶ +  ୱ୧୬
మ ఏ
ఘమ

ଶݎ)] +  ܽଶ)݀߶ − ଶ[ݐ݀ܽ +

 ఘ
మ

୼
ଶݎ݀ +  ଶ                                        (1.11)ߠଶ݀ߩ

 

where,  

Δ ≡ ଶݎ − ݎܯ2 + ܽଶ + ܳଶ        (1.12) 

ଶߩ ≡ ଶݎ + ܽଶ cosଶ  (1.13)                              ߠ

 ܽ ≡ ܯ/ܵ ≡ angular momentum per unit mass                 (1.14) 

As discussed in the previous section, the smooth gravitational collapse of a non 

rotating mass would result in a stationary and spherically symmetric black hole as 

the radius of the collapsing body becomes less than the gravitational radius ݎ௚. If 

the mass is initially rotating, then the laws of physics will require the body to 

conserve its angular momentum, and the gravitational pull would produce a black 

hole rotating even more rapidly along with the gravitational shrink. Another 

property that can be attributed to this system is the charge of the body which can 

be non zero and will also be preserved during the collapse. These three quantities, 

mass, angular momentum and the charge, are the only quantities which are 

necessary and sufficient to describe the most general type of black holes that can 

be found in nature.  
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A detailed study on the Kerr metric, its derivation, the spacetime structure around 

Kerr black hole and the subsequent equations of motions of particles in Kerr 

Spacetime are presented in chapter 3 of the thesis.  

1.3 Properties of Black Holes 

A black hole of sufficient generality is a charged and rotating black hole and is 

mathematically described by the Kerr metric given in the previous section. The 

Kerr metric reveals a number of interesting properties on the spacetime around 

these objects and brings insight to many new phenomenon previously unknown to 

the realm of physics. What follows from the metric in a straightforward manner 

are the concepts of event horizon, ergosphere, frame dragging, static limit and 

singularity, which are concepts related purely to the spacetime of rotating black 

holes. 

1.3.1 Event Horizon  

 The event horizon of a black hole is in other words the boundary of the black 

hole beyond which it is impossible to extract any information about the fate of an 

object pulled by the gravity of the black hole. Since not even light can escape 

from this region any information once gone inside the event horizon is 

permanently lost to the universe and can never be retrieved, therefore it is termed 

as event horizon as the events beyond this region are undetectable are and cut-off 

from the outer world. 

For a Schwarzschild black hole the event horizon is a perfect sphere, of 

radius ݎ௚ =  which is the gravitational radius of the black hole. However for a ,ܯ2

rotating black hole there are two different such horizons which are described by 

the vanishing of the quantity Δ, i.e.  

                                                   Δ ≡ ଶݎ − ݎܯ2 + ܽଶ +  ܳଶ = 0                   (1.15) 
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   giving roots, ݎା = ܯ + ඥܯଶ − ܽଶ − ܳଶ , termed as the event horizon, and in 

addition  ିݎ = ܯ − ඥܯଶ − ܽଶ − ܳଶ  termed as the Cauchy horizon. We will be 

concerned about the event horizon ݎା as the Cauchy horizon is beyond the scope 

of this work.  

The area of the black hole ܣ plays an important role in the black hole dynamics 

and is given as the area enclosed by the surface of the event horizon of the black 

hole. 

 area of Schwarzschild black hole is thus,  

ܣ                                                               =  ଶ                            (1.16)(ܯ2)ߨ4

Whereas the area of a Kerr black hole is given as, 

ܣ                       = ାݎ)ߨ4 +  ܽଶ) = ܯ)ߨ4  +  ඥܯଶ − ܽଶ − ܳଶ + ܽଶ)  (1.17) 

Area of a black hole is an irreducible property and once an area has been attained 

it can never be decreased. 

1.3.2 Ergosphere  and the Static Limit 

One difference between the Schwarzschild and Kerr spacetime is that in the case 

of Kerr metric the event horizon given by  ݎା does not coincide with the 

surface ݃௧௧ = 0. The Kerr metric which can also be written in the following form: 

ଶݏ݀ = − ଵ
ఘమ

[Δ − ܽଶ sinଶ ଶݐ݀[ߠ +  ୱ୧୬
మ ఏ
ఘమ

[−Δܽଶ sinଶ + ߠ ଶݎ) + ܽଶ)ଶ ]݀߶ଶ −

                    2 (ଶெ௥ିொమ)௔  ୱ୧୬మ ఏ
ఘమ

߶݀ݐ݀ + ఘమ

୼
ଶݎ݀ +  ଶ                         (1.18)ߠଶ݀ߩ 

has                                        

                                                    ݃௧௧  =  ଵ
ఘమ

[Δ − ܽଶ sinଶ  (1.19)                             [ߠ

which vanishes when,  
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                                                        [Δ − ܽଶ sinଶ [ߠ = 0                                  (1.20) 

or,  

ଶݎ                                                  − ݎܯ2 + ܽଶ cosଶ ߠ  +  ܳଶ = 0,                 (1.21) 

i.e. at the surface,  

ݎ                                 = (ߠ)௘ݎ = ܯ  + ඥܯଶ − ܳଶ − ܽଶ cosଶ                   (1.22)    ߠ

This surface touches the event horizon only at the poles ( ߠ = 0,  The region .(ߨ

between the surface ݎ௘ and the event horizon ݎା, is known as the ergosphere ( 

௘ݎ < ݎ <  ା). It has very important consequences that though the ݃௧௧ changes signݎ

beyond the ergosphere, metric becoming timelike to spacelike, it is still possible 

for a particle or light to cross the ergosphere boundary, experience the spacelike 

region (݃௧௧ > 0) and still escape from this region and reach infinity. Roger 

Penrose [18] used this concept to suggest that it is possible to extract energy from 

a black hole by exploiting this region. 

If an observer in Kerr spacetime moves in an orbit with fixed ( ݎ,  with a (ߠ

uniform angular velocity with respect to the asymptotic Lorentz frame, he will 

observe no change in the local neighborhood and will be stationary  relative to the 

local  geometry. If we want to calculate the angular velocity of this stationary 

observer in the asymptotic Lorentz frame, we can define  

                                            Ω ≡ ௗథ
ௗ௧ 

=  ௗథ/ௗఛ
ௗ௧/ௗఛ

= ௨ഝ

௨೟
                        (1.23)              

The 4-velovity ࢛ of this stationary observer in terms of the Killing vectors 

associated with the symmetries in ݐ  and ߶  coordinates, will then be  

                                          ࢛ = ௧ݑ ቀ డ
డ௧

+ ஐப
பம
ቁ = ഝࣈ೟ା ஐࣈ

หࣈ೟ା ஐࣈഝห
      (1.24) 

                                                      = ഝࣈ೟ା ஐࣈ

൫ି௚೟೟ିଶஐ௚೟ഝିஐమ௚ഝഝ൯
భ/మ      (1.25) 
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The above expression for the 4-velocity ࢛ will be timelike only when, 

                                                       ݃௧௧ + 2Ω݃௧థ + Ωଶ݃థథ < 0     (1.26) 

Hence the angular velocity of the stationary observer will have only certain values 

which lie between the roots of the above equation, viz:  

                                                                   Ω௠௜௡ < Ω < Ω௠௔௫      (1.27) 

where, 

                                              Ω௠௜௡ = ߱ − ට߱ଶ − ݃௧௧/݃థథ        (1.28) 

                                               Ω௠௔௫ =  ߱ +  ට߱ଶ − ݃௧௧/݃థథ                           (1.29) 

                     ߱ ≡ ଵ
ଶ

( Ω௠௜௡ + Ω௠௔௫) = − ௚ഝ೟
௚ഝഝ

=  (ଶெ௥ିொమ)௔
(௥మା௔మ)మି୼௔మ ୱ୧୬మ ఏ

               (1.30) 

 

At the surface of the ergosphere, where ݃௧௧ vanishes, one observes from the above 

equation that Ω௠௜௡ becomes zero, implying that the locally stationary observer at 

the surface of the ergosphere must also rotate with the black hole. Thus the 

surface of the ergosphere is also known as the static limit, as the local observer 

can never be static with respect to the asymptotic Lorentz frame. Since the local 

inertial frames are essentially dragged with the spacetime of the black hole the 

effect is termed as frame dragging.   

1.3.3 Laws of Black Hole Dynamics  

The two important laws concerning black hole physics are stated as the first and 

the second law of black hole dynamics. These laws were given the name laws of 

black hole dynamics by Werner Israel [19] and are analogous to the laws of 
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thermodynamic as expounded by Stephen Hawking in his original research on the 

thermodynamics of black holes [20,21].  

The analogy of black hole physics with thermodynamics is carried out as follows; 

the quantities surface gravity, area and mass of the black hole play the roles of 

temperature, entropy and the internal energy respectively, and mathematically 

denoted as ( ℏ = ܿ = ݇ = 1 ): 

ߠ ≡  the temperature of the black hole corresponds to the surface gravity of ,  ߢ

the black hole.  

ܵ ≡  the entropy of the black hole corresponds to the area of the black hole ,  ܣ

ܧ ≡   .the internal energy corresponds to the mass of the black hole , ܯ

The Zeroth law of black hole dynamics states that: The surface gravity ߢ of a 

stationary black hole is constant everywhere on the surface of the event horizon. 

Just as the thermodynamics does not allow equilibrium for a system if different 

parts of the system are at different temperature, so does the zeroth law of black 

hole dynamics does not allow different surface gravities at different regions of the 

event horizon.  

The First law of black hole dynamics is simply the restatement of the laws of 

conservation of total energy, 4-momentum and the angular momentum of the 

black holes in addition to the law of conservation of total charge of the black hole. 

It has been stated in literature as: When a black hole chances from one stationary 

state to another, its mass changes by  

ܯ݀                                       = ܵ݀ߠ + Ω ݀ܬ + Φ݀ܳ + ௚௪ܧߜ       (1.31) 

where dJ and dQ are the changes in total angular momentum and charge of the 

black hole and ܧߜ௚௪  is the energy radiated by the black hole in the form of 

gravitational radiation.  
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 For example if we consider the specialized case when two black holes collide and 

coalesce, then the first law says that  

ଵࡼ                                                 + ଶࡼ  = ଷࡼ + ௚௪ࡼ          (1.32) 

and                                                       ࡶଵ + ଶࡶ = ଷࡶ + ௚௪ࡶ                               (1.33) 

where ࡼଵ(ࡶଵ), ,(ଶࡶ)ଶࡼ  are the 4-momenta (total angular momentum  ,(ଷࡶ)ଷࡼ

tensors) of the first, second and final black hole and ࡼ௚௪(ࡶ௚௪) is the total 4-

momentum (angular momentum) radiated as gravitational waves. 

The Second law of black hole dynamics is stated in many different forms in 

literature and it primarily exploits the second law of thermodynamics which 

prohibits the decrease of entropy in any system in nature. It states that in any 

process involving black holes such as matter falling in a black hole or collision or 

scattering of two or several black holes, the sum of the surface areas of all the 

black holes involved can never decrease.  

i.e.                                                                 Δܣ ≥ 0                                        (1.34) 

The surface area of a black hole is given as 

ܣ                        = ାݎ)ߨ4 +  ܽଶ) = ܯቂ ߨ4  + ඥܯଶ − ܳଶ − ܽଶ  +  ܽଶቃ        (1.35) 

Howsoever the interaction of the black hole with matter and fields change the 

black hole parameters ܯ,ܳ, ܽ in various ways, the mass and angular momentum 

of the black hole can even decreased through processes such as Penrose process 

[18] where the rotational energy can be extracted from a black hole, the total 

surface area of the black hole can never decrease and if once increased the total 

area can never be brought to its initial value. 

Based on this law the black hole processes can be classified in two groups viz.  

a) Reversible Transformations: When the area is fixed, a set of parameters 

,ܳ,ܯ ܽ after a transformation can again be brought back to their initial set 
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of values. Such processes are therefore termed as reversible processes 

since the area does not change in the process.  

b) Irreversible Transformations: If we change the values of the parameters 

,ܳ,ܯ ܽ in such a way that the area is increased then we cannot by any 

process get back to the same set of these parameters. Such processes are 

therefore termed as irreversible as the second law of black hole dynamics 

does not allow further decrease in the surface area of the black hole by any 

process. 

Another concept  related to the irreducibility of the surface area of the black hole 

is the irreducible mass inherent for any black hole. The irreducible mass of a 

black hole is the mass given in terms of the Schwarzschild surface area of a black 

hole which is  

ܣ                                                                 =  ଶ       (1.36)(ܯ2)ߨ4

The irreducible mass therefore is, 

௜௥ܯ                                                         =  ଵ/ଶ       (1.37)(ߨ16/ܣ)

The final mass in terms of irreducible mass can be expressed as (with ܵ =  .(ܽܯ

ܯ                                     = ௜௥ܯ) +  ܳଶ/4ܯ௜௥  )ଶ +  ܵଶ/4ܯ௜௥
ଶ                          (1.38)  

Thus the total mass energy of the black hole can be viewed as the sum of its 

irreducible mass, an electromagnetic energy and a rotational energy. If we remove 

through some process the rotational energy and the electromagnetic energy from 

the black hole, the final mass will be reduced to the irreducible mass which will 

be as expected, the Schwarzschild mass of the black hole.  

 1.4 Types of Black Holes  

In terms of spacetime structures, black holes can be either a non rotating 

Schwarzschild black hole or a rotating Kerr black hole. In astrophysical point of 
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view the black holes are primarily classified as Stellar black holes, Supermassive 

black holes, and Premordial black holes. The evidences for each type of these 

black holes are a key area of study in observational astrophysics. The detection 

methods and techniques advance with the increase in understanding of the 

underlying physics and the technological advancements in space based detectors 

and telescopes. X-ray astronomy and Gamma Ray Bursts observatories provide 

important necessary clues to sort out the right candidates for black holes in the 

outer universe. We discuss the physical phenomena that can lead to discoveries of 

each of these objects and the present day status of the field of black hole 

detections. 

 1.4.1 Stellar Black Holes  

A star is an example of thermo gravity equilibrium where the gravitational pull of 

the matter of which it is composed, mainly hydrogen, is balanced by the radiation 

pressure of the nuclear fusion taking place inside the star, mainly hydrogen to 

helium. A star spends most of its life in this process of converting hydrogen into 

helium and radiating the energy in the form of radiation pressure and photons. 

The question arises of what happens whence the star has converted all its 

hydrogen to helium. The star starts to shrink and heat due to its gravity until a 

temperature is reached where its helium nuclei start to fuse together and form 

carbon, and once again another cycle of helium to carbon conversion saves the 

star from its inward gravitational pull and so on. The process continues till most 

of its central matter is converted to nickel which is the most stable form of atomic 

nuclei ceasing any further fusion reactions. Then it would start the final state of 

the stellar cycle. The star is incapable of further nuclear fusions and thus 

incapable to avoid its gravitational shrinkage. Its fate is now decided by only one 

parameter which is its initial mass.  

If the initial mass of the star was less than 1.4 times solar mass (1.4 ܯ⊙), then a 

phenomena known as the electron degeneracy pressure comes to the rescue of the  

and balances the inward gravitational pull of the star to form a stable white dwarf 
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star. This limit for the electron degeneracy pressure was given by Subramanian 

Chandrasekhar and is named after him as the Chandrasekhar limit [22]. 

A slightly massive star with the initial mass up to 2-3 times solar mass, saves 

itself from gravitational collapse by a phenomena known as the neutron 

degeneracy pressure, suggested by Zwicky in the early thirties, and this upper 

limit on the initial mass of the star is known as the Oppenheimer-Volkoff limit [6]. 

There are also a various phenomena such as steady mass loss, the catastrophic 

mass ejection and the supernovae explosions which can bring an initially massive 

star to these limits at its final evolution and thereby saving the star to a white 

dwarf or a neutron star fate [23].  

The massive stars for which the neutron degeneracy pressure can not balance out 

the gravitational collapse are destined to a fate of a stellar black hole. The 

continuous gravitational collapse causes the star to shrink just to its gravitational 

radius and its spacetime eventually gets cut from the outside universe to form a 

hole in the spacetime covering a singularity at the center by the event horizon. 

The physical implications of this spacetime structure are discussed at length in 

various topics on this thesis and here we concern ourselves with the astrophysical 

sense of these objects.  

If we want to estimate the number density of these stellar black holes in our 

galaxy we need to know the birth rate of stars, average age of stars, their death 

rate, and the ratio of massive stars which can be progenitors of these black holes. 

With these values at hand we can estimate the birth rate of black holes in the 

galaxy and the total mass of all the stellar black holes in the galaxy to further 

estimate the density of black holes in the solar neighborhood. According to the 

related work on this topic [24], it is estimated that ~ 1 percent of the visible mass 

of the galaxy is in the form of these stellar black holes. 

1.4.1.1 Disk Accretion onto Black Holes 
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To detect a field stellar black hole in the interstellar medium from astronomical 

distances even with the most powerful telescopes would be something like 

searching an object of thickness of the size of human hair on the moon from earth 

with the naked eye! Chances are boldly nil. How does one look for these objects 

in the solar neighborhood? A let alone black hole lurking in the interstellar 

medium is never expected to be detected from earth. However if the black hole is 

part of a binary system, such as a black hole accompanying a star or a black hole 

surrounded by a interstellar dust cloud we can start to have some positive opinion 

of detecting one. In order to do so we need to understand the underlying physics 

of such systems in detail and a good amount of work has been done in the 

literature discussing all the viable cases [25].  

The most assuring evidence that stellar black holes exist comes from the study of 

X-ray binaries. It was pointed out by Novikov and Zel’dovich [12] that X-rays 

should be produced by the accretion of gas onto compact objects in binary 

systems. With the advent of X-ray astronomy, various binary systems were 

studied in detail and by the determination of orbital motions of these systems it 

was made possible to determine the mass of the compact objects in the binary 

system. If the masses of the compact objects were greater than the neutron star 

upper mass limits they were pointed out to be strong candidates of stellar black 

holes. Cyg X1 is by far the most probable case for a stellar black hole in our part 

of the galaxy [14]. 

 

1.4.2 Supermassive Black Holes  

The theory of black holes was primarily developed concerning the problem of 

stellar fate and long before any stellar black hole candidate was discovered, the 

mathematical background was already prepared in place to deal with all the 

physical aspects of these objects and their spacetime. On the contrary, the second 

class of black holes, supermassive black holes (SMBHs), were only inferred first 

observationally after the discoveries of active galactic nuclei (AGN), upon the 
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advancement in Radio, X-Ray, and Gamma Ray observatories in the middle of the 

last century. The visible universe was now merely a fraction of the universe, 

which was indeed found to be vibrant in the whole electromagnetic spectrum, 

once these observatories were largely developed and started to give the 

observations. 

Many new discoveries of objects and physical phenomenon were made with the 

help of these telescopes enhancing our understanding of the universe many a 

folds. The most important of these discoveries were the powerful sources of 

radiations in the radio, infrared, hard ultraviolet, X-ray, and gamma regions of the 

electromagnetic spectrum, coming from the centers of certain galaxies (AGN). In 

some cases the full luminosity of the nucleus is million times the luminosity of the 

quieter galaxies. Quasars, which form a subclass of AGN are the most powerful 

sources of energy seen in the universe and yet their sizes are inferred to be only a 

few light hours [26]. Novikov and Zel’dovich [27] first estimated the mass of 

these AGN and quasars using the luminosity mass relation and inferred masses of 

the range ~10଻ܯ௦௨௡. Such large masses and small linear dimensions indicated 

that there could be supermassive blackholes at the centers of the quasars and 

AGN [27,28]. 

Now it is widely accepted that the AGN contain supermassive black holes at their 

center with accreting gas disks. Presence of directed jets from the nuclei of certain 

AGN suggests a rotating black hole and there are observational evidences that 

these jets are accompanied by gyroscopic precision further supporting the claims 

for a central rotating black hole [29]. 

The SMBHs are now no more only related with the AGN but are believed to exist 

in every galactic center including our own [30]. They are now referred to as 

dormant SMBHs which make the center of each galaxy and have run out of fuel 

(gas and dust). Observations suggest that galactic nuclei are more populous at 

higher ݖ epochs [31].Very recent works in this domain are shedding light on the 

importance of SMBHs at the galactic centers, their role in galaxy formations, and 
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more importantly a strong correlation between the SMBHs mass and the galaxy 

size suggests that the SMBHs play a key role in galaxy formation and hence the 

large scale structure of the universe [32]. The origin of these SMBHs at the 

galactic nuclei is an open area of present day research and will answer the key 

questions related to our understanding of the structure formation in the universe.  

 

1.4.3 Primordial Black Holes 

For black holes of mass ܯ ≪  ௦௨௡ to form, would require a very high density toܯ

which the matter must be compressed and therefore these black holes are not 

expected to form in our contemporary universe. However at the very beginning of 

the expansion of the universe, the density of the universe was enormously high 

and it would have been possible that black holes were formed at this highly dense 

epoch. This idea was put forward by Novikov and Zel’dovich in 1967 [33,34] and 

later by Stephen Hawking in 1971[35]. Such black holes are called primordial. 

Primordial black holes are important for a process known as Hawking quantum 

evaporation which require small-mass black holes of ܯ ≈ 5 × 10ଵସ݃ that can 

evaporate in an observational period of 10ଵ଴ years of the history of the universe. 

These small mass black holes can only be primordial. For stellar and SMBH the 

quantum evaporation period is much greater than the age of the universe and can 

be neglected.  

Primordial black hole density at the present epoch or at the earlier epochs can give 

crucial information about the structure formation of the universe. Radiation from 

primordial black hole at the earlier epoch of their formation could have resulted 

inhomogeneities which could have perturbed the cosmological nucleosynthesis 

and played an important role in the present large scale structure formation. 

Primordial black holes evaporation (explosion) are also sometimes expected to be 

the cause behind the Gamma Ray Bursts but there have been no observational 

evidences till date of such connections [36] and the existence of PBHs. 
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Chapter 2  

Spacecraft Trajectory Analysis 

 

The discovery of heliocentric model by Copernicus led to the first era of scientific 

understanding of the motion of the celestial bodies. Tycho Brahe studied the 

planetary motions in detail and later Keplar utilized those observational data and 

came up with empirical laws that are since widely referred as the Keplar laws of 

planetary motion. Isaac Newton discovered the laws of gravitation and formulated 

the theory of celestial mechanics which explained the Keplar’s laws of planetary 

motion verifying the Newton’s theory of gravitation.  

The three laws of planetary motion given by Keplar are stated as under: 

1.) Planets follow elliptical orbits with Sun at one of the focus. 

2.) The radius vector joining the Sun with the planet sweeps out equal area in 

equal interval of time. 

3.) The square of the period of a planet is proportional to the cube of its 

average radius. 

The study of motion of a spacecraft considered as a particle in the gravitational 

field of a celestial body is called  astrodynamics and the subject of the motion of 

the spacecraft about its center of mass is referred as attitude control. 

Astrodynamics exploits the Newtonian laws of gravity in most of the cases and 

would use the Einstein’s general relativity laws for extreme gravity conditions. 

The Newtonian laws are a special approximation of the Einstein’s general theory 
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of relativity which is considered by far the most accurate description of laws of 

motion in the influence of gravity. 

2.1 General  

Newtonian laws of gravity are a good first hand description of the laws of motion 

of bodies in the influence of gravitational interactions. The laws of gravitation 

given by Newton in Principia are given as  

1.) A body would stay at rest or in a state of uniform motion unless acted 

upon by an external force. 

2.) The rate of change of linear momentum is in direction of and proportional 

to the force applied. 

3.) To every action there is an equal and opposite reaction. 

In addition the law of gravitation states that two bodies attract one another with a 

force proportional to the product of their masses (݉ଵ,݉ଶ) and inversely 

proportional to the square of distance (ݎ) between them, i.e. 

ܨ                                                      = ܩ ௠భ௠మ
௥మ

          (2.1)  

  where, ܩ is the universal constant of gravitation, 6.6695 × 10ିଵଵ  m3/kg.s2. 

The concept of work and energy are elaborated using the Newton’s Laws and are 

required to study the two body problem in detail. The work done on a body is 

equivalent to the energy stored in the body and is expressed as the scalar sum of 

product of the force applied and the infinitesimal displacement, 

Type equation here. 

 

ଵܹଶ =  න .ࡲ ݀࢘
௥మ

௥భ
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=  න ݉ 
݀࢜
ݐ݀ . ݐ݀࢜

௧మ

௧భ
 

 =  ଵ
ଶ ∫ ݉ ௗ

ௗ௧
(࢜. ௧మݐ݀(࢜

௧భ
  

                                                 = ଵ
ଶ

ଶଶݒ) ݉  −  ଵଶ)                                              (2.2)ݒ

Thus the work done on a particle is the change in its kinetic energy. 

The force is said to be conservative if the amount of work done in taking a closed 

path is zero, i.e. 

.ࡲ∮                                                         ݀࢘ = 0        (2.3)  

The potential energy is defined as the work done by a conservative force in going 

from a point ࢘ଵ to a reference point ࢘଴ . 

                                           ܸ(࢘ଵ) = ∫ .ࡲ  ݀࢘ + ௥బ
௥భ

 ܸ(࢘଴)       (2.4)  

The force can thus be expressed as the negative gradient of potential,  

ࡲ                                                         = −∇ V(ܚ)        (2.5) 

The principle of conservation of energy preserves the total energy of a particle as 

it moves in a conservative field. Another quantity that remains conserved is the 

total angular momentum which is given as  

ࡸ                                                               = ࢘ × (݉࢜)         (2.6) 

The specific angular momentum is defined as  ࢎ = ࢘ × ࢜.   

The constancy of angular momentum requires that ࢘ and ࢜ remain in the same 

 plane. An important consequence of which is that the orbits in gravitational field 

are always planar. 
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2.2 The Two Body Problem 

The motion of two bodies in the influence of gravitational force between them is 

termed as the two body problem. The two bodies are considered to have spherical 

mass distribution and the separation between the bodies is assumed to be large 

enough compared to their dimensions. This assumption allows considering the 

bodies as point particles. If ࡾଵ, ,ଶࡾ ீࡾ  are the radius vectors of the first and 

second body and the center of mass respectively, in an inertial frame of reference 

O. Then the position vector,ீࡾ  can be expressed as  

ீࡾ                                                                =  ௠భࡾభା ௠మࡾమ
௠భା௠మ

        (2.7) 

and the velocity and accelerations will be given as  

  

ீࡾ̇                                                                 =  ௠భ̇ࡾభା ௠మ̇ࡾమ
௠భା௠మ

        (2.8)  

 

ீࡾ̈                                                                  =  ௠భ̈ࡾభା ௠మ̈ࡾమ
௠భା௠మ

        (2.9) 

 

If  ࢘  is the position vector of ݉ଶ relative to ݉ଵ and ࢛௥ be the unit vector in this 

direction, then, 

                                                            ࢘ = ૛ࡾ  ૚     (2.10)ࡾ−

The gravitational force exerted on ݉ଶ by ݉ଵ is  
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ଶଵܨ                                                  = ீ௠భ௠మ
௥మ

 (−࢛௥  )     (2.11) 

The Newton’s law of motion in gravitational interaction suggests that this force 

can be expressed as  

ଶଵܨ                                                 = ீ௠భ௠మ
௥మ

 (−࢛௥  )     (2.12) 

ଶଵܨ                                     = ீ௠భ௠మ
௥మ

 (−࢛௥  ) =  ݉ଶࡾ૛̈    (2.13) 

  By the action-reaction principle, ܨଶଵ =   ଵଶ, and soܨ− 

                                             ீ௠భ௠మ
௥మ

 (࢛௥  ) =  ݉ଶࡾ૚̈       (2.14) 

 

Multiplying the first equation by ݉ଵ and the second equation by ݉ଶ and adding, 

gives 

                         ݉ଵ݉ଶ൫ ࡾଶ̈ − ૚̈൯ࡾ  =  − ீ(௠భା௠మ)
௥మ 

 (݉ଵ + ݉ଶ)࢛௥     (2.15) 

This can be written in the form  

                                                                ࢘̈ =  − ఓ
௥య

 ࢘        (2.16)  

           representing the equation of motion of a two body system under the 

influence of gravity.    Where ߤ is the gravitational parameter given by ߤ =

ଵ݉)ܩ + ݉ଶ) with unit  kmଷsିଶ . 

The above equation on cross multiplication with ࢘ becomes,  

                                            ࢘ × ࢘̈ =  ௗ
ௗ௧
ቀ࢘ × ௗ࢘

ௗ௧
ቁ = ௗ

ௗ௧
ࢎ = 0      (2.17) 

This is the expression for the constancy of the angular momentum per unit mass 

derived from the Newton’s laws of gravitation. The cross product of the equation 

of motion with ࢎ would give,  
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                             ௗ
మ࢘

ௗ௧మ
 × ࢎ =  − ఓ  

௥య
 ࢘ × ࢎ =  − ఓ

௥య
 ࢘ × ቀ࢘ × ௗ࢘

ௗ௧
ቁ     (2.18) 

using the identity for triple vector products, 

                                                         ௗ
మ࢘

ௗ௧మ
 × ࢎ = ߤ ௗ

ௗ௧
ቀ࢘
௥
ቁ       (2.19) 

   

 since ࢎ is a constant the above equation can be directly integrated to give,  

                                                ௗ࢘
ௗ௧

 × ࢎ =  ఓ
௥

 (࢘ +  (2.20)      (ࢋݎ

 

Taking dot product of the above equation with ࢎ will give  

.ࢎ                                                              ࢋ = 0      (2.21)  

The vector ࢋ is referred as the eccentricity vector and it marks the plane of the 

orbital motion. The dot product with ࢘ of the above equation and using the 

identity of scalar triple product gives 

ݎ                                                               + ࢘. ࢋ =  ௛
మ

ఓ
       (2.22) 

ݎ                                                                = ௛మ/ఓ
ଵା௘ ௖௢௦ఏ

       (2.23) 

  here ߠ is the angle between the eccentricity vector and the radius vector ࢘ and is 

called the true anomaly. The above equation is known as the orbit equation and it 

mathematically represents the Keplar’s first law.  

The angular velocity of the position vector is given as ̇ߠ and the normal 

component of the velocity will be  

ୄݒ                                                                       =  (2.24)       ߠ̇ݎ
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The specific angular momentum can be written as ℎ = ୄݒݎ =   ߠଶ̇ݎ

since                             ࢎ = ࢘ × ࢜ = ௥࢛ݎ × ௥࢛࢘ݒ) + (ୄ࢛ୄݒ  =  ෡            (2.25)ࢎୄݒݎ

therefore 

ୄݒ                                                      =  ௛
௥

=  ఓ
௛

 (1 +  (2.26)      (ߠݏ݋ܿ ݁

 The radial component of the velocity vector is given as  

௥ݒ                                                   = ݎ̇  =   ௗ௥
ௗ௧

=  ఓ
௛

 (2.27)      ߠ݊݅ݏ ݁ 

In a differential time ݀ݐ the position vector ࢘ sweeps out an area ݀ܣ given by  

 

           Fig 2.1 Differntial area swept by vector r  during interval dt (courtesy H. 

Curtis) 

ܣ݀ =  ଵ 
ଶ

 × base × altitude = ଵ
ଶ

 × ݐ݀ݒ × ߶݊݅ݏݎ =  ଵ
ଶ

ݐ݀ୄݒ ݎ  = ଵ
ଶ

 ℎ ݀(2.29)         ݐ 

or  

                                                          ௗ஺
ௗ௧

=  ௛
ଶ

= constant                    (2.30) 
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ௗ஺
ௗ௧

  is known as the areal velocity and is a constant of motion and the equation 

mathematically endorses the second  Kepler’s law which is that equal areas are 

swept in equal times. 

The line ߠ = 0 is known as the apse line and the point of closest approach ݎ௣ 

termed as the periapsis is obtained by setting ߠ = 0   in the orbit equation, 

௣ݎ                                                                     =  ௛
మ

ఓ
ଵ

ଵା௘
       (2.31) 

At this point of the trajectory the radial component of the velocity vector 

vanishes. 

2.2.1 Energy Equation  

 The Newton’s equation of motion given as  

                                                                      ࢘̈ =  − ఓ
௥య

 ࢘      (2.32) 

is now used to formulate the energy equation by taking dot product with ࢘̇ giving,  

                                                                  ࢘̈. ࢘̇ =  − ఓ
௥య

 ࢘. ࢘̇      (2.33) 

taking first the left-hand side of this equation,  

                                         ࢘̈. ࢘̇ =  ଵ
ଶ

 ௗ
ௗ௧

(࢘̇. ࢘̇) =  ଵ
ଶ
ௗ
ௗ௧

(࢜. ࢜) = ௗ
ௗ௧
ቀ௩

మ

ଶ
ቁ     (2.34) 

and for the right-hand side  

                                               ఓ
௥య

 ࢘. ࢘̇ = ߤ ௥௥̇
௥య

= ߤ ௥̇
௥మ

=  − ௗ
ௗ௧

 ቀఓ
௥
ቁ     (2.35) 

equating the two sides  

                                                                   ௗ
ௗ௧
ቀ ௩

మ

ଶ
− ఓ

௥
ቁ = 0     (2.36) 

or  
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                                                         ௩
మ

ଶ
− ఓ

௥
= ߳     (constant)     (2.37) 

with ݒଶ/2 being the relative kinetic energy per unit mass and –  the (ݎ/ߤ)

potential energy per unit mass of the body ݉ଶ in the gravitational field of ݉ଵ. The 

above equation represents the principle of conservation of energy conserved along 

the trajectory. The above equation can also be expressed in terms of the orbital 

parameters ߤ, ℎ, ݁, in which case the equation becomes  

                                               ߳ = − ଵ
ଶ

 ఓ
మ

௛మ
(1 − ݁ଶ)       (2.38) 

 Thus the orbital energy is not an independent orbital parameter. Depending on 

different ݁ values the different types of trajectories will have different forms of 

specific energies as discussed in the following subsections. 

2.2.2 Circular Orbits (ࢋ = ૙) 

The circular orbits are defined by zero eccentricity and thus the orbital equation 

takes on the simple form  

ݎ                                                                   =  ௛
మ

ఓ
        (2.39) 

now since ݎ is constant in these orbits ̇ݎ = 0 and hence ݒ =  so that the  ୄݒ

specific angular momentum is ℎ =   and we have ݒݎ

circularݒ                                                          =  ටఓ 
௥

                  (2.40) 

and since the velocity is constant the time period of the circular orbit will be  

                                    cܶircular =  circumference
speed

= ଶగ௥

ටഋೝ

= ଶగ
√ఓ
ݎ
య
మ            (2.41) 

The specific energy ߳ of a circular orbit will be  
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                                       ߳circular = − ଵ
ଶ

 ఓ
మ

௛మ 
=  − ఓ

ଶ௥
       (2.42) 

 

The energy of a circular orbit is negative and it increases with the increasing 

radius. Similarly the velocity of a particle decreases with the increasing radius. 

For a typical geostationary satellite the radius should be 42,164 km and the 

velocity of 3.075 km/s. 

2.2.3 Elliptical Orbits (0 < ݁ < 1) 

The orbital equation which is given by  

ݎ                                                              = ௛మ/ఓ
ଵା௘ ௖௢௦ఏ

       (2.43) 

will have the denominator on the r.h.s. always positive and never reaching zero 

for the eccentricity range  0 < ݁ < 1 . Thus orbits with this eccentricity range will 

be bound and are called elliptical or Keplerian orbits. The orbits of all the planets 

that revolve around the Sun are elliptic and so are the orbits of all the Earth’s 

satellites. 

 The relative position vector for elliptical orbits remains bound and its minimum 

and maximum values are termed as the periapsis (ݎ௣) and apoapsis (ݎ௔) 

respectively,  

Periapsis is given at = 0 , 

௣ݎ                                                                      = ௛మ

ఓ
 ଵ
ଵା௘

       (2.43) 

and the apoapsis is given at ߠ =  ߨ

௔ݎ                                                                       =  ௛
మ

ఓ
ଵ

ଵି௘
                (2.44) 

The semi-major axis ܽ is given as  
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                                                                     2ܽ = ௔ݎ +  ௣       (2.45)ݎ 

substituting the values of ݎ௔ and ݎ௣ gives  

                                                               ܽ =  ௛
మ

ఓ
ଵ

ଵି௘మ
         (2.46) 

 and the orbit equation can thus be rewritten in the form  

ݎ                                                           = ܽ ଵି௘మ

ଵା௘௖௢௦ఏ
      (2.47) 

The semi-minor axis ܾ is  

                                                         ܾ = ܽ√1 − ݁ଶ      (2.48) 

If ݔ,  are the coordinates of a point on the orbit then the equation of the ellipse is ݕ

given as  

                                                            ௫
మ 
௔మ

+  ௬
మ

௕మ
= 1       (2.49) 

The specific energy of an elliptic orbit is  

                                                    ߳ =  − ଵ
ଶ

 ఓ
మ

௛మ
 (1 − ݁ଶ)      (2.50) 

and will always be negative and can be rearranged to be given in terms of the 

semi-major axis  

                                                      ߳ =  − ఓ
ଶ௔

        (2.51) 

The conservation of energy equation for an elliptical orbit can be written as  

                                                     ௩
మ 
ଶ
− ఓ

௥
=  − ఓ

ଶ௔
       (2.52) 

The area of an ellipse given in terms of ܽ, ܾ is ܣ =  To find the time period .ܾܽߨ

of the elliptical orbit the second law of Kepler is employed i.e.  
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                                                                           Δܣ =  ௛
ଶ
Δ(2.53)      ݐ 

for a complete revolution Δܣ = ݐand Δ ܾܽߨ = ܶ, thus,  

                                                                           ܶ =  ଶగ௔௕
௛

                      (2.54) 

which can be re-expressed as  

                                                                ܶ =  ଶగ
√ఓ 

ܽଷ/ଶ        (2.55) 

This equation mathematically represents the third Kepler’s law which states that 

the time period of a planet is proportional to the three-half power of the semi-

major axis. 

2.2.4 Parabolic Trajectories (ࢋ = ૚) 

The orbit equation when ݁ = 1 is given as  

ݎ                                                               =  ௛
మ

ఓ
ଵ

ଵାୡ୭ୱఏ
        (2.56) 

The specific energy of a parabolic trajectory will be  

                                                 ߳ =  − ଵ
ଶ

 ఓ
మ

௛మ
 (1 − ݁ଶ) = 0     (2.57) 

Such that the conservation of energy for a parabolic trajectory is given as  

                                                                     ௩
మ

ଶ
− ఓ

௥
= 0       (2.58) 

This depicts that the velocity on a parabolic path at any point is given as  

ݒ                                                                      =  ටଶఓ
௥

       (2.59) 
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If a body is on a parabolic trajectory it will continue moving towards infinity 

where its velocity becomes zero and it escapes the gravitational field of other 

body. The escape velocity at a distance ݎ from ݉ଵ is therefore given as  

escݒ                                                                    =  ටଶఓ
௥

       (2.60) 

The velocity of a circular orbit is given as  

௢ݒ                                                                       =  ටఓ
௥
        (2.61) 

Therefore the escape velocity for a circular orbit is  

escݒ                                                              =  ௢                  (2.62)ݒ 2√ 

Or a boost of 41.4 percent is required to escape from a circular orbit. 

The flight path angle for a parabolic trajectory is given as  

                                     tan ߛ =  ௘ ௦௜௡ఏ
ଵା௘ ௖௢௦ఏ

=  ௦௜௡ఏ
ଵା௖௢௦ఏ

= tan  (2.63)       2/ߠ

or the flight path angle of a parabolic trajectory is equal to one half of the true 

anomaly.  

The semi-latus rectum of a conic section is given as  

݌                                                                     =  ௛
మ

ఓ
       (2.64) 

and the periapsis radius for a parabolic trajectory is simply  

௣ݎ                                                                    =  ௣
ଶ
        (2.65) 

and the equation of a parabola in cartesian coordinates  written in terms of the 

semi-latus rectum is,  
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ݔ                                                                      =  ௣
ଶ
− ௬మ

ଶ௣
       (2.66) 

The parabolic trajectories are rarely found in nature, however some comets have 

trajectories that approximate a parabola. The parabolic trajectories are interesting 

from a space-craft point of view as they represent the border line of closed and 

open trajectories. 

2.2.5 Hyperbolic Trajectories (ࢋ > 1) 

Meteors that strike the earth and the interplanetary space-probes that leave the 

earth travel with  hyperbolic trajectories relative to the earth. A hyperbolic 

trajectory is important if we want the escaping body to have some excess speed 

when it escapes the influence of the other body. 

If ݁ > 1, the orbit formula  

ݎ                                                            =  ௛
మ

ఓ
 ଵ
ଵା௘ ୡ୭ୱఏ

                  (2.67) 

describes the geometry of a hyperbola. 

The hyperbolic system consists of two symmetric curves, the curve on the left 

represents the orbiting body and the curve on the right is its mathematical image. 

In the case of repulsive forces the right curve will represent the motion of the 

second body with the first body at the focus of the left curve. 

The denominator of the above equation reaches zero when  cosߠ =  − ଵ
௘
 . This 

value ߠஶ is known as the true anomaly of the asymptote as the radial distance at 

 ,ஶ reaches infinityߠ

ஶߠ                                                                      = cosିଵ(1/݁)      (2.68) 

The periapsis P lies on the apse line where the left hyperbola meets the apse line 

and the apoapsis A lies on intersection of the right hyperbola with the apse line. 

The point halfway between periapsis and apoapsis is called the center of the 
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hyperbola. The asymptotes of the hyperbola are the straight lines which the curve 

approaches at infinity, meeting at C, and making an angle ߚ with the apse line, 

where 

ߚ                                                         = ߨ − ஶߠ = cosିଵ(1/݁)     (2.69) 

The periapsis point is given by the equation  

௣ݎ                                                             = ௛మ

ఓ
ଵ

ଵା௘
        (2.70) 

 

and the apoapsis point is at 

௔ݎ                                                            =  ௛
మ

ఓ
ଵ

ଵି௘
        (2.71) 

       

since ݁ > 1 then ݎ௔ comes out to be negative that signifies that apoapse lies on the 

right of the focus F.  

The semimajor axis ܽ is given by as  

                                              2ܽ = ௔ݎ−  ௣ݎ − =  − ௛మ

ఓ
 ቀ ଵ
ଵି௘

+ ଵ
ଵା௘

ቁ     (2.73) 

or, 

                                                              ܽ =  ௛
మ

ఓ
ଵ

௘మିଵ
       (2.74) 

The semiminor axis is the distance from the periapsis P to the asymptote, 

measured perpendicular to the apse line and is calculated to be  

                                                 ܾ = ܽ√݁ଶ − 1       (2.75) 
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Another feature of a hyperbola is the aiming radius which is the distance between 

a asymptote and a parallel line to the focus and is given as  

                                         Δ = ൫ݎ௣ + ܽ ൯ߚ݊݅ݏ = ஶߠ݊݅ݏ ݁ ܽ = ܾ     (2.76) 

Thus the aiming radius equals the length of the semiminor axis of the hyperbola. 

The specific energy of a hyperbolic trajectory can be calculated using the energy 

equation  

                                                          ߳ =  ଵ
ଶ

 ఓ
మ

௛మ
 (݁ଶ − 1)     (2.77)  

Substituting the value of  ܽ in  the above equation gives 

                                                                       ߳ =  ఓ
ଶ௔

       (2.78) 

 Therefore the energy of the hyperbolic trajectory is always positive and the 

conservation of energy for a hyperbolic trajectory is  

                                                                    ௩
మ 
ଶ
− ఓ

௥
=  ఓ

ଶ௔
       (2.79) 

 We can find now the speed at which a body will escape to infinity by letting 

ݎ = ∞ in the above equation to obtain the hyperbolic excess speed ݒஶ,  

ஶݒ                                                                  =  ටఓ
௔
       (2.80) 

Therefore the energy equation can be alternatively written in the form  

                                                                   ௩
మ

ଶ
− ఓ

௥
=  ௩ಮ

మ

ଶ
            (2.81) 

Substituting the expression for the escape velocity we can further write the energy 

equation in the form  

ଶݒ                                                               = escݒ
ଶ +  vஶଶ        (2.82) 
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Thus hyperbolic excess speed is the velocity with which a body escapes the 

gravity of another body. For interplanetary missions this excess velocity is 

required with which the probe travels farther as it leaves the sphere of influence of 

the primary planet. 

2.2.5 Perifocal Frame 

This is the most natural frame of reference for the study of orbits, The origin the 

 axis pointing in the ݔ plane of the frame lies in the plane of the orbit, with the ݕݔ

direction of periapsis and the ݕ axis perpendicular to the apse line lying in the 

plane of the orbit. The ݖ axis lies perpendicular to the plane of the orbit and 

coincides with the direction of the angular momentum ࢎ, 

 If ࢖ෝ, ,ෝࢗ ෝ࢝  are the respective unit vectors in the ݔ, ,ݕ  directions in the perifocal ݖ

frame then the radius vector can be written as  

                                                                 ࢘ = ෝ࢖ݔ +  ෝ       (2.83)ࢗݕ

and the ݖ unit vector is  

                                                                       ෝ࢝ = ࢎ
௛
       (2.84) 

now ݔ = , ߠݏ݋ܿݎ ݕ =  is given by the orbit ݎ and the magnitude of  ߠ݊݅ݏݎ

equation 

ݎ                                                    = (ℎଶ/ߤ)[1)/1 +  (2.85)                         [(ߠݏ݋ܿ݁

and the radius vector can be expressed as  

                                             ࢘ =  ௛
૛

ఓ
ଵ

ଵା௘௖௢௦ఏ
ෝ ࢖ ߠݏ݋ܿ)  +  ෝ)                (2.86)ࢗ ߠ݊݅ݏ

The velocity can be found by taking the time derivative of the radius vector  ࢘ 

                                                               ࢜ =  ࢘̇ = ෝ࢖ݔ̇ +  ෝ      (2.87)ࢗݕ̇
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where ̇ݔ and ̇ݕ  can be found as  

ݔ̇                                                = ߠݏ݋ܿ ݎ̇  − ߠ̇ݎ sin  (2.88)      ߠ

ݕ̇                                                      = ߠ݊݅ݏ ݎ̇  +  (2.89)                                       ߠݏ݋ܿߠ̇ݎ

giving  

                                           ࢜ =  ఓ
௛

ෝ࢖ߠ݊݅ݏ−]   + (݁ +  ෝ]     (2.90)ࢗ(ߠݏ݋ܿ

This describes the orbital kinematics in the perifocal frame. The next section 

utilizes the concept of perifocal frame to calculate the Lagrange coefficients 

which provide a direct method to calculate the radial vector and velocity at later 

time once the initial values of these two quantities are known. 

2.2.6 The Lagrange Coefficients 

 The position and velocity of a body in an orbit at a later time can be calculated 

from the initial values of these quantities and the coefficients of such a 

multiplication matrix are known as the Lagrange coefficients. The Lagrange 

coefficients can be derived in the following manner,  

If ( ࢘଴, ࢜଴) are the initial set of values at time ݐ଴, and( ࢘, ࢜ ) the values at a later 

time ݐ. Then in the perifocal frame,  

                                                            ࢘଴  = ෝ࢖଴ݔ +                 ෝ                             (2.91)ࢗ଴ݕ

                                                             ࢜૙ = ෝ࢖଴̇ݔ +  ෝ         (2.92)ࢗ଴̇ݕ

 

and  

                                                             ࢘ = ෝ࢖ݔ +  ෝ       (2.93)ࢗݕ

                                                             ࢜ = ෝ࢖ݔ̇ +  ෝ            (2.94)ࢗݕ̇
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The angular momentum ࢎ can be written as  

ࢎ                   = ࢘଴ × ࢜଴ =  อ
ෝ࢖ ෝࢗ ෝ࢝
଴ݔ ଴ݕ 0
ݔ̇ ݕ̇ 0

อ = ෝ࢝ ݕ଴̇ݔ) − (ݔ଴̇ݕ = ℎ ෝ࢝      (2.95) 

Unit vectors ࢖ෝ, ,ෝ can be expressed in terms of the  ࢘଴ࢗ ࢜଴, ,ݔ ,ݕ ,଴̇ݔ  ,଴̇ and  ℎ  asݕ

ෝ࢖                                                          =  ௬బ̇
௛
࢘૙ − ௬

௛
࢜૙       (2.96) 

 

ෝࢗ                                                          =  ௫బ̇
௛
࢘଴ + ௫బ

௛
࢜଴       (2.97) 

 

substituting these values of ࢖ෝ, ,࢘ ෝ in the expressions ofࢗ ࢜ yields, 

 

࢘ = ݔ ቀ௬బ̇
௛
࢘૙ − ௬

௛
࢜૙ቁ + ݕ ቀ௫బ̇

௛
࢘଴ + ௫బ

௛
࢜଴ቁ = ௫௬బ̇ି௬௫బ̇

௛
࢘૙ + ି௫௬బା௬௫బ

௛
࢜૙         (2.98) 

 

࢜ = ݔ̇  ቀ௬బ̇
௛
࢘૙ − ௬

௛
࢜૙ቁ + ݕ ቀ௫బ̇

௛
࢘଴ + ௫బ

௛
࢜଴ቁ

̇ =  ௫̇௬బ̇ି௬̇௫బ̇
௛

࢘૙ + ି௫̇௬బା௬̇௫బ
௛

࢜૙       (2.99) 

or  

                                                            ࢘ = ݂࢘૙ +  ݃࢜଴     (2.100) 

                                                    ࢜ =  ݂̇࢘଴ + ݃̇࢜଴     (2.101) 

where  

                                                         ݂ =  ௫௬బ̇ି௬௫బ̇
௛

     (2.102) 

                                                                ݃ =  ି௫௬బା ௬௫బ
௛

     (2.103) 
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and 

                                                               ݂̇ =  ௫̇௬బି ௬̇௫బ̇
௛

     (2.104) 

                                                               ݃̇ =  ି௫̇௬బା௬̇௫బ
௛

    (2.105) 

The functions ݂ and ݃ are known as Lagrange coefficients. The Lagrange 

coefficients and their time derivatives are functions of time and initial conditions. 

The conservation of total angular momentum imposes a condition on 

݂, ݃, ݂̇ and ݃̇,  

                                                     ݂݃̇ − ݂̇݃ = 1     (2.106) 

Thus we require any three of the four functions to calculate the position and 

velocity in an orbit at a later time once the initial values of the position and 

velocity are given. The Lagrange coefficients can also be expressed in terms of 

the radius vector and the change in true anomaly,  

                                             ݂ = 1 − ఓ௥
௛మ

 (1 −  (2.107)     (ߠΔݏ݋ܿ

                                       ݃ =  ௥௥బ
௛
 (2.108)      ߠΔ݊݅ݏ

                                ݂̇ =  ఓ
௛
ଵି௖௢௦୼ఏ
௦௜௡୼ఏ

ቂ ఓ
௛మ

(1 − (ߠΔݏ݋ܿ − ଵ
௥బ
− ଵ

௥
ቃ    (2.109) 

                                             ݃̇ = 1 − ఓ௥బ
௛మ

(1 −  (2.110)      (ߠΔݏ݋ܿ

where ݎ is given as  

ݎ                                             =  ௛
మ

ఓ
ଵ

ଵା൬ ೓
మ

ഋೝబ
ିଵ൰௖௢௦୼ఏି೓ೡೝబഋ ௦௜௡୼ఏ

    (2.111) 

And the initial radial velocity ݒ௥଴ is the projection of ࢜଴ onto the direction of  ࢘૙,  

௥଴ݒ                                                                  = ࢜૙. ࢘బ
௥బ

     (2.112) 
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with  

଴ݎ                                                       =  ௛
మ

ఓ
ଵ

ଵା௘ ௖௢௦ఏబ
     (2.113) 

and  

௥଴ݒ                                                                =  ఓ
௛
 ଴     (2.114)ߠ݊݅ݏ ݁

This provides a method to calculate the position and velocity vectors at a given 

time with the knowledge of the eccentricity and the true anomaly of the initial 

point. 

2.3 Restricted Three Body Problem 

The two body problem can be completely solved analytically whereas the 

scenario is not similar for a general three body problem where there exist no 

analytical solutions. However for special cases it is possible to describe the 

problem analytically. One such case is the problem of two bodies of masses 

݉ଵ, ݉ଶ circling about a common center of mass and a third body of mass ݉ , 

negligible compared to ݉ଵ  and ݉ଶ , moving under the combined gravitational 

influence of ݉ଵ and ݉ଶ. The reference frame is chosen such that the origin lies at 

the center of mass of the first two bodies with the ݔ axis pointing towards ݉ଶ and 

the ݕݔ plane coinciding with the plane of the orbit. In this frame of reference the 

two bodies ݉ଵ,݉ଶ will appear to be at rest, ref Fig 8. Since the mass of the third 

body is considered to be negligible the problem is referred as restricted three body 

problem.  
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      Fig 2.2  Illustration of Restricted Three Body Problem (courtesy H. Curtis) 

 

The inertial angular momentum that is a constant of motion is given by,  

                                                                 ષ = Ω ࢑෡     (2.115) 

where Ω =  and ܶ is the time period of the circular orbit of the primary ܶ/ߨ2

bodies, given by the Kepler law,  

                                                              ܶ = ߨ2 ௥భమ
య/మ

√ఓ
     (2.116) 

If ܯ is the total mass of the primary bodies and ݔଵ,  ଶ their distances from theݔ

origin, and if we denote ߨଵ,   ଶ as the mass ratios thenߨ

                                                          ݉ଵݔଵ +  ݉ଶݔଶ = 0     (2.117) 

and  

ଵݔ                                                          =  ଵଶ     (2.118)ݎଶߨ− 

ଶݔ                                                                    =    ଵଶ    (2.119)ݎଵߨ
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 where  ߨଵ = ݉ଵ/(݉ଵ + ݉ଶ) and ߨଶ = ݉ଶ/(݉ଵ +  ݉ଶ). 

In the co-moving reference frame, the position of the ݉ relative to ݉ଵ,݉ଶ is  

                   ࢘ଵ = ݔ) − ଵ)ଙ̂ݔ + ଚ̂ݕ + ࢑෡ݖ = ݔ) + ଵଶ)ଙ̂ݎଶߨ + ଚ̂ݕ  +  ࢑෡     (2.120)ݖ

and  

                   ࢘ଶ = ݔ) − ଶ)ଙ̂ݔ + ଚ̂ݕ + ࢑෡ݖ = ݔ) − ଵଶ)ଙ̂ݎଵߨ + ଚ̂ݕ  +  ࢑෡     (2.121)ݖ

The position vector of the secondary body in the co-moving reference frame is  

                                               ࢘ = ଙ̂ݔ + ଚ̂ݕ +  ࢑෡      (2.122)ݖ

However, since the co-moving reference frame is rotating with a constant angular 

velocity the absolute velocity of the secondary mass can be derived as  

                                    ࢘̇ = ࢜ீ +  ષ × ܚ +  ୰ୣ୪      (2.123)ܞ

Where ࢜ீ  is the inertial velocity of the center of mass of the primary bodies 

and ࢜rel is the velocity of the secondary body in the moving reference frame,  

                                  ࢜rel = ଙ̂ݔ̇  + ଚ̂ݕ̇ +  ࢑෡      (2.124)ݖ̇

 The absolute acceleration of the secondary body will be given as  

                        ࢘̈ = ீࢇ +  ષ̇ × ࢘ + ષ × (ષ × ࢘) +  2ષ × ࢜rel +  rel   (2.125)ࢇ

Since the velocity of the moving frame is constant and so is the angular velocity 

of the center of mass (Ω) in this frame, therefore ீࢇ =  ષ̇ = 0 and  

relࢇ                                                   = ଙ̂ݔ̈  + ଚ̂ݕ̈ +  ࢑෡                (2.126)ݖ̈

Therefore  

                  ࢘̈ = ଙ̂ݔ̈) − 2Ω̇ݕ − Ωଶݔ)ଙ̂ + ݕ̈)  + 2Ω̇ݔ − Ωଶݕ)ଚ̂ +  ࢑෡   (2.127)ݖ̈ 

The Newton’s second law for the secondary body gives us  
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                                                        ݉࢘̈ = ଵࡲ +  ଶ    (2.127)ࡲ 

where  

ଵࡲ                                                             =  − ఓభ௠
௥భయ

࢘ଵ     (2.128) 

and  

ଶࡲ                                                             = − ఓమ௠
௥మయ

࢘ଶ      (2.129) 

Or  

                                             ࢘̈ =  − ఓభ
௥భయ

 ࢘ଵ − ఓమ
௥మయ
࢘ଶ     (2.130) 

Finally substituting the corresponding values,  

ݔ̈) − 2Ω̇ݕ − Ωଶݔ)ଙ̂ ݕ̈) + + 2Ω̇ݔ − Ωଶݕ)ଚ̂ + ࢑෡ݖ̈    =  − ఓభ
௥భయ

ݔ)] + ଵଶ)ଙ̂ݎଶߨ  + ଚ̂ݕ +

[࢑෡ݖ  −  ఓమ
௥మయ

ݔ)] − ଵଶ)ଙ̂ݎଵߨ  + ଚ̂ݕ +  ࢑෡]                                              (2.131)ݖ 

Equating coefficients, 

ݔ̈ − 2Ω̇ݕ − Ωଶݔ = −
ଵߤ
ଵଷݎ

ݔ) + (ଵଶݎଶߨ −
ଶߤ
ଶଷݎ

ݔ) −  (ଵଶݎଵߨ

ݕ̈ + 2Ω̇ݔ − Ωଶݕ = −
ଵߤ
ଵଷݎ
ݕ − 

ଶߤ
ଶଷݎ
  ݕ

ݖ̈                                                           =  − ఓభ
௥భయ
ݖ − ఓమ

௥మయ
 (2.132)                ݖ

These correspond to the analytically derived equation of motions for a restricted 

three-body problem. 
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Chapter 3  

Rotating Kerr Black Holes 

The gravitational collapse of a rotating spherical mass would produce a rotating 

black hole if the radius of the collapsing body reaches the gravitational radius. 

Such collapses will be more general than a non rotating collapse and would 

complete the case for all gravitational collapses. The asymmetry inherent in the 

collapsing body is suggested to be radiated gravitationally and the final outcome 

is assumed to be a stationary spherically symmetric rotating black hole [14]. All 

the features of rotating black holes can then be described by the charge, mass and 

the angular momentum of the black hole. 

A complete mathematical description of spacetime around a rotating black hole 

was provided by Roy Kerr in 1963 [9]. The original paper proved that exact 

solutions of such geometry were possible and further conclusions led to 

interesting physical nature of the spacetime behavior in such extreme conditions. 

The Kerr metric used to describe a rotating black hole is studied using various 

coordinate systems out of which the Boyer Lindquist coordinates [17] provide an 

extension to the Schwarzschild coordinates and are the most studied and exploited 

for the study of rotating spacetime behavior. 
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A Kerr Black hole can be formed either from the death of a massive star or can 

exist at the centers of galaxies, the two different types of black holes differ in their 

formations and mass range but the underlying physics describing the spacetime 

associated with these objects is expected to be same. The strikingly similar 

behavior of Kerr spacetime at different scales gives us two different scenarios to 

study the overall behavior of spacetime in extreme conditions. In the case of 

supermassive black holes existing at the centers of galaxies the trajectories of the 

nearby stars can be studied in detail to understand the motion of bodies in Kerr 

spacetime. The study of the supermassive black hole at the center of the Milky 

Way exhibits stellar orbits of extremely high eccentricities that orbit the central 

black hole. 

The orbits around the central black hole in Milky Way can provide a test ground 

of the theory of motion of bodies in Kerr spacetime. Since the nature of the 

spacetime is similar in both types of black hole one can approximate the case of a 

satellite revolving around a stellar black hole to that of stars orbiting a 

supermassive black hole since in both the cases the mass of the secondary body is 

negligible compared to the mass of the black hole, and the spacetime associated 

with the black holes are similar to each other only varying in scales. 

3.1 Kerr Geometry 

The spacetime around rotating black holes is described uniquely by the Kerr 

Metric [9] given by Roy Kerr in 1963. It is the most general form of a space 

metric which embodies the rotation of spacetime around a gravitational source of 

an extremely high order of density. The stellar originated black holes with a 

definite angular momentum fall in the category of Kerr black holes and the 

spacetime around these black holes can be studied with the aid of the Kerr metric 

given below in the Boyer-Lindquist coordinates [17],  
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ଶݏ݀ =  − ୼
ఘమ

ݐ݀] − asinଶ ߠ  ݀߶]ଶ +  ୱ୧୬
మ ఏ
ఘమ

ଶݎ)] +  ܽଶ)݀߶ − ଶ[ݐ݀ܽ +

 ఘ
మ

୼
ଶݎ݀ +  ଶ                (3.1)ߠଶ݀ߩ

 

or alternatively  

ଶݏ݀ = − ଵ
ఘమ

[Δ − ܽଶ sinଶ ଶݐ݀[ߠ +  ୱ୧୬
మ ఏ
ఘమ

[−Δܽଶ sinଶ + ߠ ଶݎ) + ܽଶ)ଶ ]݀߶ଶ −

 2 (ଶெ௥ିொమ)௔  ୱ୧୬మ ఏ
ఘమ

߶݀ݐ݀ + ఘమ

୼
ଶݎ݀ +  ଶ                                                      (3.2)ߠଶ݀ߩ 

 

where,  

Δ ≡ ଶݎ − ݎܯ2 + ܽଶ + ܳଶ  

,ଶߩ Σ ≡ ଶݎ + ܽଶ cosଶ    ߠ

 ܽ ≡ ܯ/ܵ ≡ angular momentum per unit mass                                     (3.3) 

The mixed metric coefficients ݃௧థ , ݃థ௧ are seen to be non zero and the metric is in 

general a non-diagonal metric irrespective of the choice of the coordinate system. 

The non vanishing non diagonal components of the Kerr metric introduces new 

concepts of space-time reversal and static limit which accounts for intriguing new 

physics in such spacetimes. 

The derivation of Kerr Metric is carried out by considering the general form of a 

spacetime metric and applying the necessary conditions of symmetries and 

finding the non zero components of the Ricci curvature tensor and utilizing the 

Einstein equation of General Relativity [16]. Once derived, the metric can be 

shown to be a unique metric describing rotating spacetime by the theorems of 

Robinson and Carter [37, 38]. 

The Kerr metric in Boyer Lindquist coordinates becomes singular at the horizon 

where the metric coefficient ݃௧௧ vanishes, and it requires an infinite amount of 

coordinate time to reach the horizon. Moreover the dragging of inertial frame 

causes an infinite twisting as one approaches the horizon. This singularity is seen 
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to be coordinate dependent and can be avoided by choosing a different set of 

coordinate system called the Kerr coordinates [39] by replacing ݐ, ߶ by ෨ܸ , ߶෨  in the 

following manner, 

ܸࢊ                                               = ݐࢊ + ଶݎ) +  ܽଶ)(ݎࢊ/Δ)        (3.4) 

෨߶ࢊ                                                  = ߶ࢊ +  (3.5)        (Δ/ݎࢊ)ܽ

This transformation leads to an infinite suppression of coordinate time ݐ and an 

infinite untwisting of the angular coordinate ߶ in the neighborhood of the horizon. 

In the Kerr coordinate system the Kerr metric takes on the form 

ଶݏ݀ =  −[1 − ݎܯଶ(2ିߩ − ܳଶ)]݀ ෨ܸ ଶ + ݀ݎ2݀ ෨ܸ + ଶߠଶ݀ߩ + ଶݎ)]ଶିߩ  + ܽଶ)ଶ −

Δܽଶ sinଶ [ߠ sinଶ ෨ଶ߶݀ߠ − 2ܽ sinଶ ෨߶݀ߠ ݎ݀ − ݎܯଶ(2ିߩ2ܽ − ܳଶ) sinଶ ෨݀߶݀ߠ ෨ܸ (3.6)    

The Kerr metric behaves well in the neighborhood of the horizon in the Kerr 

coordinate system and the inward photon and particle world lines remain singular 

in this new choice of coordinate system. However the Boyer Lindquist 

coordinates are used for most of the calculations in Kerr geometry in this work. 

  

The metric coefficients in Boyer Lindquist coordinates are independent of the ݐ 

and ߶ coordinates and thus the spacetime geometry is both time independent and 

axially symmetric. The independence of the metric coefficients of a coordinate 

leads to a killing vector associated with that coordinate and these killing vectors 

are associated with conservation of energy and conservation of the angular 

momentum. The Killing vectors associated with the Kerr metric are  

௧ࣈ                                               = ቀ డ
డ௧
ቁ
௥,ఏ,థ

= ቀ డ
డ௏෩
ቁ
௥,ఏ,థ෩

        (3.7) 

థࣈ                                               = ቀ డ
డథ
ቁ
௧,௥,ఏ

= ቀ డ
డథ෩
ቁ
௏෩,௥,ఏ

        (3.8) 

The dot products of the killing tensors with each other and themselves give  
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.௧ࣈ ௧ࣈ = ݃௧௧ =  −(1 −
ݎܯ2 − ܳଶ

ଶߩ ) 

థࣈ                                         . థࣈ = ݃థథ =  
ቂ൫௥మା௔మ൯మି୼௔మ ୱ୧୬మ ఏቃ ୱ୧୬మ ఏ

ఘమ
       (3.9) 

௧ࣈ                                           . థࣈ = ݃௧థ =  − ൫ଶெ௥ିொమ൯௔ ୱ୧୬మ ఏ
ఘమ

      (3.10) 

The Killing vectors have coordinate free meaning and they are associated with the 

symmetries in the spacetime and so the metric coefficients ݃௧௧ , ݃థథ , ݃௧థ  also 

embody information of the symmetries in spacetime in the Boyer Lindquist 

coordinate form of the Kerr metric. The Killing vectors scalar products in Kerr 

coordinates are seen to be  

௏෩ࣈ                              . ௏෩ࣈ =  − ቀ1 − ଶெ௥ିொమ

ఘమ
ቁ = ݃௏෩௏෩ = ݃௧௧ = ௧ࣈ .  ௧     (3.11)ࣈ

థ෩ࣈ                     . థ෩ࣈ =  
ቂ൫௥మା௔మ൯మି୼௔మ ୱ୧୬మ ఏቃ ୱ୧୬మ ఏ

ఘమ
= ݃థ෩థ෩ = ݃థథ = థࣈ .  థ    (3.12)ࣈ

 

௏෩ࣈ                     . థ෩ࣈ =  − ൫ଶெ௥ିொమ൯௔ ୱ୧୬మ ఏ
ఘమ

= ݃௏෩థ෩ = ݃௧థ = .௧ࣈ థࣈ       (3.13) 

which establishes the invariance of the Killing vectors in the two different 

coordinate systems used to describe the Kerr spacetime. These inherent 

symmetries in Kerr spacetime leads to the two constants of motion associated 

with the conservation of energy and the conservation of angular momentum. 

Another constant of motion in Kerr spacetime was discovered by Brandon Carter 

[40], using the Hamilton-Jacobi method. These three constants together with the 

constant associated with the particle rest mass describe the motion of a particle in 

Kerr geometry in a complete analytical manner. The equations of motion in Kerr 

geometry are described in detail in the next chapter of this work and we now 



51 
 

focus our attention in detail on the various properties of the Kerr geometry in the 

following sections.  

3.2 Properties of Kerr Metric 

The interesting features exhibited by the Kerr metric are the concepts of event 

horizon, frame dragging, static limit, and ergosphere which have been briefly 

discussed in the introductory chapter. A closer look at these concepts is the 

motive of this section. 

3.2.1 The Event Horizon 

The event horizon is the boundary of a black hole beyond which it is impossible 

to get information of an object that make its way to the black hole. A Kerr black 

hole has its event horizon in the form of a sphere located at a distance  

= ାݎ                                              ܯ + ඥܯଶ − ܽଶ − ܳଶ       (3.14) 

At  ݎ <  ା it is impossible to have a motion which does not lead to the singularityݎ

lying at the center of the black hole. The event horizon of a black hole thus 

demarcates the events happening inside and outside of the black hole. It is called 

an event horizon because the events occurring beyond this region are inaccessible 

to the outside universe. An event horizon is thus the region in space that clearly 

separates the black hole from the rest of the universe. The region outside the event 

horizon are affected by the gravitational pull of the black hole but are considered 

to be the part of the universe but the region inside the event horizon is not 

describable by the laws of causality and effects and the meaning of space and time 

are no more valid the same way inside this region as they are outside the event 

horizon.  

A closed time like circuit is one of the possibilities inside the event horizon where 

the motion inside the horizon can be chosen in such a form that the time does not 

flow in such trajectories and thus the time can be stopped inside such 
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mathematically allowed trajectories which can exist in the region bounded by the 

event horizon.  

It is however not possible for a massive body to enter an event horizon without 

being crushed by the infinite tidal forces which will tear the integrity of any 

material to its atomic or subatomic limit. The notion of time and space lose their 

meaning inside this region and beyond the event horizon the time-like structure of 

the space time is reversed to a space-like structure with the space and time 

exchanging their roles even before the event horizon is reached.  

The region beyond the event horizon is distinctly disconnected from the outer 

world and only has mathematical attributes escaping any physical implications. 

The event horizon of a black hole only physically embodies the singularity at the 

center of the black hole and demarcates the boundary of the black hole in space. 

No known matter can exist that can withstand the gravitational forces just near the 

event horizon, mass gets converted into pure energy upon falling inside a black 

hole and this energy gets absorbed in the black hole as its gravitational potential 

energy, causing it to grow in size, as the mass of the black hole is increased by the 

amount of mass falling inside the event horizon so does its event horizon. 

The singularity inside a Kerr black hole is expected to be in the form of a ring in 

contrast to the singularity inside a Schwarzschild black hole which is expected to 

be in the form of a point at the center. It can be said that the singularity that exists 

in the center of a black hole in the form of a ring mathematically embodies the 

breakage of the physical notions of mass, space and time. The nature of 

singularity and its mathematics are beyond the scope of this work. The events and 

regions only outside the event horizon would be of interest in the discussions and 

analytical treatments of the physics of the spacetime of black holes presented in 

this work.   

3.2.2 Frame Dragging  
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As a Kerr black hole rotates about its axis the region outside the event horizon is 

also dragged because of this rotation of the black hole and this dragging of space 

outside a rotating black hole is termed as frame dragging as any inertial frame 

considered in this region will move along with the rotating space of the black 

hole. The frame dragging is an intuitive concept as even the space is expected to 

be dragged along with the strong gravitational effects in the vicinity of  a black 

hole. The non vanishing metric coefficient ݃௧థ implies that the angular coordinate 

߶ is coupled with the time coordinate ݐ and thus a non zero angular velocity ߱ is 

inherent to the spacetime of a rotating black hole. 

For an observer near a rotating black hole, in order to be at rest with respect to the 

asymptotic Lorentz frame, has to apply a force in the opposite direction of the 

rotation of the black hole. The dragging of inertial frame causes the space to move 

along with the black hole and as will be seen in the next subsection there is a 

region beyond which it is impossible for a body to stay at rest with respect to the 

asymptotic Lorentz frame no matter what amount of force is applied in the 

opposite direction of the rotation of the black hole. 

For the space craft approaching a rotating black hole in order to be in a 

controllable orbit will have to take into account the effects of frame dragging to 

be able to maneuver in the close limits of the rotating black hole. Apart from the 

strong gravitational pull of the black hole the space craft will also have to adjust 

itself with the frame dragging caused by the rotation of the black hole. The scope 

of this work is to carefully take into consideration these forces into the navigation 

of a space craft which probes the region of such strongly gravitating bodies.  

3.2.3 Ergosphere and The Static Limit 

The region beyond which it is impossible for any observer to be static with 

respect to the asymptotic Lorentz frame is known as the static limit of the rotating 

Kerr black hole. This region is mathematically defined by the vanishing of the 

metric coefficient ݃௧௧ in the Kerr metric description of the rotating black hole. 

The metric coefficient ݃௧௧ in the Kerr metric is given as  
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                                                    ݃௧௧  =  ଵ
ఘమ

[Δ − ܽଶ sinଶ  (3.15)        [ߠ

And it vanishes at the ݎ value 

ݎ                                   = (ߠ)௘ݎ = ܯ  + ඥܯଶ − ܳଶ − ܽଶ cosଶ  (3.16)     ߠ

An observer with fixed ( ݎ,  with respect to the rotating frame of reference in (ߠ

the vicinity of the black hole will appear to be stationary in this frame of reference 

of the black hole however locally stationary observer will be rotating with respect 

to the asymptotic Lorentz frame. The angular velocity of this observer in the 

asymptotic reference frame will be given as  

                                            Ω ≡ ௗథ
ௗ௧ 

=  ௗథ/ௗఛ
ௗ௧/ௗఛ

= ௨ഝ

௨೟
       (3.17) 

The 4-velovity ࢛ of this stationary observer in terms of the Killing vectors can be 

expressed as  

                                                    ࢛ = ௧ݑ ቀ డ
డ௧

+ ஐப
பம
ቁ = ഝࣈ೟ା ஐࣈ

หࣈ೟ା ஐࣈഝห
     (3.18) 

                                                         = ഝࣈ೟ା ஐࣈ

൫ି௚೟೟ିଶஐ௚೟ഝିஐమ௚ഝഝ൯
భ/మ     (3.19) 

The above expression for the 4-velocity ࢛ will be timelike and physically viable 

for, 

                                                       ݃௧௧ + 2Ω݃௧థ + Ωଶ݃థథ < 0       (3.20) 

The above inequality suggests that the allowed values of the angular velocity of 

the stationary observer should lie between 

                                                             Ω௠௜௡ < Ω < Ω௠௔௫      (3.21) 

 

where, 
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                                              Ω௠௜௡ = ߱ − ට߱ଶ − ݃௧௧/݃థథ           (3.22) 

 

                                               Ω௠௔௫ =  ߱ +  ට߱ଶ − ݃௧௧/݃థథ        (3.23) 

 

and  

                   ߱ ≡ ଵ
ଶ

( Ω௠௜௡ + Ω௠௔௫) = − ௚ഝ೟
௚ഝഝ

=  (ଶெ௥ିொమ)௔
(௥మା௔మ)మି୼௔మ ୱ୧୬మ ఏ

     (3.24) 

 

Implying that the stationary observer can only have certain range of angular 

velocity for it to be a stationary observer at a given (ݎ,  and also that  (ߠ

Ω୫୧୬  would be zero when ݃௧௧ vanishes. This implies that at the surface, ݃௧௧ = 0, 

an observer cannot help itself but to rotate along with the black hole. This is 

called the static limit and the region between ݎ௘(ߠ) and ݎା is called the ergosphere 

of the black hole.   

The ergosphere is a region of spacetime unknown in the realm of observed 

physical universe. The physics inside the ergosphere has many interesting 

consequences and it remains an area of unprecedented research in the physics of 

spacetime. Many questions are posed on the behavior of physical laws in this 

region that can be one day accessible to the human science. If a spacecraft 

prepares itself for a black hole probe then the ergosphere can be one of the prime 

regions of investigation for understanding the physics in extreme high 

gravitational conditions.  

It has been shown in literature that ergosphere can be exploited to extract an 

almost infinite amount of energy from a rotating black hole. A rotating black hole 

can be a source of huge amount of energy by carefully exploiting this region by a 



56 
 

process known as Penrose process [18]. If human are some day capable of 

interstellar travels then a rotating black hole  can be a haven for extracting energy 

for an infinitely large amount of time and thus can be the safest places in 

colonizing the interstellar space [14].  

 

 

3.3 Effect on Outer Bodies 

As a body approaches a black hole the gravitational pull of the black hole gets 

stronger and a force acts on the body which is directly proportional to the size and 

mass of the body that it acts to elongate or stretch the body and also sideway 

suppress the body as it nears the black hole. This force is known as the tidal force 

of the black hole and it is the major cause of threat for the destruction of any body 

as it approaches the black hole. Before the body arrives at the event horizon it will 

be disrupted by these forces causing it to become like a noodle and finally 

disintegrating into individual atoms and absorbed by the event horizon. 

A similar kind of fate is in store for a photon as it approaches the black hole. To 

an external observer the photon will be infinitely red shifted on its journey to the 

black hole and finally absorbed at the event horizon.  

For a realistic case for a space craft to probe a black hole it is important that the 

space craft is kept at a considerable distance from the black hole in order to 

preserve its integrity in view of the tidal forces of the black hole. Depending upon 

the size and material used for the probe one has to design a mission outside a 

critical distance of the region outside the black hole that these forces are 

negligibly small for the structure of the spacecraft.  

The tidal forces become more and more important as the spacecraft approaches 

the black hole, however if we are a safe distance from the black hole the orbits 
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with fairly constant radial coordinates and we are only considered about the 

tangential journeys then the effect of tidal forces can be minimized to a greater 

extent. Depending on the placement of the spacecraft and its motion in the Kerr 

spacetime a method has to be employed in order to take into account the effect of 

tidal forces and a means to minimize their effects on the space craft structure.  

The Tidal tensor in Kerr spacectime along a general geodesic is calculated in 

chapter 6. The tidal tensor along the polar orbit in Kerr spacetime is derived in 

section 6.3. 

Chapter 4 

 Particle Trajectory in Kerr Spacetime 

 

A spacecraft in a strong gravitational field has to find the right trajectories or 

geodesics that can establish the spacecraft in a stable orbit around the gravitating 

body. A close understanding of such orbits allowed in the Kerr geometry is a first 

step in this direction. The geodesics in Kerr spacetime are classified as equatorial 

geodesics or off equatorial geodesics. A general trajectory is off equatorial 

geodesics and the equations are derived by the Hamiltonian formulism. 

4.1 Constants of Motion in Kerr Spacetime 

Geodesic motion in the equatorial plane in Kerr spacetime has been extensively 

dealt in theoretical works and a complete analytical solution of the motion of a 

particle in the Kerr spacetime is provided by the equations derived below[43]. 

The motion in Kerr spacetime is characterized by the constants of motion which 

are found to be the energy, angular momentum, rest mass of the particle, and a 

new constant of motion known as the Carter’s constant [40]. 

Considering a geodesic with affine parameter ߣ and a tangent vector ݑఓ  
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ఓݑ                                                            =  ௗ௫
ഋ

ௗఒ
≡  ఓ        (4.1)ݔ̇ 

 

The tangent vector ݑఓ  is the solution of the geodesic equations 

ఓ;ݑఓݑ                                                             
ఔ = 0          (4.2) 

 

which is the manifestation of the Euler-Lagrange equations 

                                                      ௗ
ௗఒ

డℒ
డ௫ഀ̇

=  డℒ
డ௫ഀ

         (4.3) 

where the Lagrangian is given as  

                                              ℒ(ݔఓ , (ఓݔ̇ =  ଵ
ଶ

 ݃ఓఔ̇ݔఓ̇ݔఔ        (4.4) 

The conjugate momentum ݌ఓ is defined as  

ఓ݌                                                        ≡  డℒ
డ௫̇ഋ

= ݃ఓఔ̇ݔఔ         (4.5) 

If the metric ݃ఓఔ does not explicitly depend on a given coordinate ݔఓ or in other 

words is cyclic in the coordinate ݔఓ then the corresponding conjugate momentum 

 ఓ is a constant of motion related to the Killing vector tangent to the݌

corresponding coordinate lines. The Kerr metric in Boyer Lindquist coordinates 

as well as in Kerr coordinates is independent of the coordinates ݐ and ߶ and thus 

the corresponding ݌௧ and ݌థ are constants of motion, 

௧݌                                                  = ௧ݔ̇  ≡ ௧ݑ =  (4.6)          ݐݏ݊݋ܿ

 

and   
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థ݌                                                   = థݔ̇  ≡ థݑ =  (4.7)        ݐݏ݊݋ܿ

 

The geodesics in Kerr spacetime are naturally characterized by the two constants 

of motion  

ܧ                                                                    =  ௧         (4.8)݌− 

 

and  

ܮ                                                                    = థ݌           (4.9) 

 

The third constant of motion ߢ which also represents the conserved mass of the 

test particle, is related with the metric and the 4 velocity ݑఓ through 

                                                            ݃ఓఔݑఓݑఔ =  (4.10)       ߢ

 

where  

ߢ = −1        for timelike geodesics  

ߢ = 0    for null geodesics  

ߢ                                          =  1    for spacelike geodesics       (4.11) 

 

The fourth constant of motion, Carter’s constant was derived by Brandan Carter 

in 1966 [40,41] and has been discussed in the later section. The origin of the 
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constant is not completely understood and has been suggested to be linked to a 

Killing tensor related to the Boyer Lindquist coordinates ݎ and [42] ߠ. 

4.2 Equatorial Geodesics in Kerr Spacetime  

Equatorial geodesics correspond to motion restricted to the ߠ =  plane. The  2/ߨ

existence of such orbits can be shown by showing that the above equation is a 

solution of the Euler-Lagrange equations.  

The Lagrangian in Kerr spacetime will be  

ℒ =  ଵ
ଶ

 ݃ఓఔ̇ݔఓ̇ݔఔ = ଵ
ଶ
ቄ−ቀ1 − ଶெ௥

ஊ
ቁ ଶݐ̇ − ଶெ௥

ஊ
 ܽ sinଶ ݐ̇ߠ ߶̇  +  ఘ

୼
ଶݎ̇  + ଶߠ̇ ߩ +

ቂݎଶ + ܽଶ + ଶெ௥௔మ

ஊ
sinଶ ቃߠ sinଶ ߠ ߶̇ଶቅ                                                                (4.12) 

 

the ߠ component of the Euler-Lagrange’s equation becomes  

                        ௗ
ௗఒ
൫݃ఏఓ̇ݔఓ൯ = ௗ

ௗఒ
൫Σ̇ߠ൯ = Σ̈ߠ +  Σ,ఓ̇ݔఓ̇ߠ =  ଵ

ଶ
݃ఓఔ,ఏ̇ݔఓ̇ݔఔ    (4.13) 

 

Opening the right hand side using the Einstein summation rule gives 

ଵ
ଶ
݃ఓఔ,ఏ̇ݔఓ̇ݔఔ =

 ଵ
ଶ
ቄΣ,ఏ ቀ

௥̇మ

୼
+ ଶቁߠ̇  + ଶݎ)ߠݏ݋ܿߠ݊݅ݏ 2 + ܽଶ)߶̇ଶ − ଶெ௥ 

ஊమ
ఏ൫ܽ,ߩ sinଶ ߠ ߶̇ − ൯ݐ

ଶ
+

 ସெ௥
ஊ
൫ܽ sinଶ ߠ ߶̇  ቅ                                                             (4.14)̇߶ߠݏ݋ܿߠ݊݅ݏ ൯2ܽݐ̇ −

for ߠ =   the equation reduces to 2/ߨ 

ߠ̈                                                         =  − ଶ
௥
 (4.15)                  ߠ̇ݎ̇
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Therefore if ̇ߠ = 0 and ߠ = ߣ at 2/ߨ  = 0  then for ߣ > ߠ̇ ,0 ≡ 0 and ≡  . 2/ߨ

Thus a geodesic which starts in the equatorial plane remains at the equatorial 

plane for all times, establishing that the equatorial geodesics are planar in form. 

On the equatorial plane, ߩ =  ଶ, therefore the metric coefficients can be expressedݎ

as  

                                                        ݃௧௧ =  − ቀ1 − ଶெ
௥

 ቁ                  (4.16) 

                                                         ݃௧థ =  − ቀଶெ௔
௥
ቁ       (4.17) 

                                                         ݃௥௥ =  ௥
మ

୼
        (4.18) 

                                                 ݃థథ = ଶݎ +  ܽଶ + ଶெ௔మ 
௥

                 (4.19) 

and  

ܧ                                 =  −݃௧ఓݑఓ = ቀ1 − ଶெ
௥
ቁ ̇ݐ +  ଶெ௔

௥
߶̇      (4.20) 

ܮ                           = ݃ఓథݑఓ =  − ଶெ௔
௥
ݐ̇ +  ቀݎଶ + ܽଶ + ଶெ௔మ

௥
ቁ ߶̇     (4.21) 

The above equations for ̇ݐ and ߶̇ can be solved by defining  

ܣ                                                                 ≡  1 − ଶெ
௥

                 (4.22) 

ܤ                                                                  ≡ ଶெ௔
௥

                             (4.23) 

ܥ                                                      ≡ ଶݎ + ܽଶ + ଶெ௔మ

௥
                  (4.24) 

to write  

ܧ                                                              = ݐ̇ܣ +  (4.25)                  ̇߶ܤ

ܮ                                                             = ̇ ݐܤ− +  (4.26)                 ̇߶ܥ
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Also noting that  ܥܣ + ଶܤ = ቀ1 − ଶெ
௥
ቁ ቀݎଶ + ܽଶ + ଶெ௔మ

௥
ቁ + ସெమ௔మ

௥మ
= ଶݎ − ݎܯ2 +

ܽଶ = Δ. 

Furthermore, 

ܧܥ                                                 − ܮܤ = ܥܣ] + ̇ ݐ[ଶܤ = Δ̇(4.27)      ݐ 

ܮܣ                                                + ܧܤ = ܥܣ] + ̇߶[ଶܤ = Δ߶̇      (4.28) 

Or 

ݐ̇                                               = ଵ
୼
ቂቀݎଶ + ܽଶ + ଶெ௔మ

௥
ቁ ܧ − ଶெ௔

௥
 ቃ     (4.29)ܮ

                                             ߶̇ =  ଵ
୼
ቂቀ1 − ଶெ

௥
ቁܮ + ଶெ௔

௥
 ቃ      (4.30)ܧ

The equation for the radial component can be derived by using  

                                                           ݃ఓఔݑఓݑఔ =  (4.32)       ߢ

                                            = ݐܣ− ଶ̇ − ̇ ߶ݐ̇ܤ2 + ଶ̇߶ܥ + ௥మ

୼
 ଶ     (4.33)ݎ̇

                           = ݐ̇ܣൣ−  + ݐ൧̇̇߶ܤ + ݐ̇ܤ−ൣ + ̇߶൧̇߶ܥ  + ௥మ

୼
 ଶ     (4.34)ݎ̇

                                                      = ݐ̇ܧ− + ̇߶ܮ  +  ௥
మ

୼
 ଶ                (4.35)ݎ̇

Therefore,  

ଶݎ̇                =  ୼
௥మ
൫ݐ̇ܧ − ̇߶ܮ + ൯ߢ  =  ଵ

௥మ
ଶܧܥ] − ܧܮܤ2  − [ଶܮܣ  + ఑୼

௥మ
    (4.36) 

The polynomial [ܧܥଶ − ܧܮܤ2 −   ଶ] has zeros atܮܣ

                                ±ܸ = ஻௅±√஻మ௅మ ା஺஼௅మ

஼
= ௅

஼
ܤ] ± √Δ]      (4.37) 

So the radial equation can now be written as   
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ଶݎ̇                                              =  ஼
௥మ

ܧ) − ାܸ)(ܧ − ܸି ) + ఑୼
௥మ

                           (4.38) 

                                      = ൫௥మା ௔మ൯మି௔మ୼
௥ర

ܧ) − ାܸ)(ܧ − ܸି ) + ఑୼
௥మ

                (4.39) 

and  

                                                    ±ܸ = ଶெ௔௥±௥మ√୼
(௥మା௔మ)మି௔మ୼

  (4.40)                                           ܮ

These are the complete set of equations required to describe the motion of a 

particle or photon in the equatorial plane of the Kerr black hole. In the 

Schwarzschild limit where → 0 ,  

                                                     ାܸ +  ܸି  ∝ ܽ → 0,       (4.41) 

and 

                                                         ାܸܸ_ →  ௅
మ୼
௥ర

        (4.42) 

If we define ≡ ାܸܸି  , the equations can be reduced to the expected form  

ଶݎ̇                                                            = ଶܧ −  (4.43)                                           ,(ݎ)ܸ

 where  

(ݎ)ܸ                                     =  − ఑୼
௥మ

+  ௅
మ୼
௥ర

= ቀ1 − ଶெ
௥
ቁ ቀ−ߢ + ௅మ

௥మ
ቁ     (4.44) 

Recalling that ߢ =  −1 for time like geodesics, ߢ = 0 for null geodesics and 

ߢ = 1  for spacelike geodesics. A general description on the stability of the orbits 

in Kerr spacetime was primarily carried out by James Bardeen et al [44].                                                                   

4.3 The General Equations of Geodesic motion in Kerr 

Spacetime 
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The general geodesics are studied using the Hamiltonian Jacobi formulism as it 

will be seen that this approach leads to an additional constant of motion 

discovered by Brandon Carter and thereby termed as the Carters constant. This 

constant is not associated with any spacetime symmetry and is a result of the 

separable of variable method used in the Hamiltonian Jacobi approach.  

The Lagrangian in terms of the spacetime metric is expressed in the following 

manner 

                                                    ℒ(ݔఓ , (ఓݔ̇ =  ଵ
ଶ
݃ఓఔ̇ݔఓ̇ݔఔ     (4.45) 

and the conjugate momenta associated with a given coordinate can be derived 

using  

ఓ݌                                                     =  డℒ
డ௫̇ഋ

= ݃ఓఔ̇ݔఔ                                     (4.46) 

  

the above expression can be inverted to obtain ̇ݔఓ in terms of ݌ఓ as  

ఓݔ̇                                                            = ݃ఓఔ݌ఔ       (4.47) 

The Hamiltonian is defined as  

ఓݔ)ܪ                             , (ఔ݌ = (ఔ݌)ఓݔఓ̇݌  − ℒ(ݔఓ ,  (4.48)      ((ఔ݌)ఓݔ̇

and with the above equations would take the form 

ܪ                                                               =  ଵ
ଶ
݃ఓఔ݌ఓ݌ఔ                   (4.49) 

The geodesic equations in Hamiltonian formulism are given as  

ఓݔ̇                                                            =  డு
డ௣ഋ

                   (4.50)  

ఓ̇݌                                                           =  − డு
డ௫ഋ

                              (4.51) 
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A forth constant of motion can now be derived by using the Hamiltonian-Jacobi 

approach [45]. The action function associated with the Hamiltonian function is 

defined as  

                                                      ܵ = ఓݔ)ܵ ,  (4.52)        (ߣ

and is a solution of the Hamilton-Jacobi equation  

ܪ                                             ቀݔఓ , డௌ 
డ௫ഋ

ቁ +  డௌ
డఒ

= 0       (4.53) 

If ܵ has to be a solution of the above equation then  

                                                       డௌ 
డ௫ഋ

=   ఓ                      (4.54)݌

Thus the solution of the Hamilton –Jacobi equation provides with the conjugate 

momenta in terms of four constants and can provide the necessary solutions of the 

geodesic equations. 

The Hamiltonian and the two constants known in this case are  

ܪ                                                              =  ଵ
ଶ
݃ఓఔ݌ఓ݌ఔ        (4.55) 

௧݌                                                                =  (4.56)                                         ܧ−

థ݌                                                                   =  (4.57)                        ܮ

 thus the function ܵ can now be written as  

                                    ܵ = − ଵ
ଶ
ߣߢ − ݐܧ + ߶ܮ + ܵ௥ఏ(ݎ,  (4.58)                (ߠ

Assuming a separable solution for the function ܵ௥ఏ the above equation can be 

written as  

                                 ܵ = − ଵ
ଶ
ߣߢ − ݐܧ + ߶ܮ + ܵ௥(ݎ) + ܵఏ(ߠ)     (4.59) 

Using the inverse metric and its coefficients 
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݃ఓఔ =  − ଵ
୼ஊ
ቂ(ݎଶ + ܽଶ) డ

డ௧
+ ܽ డ

డథ
ቃ
ଶ

+ ଵ
ஊ ୱ୧୬మ ఏ

ቂ డ
డథ

+  ܽ sinଶ ߠ డ
డ௧
ቃ
ଶ

+ ୼
ஊ
ቀ డ
డ௥
ቁ
ଶ

+

 ଵ
ஊ
ቀ డ
డఏ
ቁ
ଶ
            (4.60) 

 The Hamilton-Jacobi equation can be expressed as  

ߢ− +  ୼
ஊ
ቀௗௌ

(ೝ)

ௗ௥
ቁ
ଶ

+  ଵ
ஊ
ቀௗௌ

(ഇ)

ௗఏ
ቁ
ଶ
− ଵ

୼
ቂݎଶ + ܽଶ + ଶெ௥௔మ

ஊ
sinଶ ቃߠ ଶܧ + ସெ௥௔

ஊ୼
ܮܧ +

       ୼ି௔
మ ୱ୧୬మ ఏ

ஊ୼ ୱ୧୬మ ఏ
ଶܮ = 0                       (4.61) 

or 

ଶݎ)ߢ− + ܽଶ cosଶ (ߠ +  Δ ቀௗௌ
(ೝ)

ௗ௥
ቁ
ଶ

+ ቀௗௌ
(ഇ)

ௗఏ
ቁ
ଶ
− ൤൫௥

మା௔మ൯మ

୼
− ܽଶ sinଶ ଶܧ൨ߠ +

ସெ௥௔
୼

ܮܧ + ቀ ଵ
ୱ୧୬మ ఏ

− ௔మ

୼
ቁ ଶܮ = 0            (4.62) 

alternatively, 

        Δ ቀௗௌ
(ೝ)

ௗ௥
ቁ
ଶ
− ଶݎߢ − ൫௥

మା௔మ൯మ

୼
ଶܧ +  ସெ௥௔

୼
ܮܧ − ௔

మ

୼
ଶܮ + ܽଶܧଶ +  ଶ   (4.63)ܮ

             = − ቀௗௌ
(ഇ)

ௗఏ
ቁ
ଶ

+ ଶܽߢ cosଶ ߠ +  ܽଶ cosଶ ଶܧ ߠ − ୡ୭ୱమ ఏ
ୱ୧୬మ ఏ

 ଶ   (4.64)ܮ

In the above equation the LHS does not depend on ߠ and the RHS does not 

depend on ݎ and thus the two sides can be equated to a constant, such that  

                             ቀௗௌ
(ഇ)

ௗఏ
ቁ
ଶ
− cosଶ ߠ ቂ(ߢ + ଶ)ܽଶܧ  − ଵ

ୱ୧୬మ ఏ
ଶቃܮ =  (4.65)        ܥ 

 

     = Δ ቀௗௌ
(ೝ)

ௗ௥
ቁ
ଶ
− ଶݎߢ − ൫௥

మା௔మ൯మ

୼
ଶܧ +  ସெ௥௔

୼
ܮܧ − ௔

మ

୼
ଶܮ + ܽଶܧଶ +  ଶ          (4.66)ܮ

      = Δቀௗௌ
(ೝ)

ௗ௥
ቁ
ଶ
− ଶݎߢ + ܮ) − ଶ(ܧܽ − ଵ

୼
ଶݎ)ܧ]  + ܽଶ) − ଶ[ܽܮ =  (4.67)            ܥ−
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and now defining the functions ܴ(ݎ) and Θ(ߠ) as  

(ݎ)ܴ                ≡ Δ[−ܥ + ଶݎߢ − ܮ) − [ଶ(ܧܽ + ଶݎ)ܧ]  + ܽଶ) −  ଶ    (4.68)[ܽܮ

                            Θ(ߠ) ≡ ܥ  + cosଶ ߠ ቂ(ߢ + ଶ)ܽଶܧ − ଵ
ୱ୧୬మ ఏ

 ଶቃ    (4.69)ܮ

Then  

                                                               ቀௗௌ
(ഇ)

ௗఏ
ቁ
ଶ

= Θ                 (4.70) 

                                                                ቀௗௌ
(ೝ)

ௗ௥
ቁ
ଶ

= ோ
୼మ

                  (4.71) 

 and the solution of the Hamilton-Jacobi equation has now the form 

ܵ = − ଵ
ଶ
ߣߢ − ݐܧ + ߶ܮ + ∫ √ோ

୼
ݎ݀  + ∫√Θ      (4.72)                                       ߠ݀ 

The equations of motion in Kerr spacetime can be written as a quadrature  

                                                      Σ ݀ߣ݀/ߠ = ± √Θ                  (4.73) 

                                                      Σ ݀ߣ݀/ݎ = ± √ܴ                         (4.74) 

        Σ ݀߶/݀ߣ = ܧܽ)− − /ܮ sinଶ (ߠ + (ܽ/Δ)[ݎ)ܧଶ + ܽଶ) −  (4.75)                   [ܽܮ

   Σ݀ߣ݀/ݐ = ߠଶ݊݅ݏ ܧܽ)ܽ− − (ܮ + ଶݎ) + ܽଶ)Δିଵ[ݎ)ܧଶ + ܽଶ) −  (4.76)            [ܽܮ

The signs of the functions √ܴ and √Θ can be chosen arbitrarily but once chosen 

have to be further consistent.  

With the help of the above equations it is possible to describe the trajectory of a 

free particle as it enters the Kerr spacetime, the above equations are the free 

particle equations which are seen to be completely solvable because of the fourth 

constant of motion discovered using the Hamilton-Jacobi approach to the Kerr 

Metric.  
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For a spacecraft with a specific mass and required rocket thrusts it can be possible 

for the spacecraft to maneuver over the Kerr region with the knowledge of these 

geodesics. It is the aim of this work to study the trajectories and the necessary 

external forces required to carry a spacecraft mission in such extreme 

gravitational regions. 

The above equations of motion in Kerr spacetime can be numerically integrated 

and it thus becomes possible for spacecrafts in such regions to obtain a trajectory 

and by the use of sufficient rocket thrusts an orbit can be established around the 

rotating black hole.   

 

4.4 Keplerian Spherical Orbits in Kerr Spacetime  

The above equations of geodesics in Kerr spacetime can be numerically solved for 

varied initial conditions. The various orbits for different eccentricities and 

different inclinations are plotted for a rotating black hole of 10 ܯ⊙ with angular 

parameter ܽ =  The initial launching distance from the centre of the .[67] ܯ0.5

Boyer Lindquist coordinate system is kept at 1000 ܯ.  

                  

Fig 4.1 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0 (ܽ = 0.5) 
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Fig 4.2  Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.1 (ܽ = 0.5). 

 

                       

 

Fig 4.3 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.2 (ܽ = 0. ) 
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Fig 4.4 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.3 (ܽ = 0.5) 

 

                          

Fig 4.5 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.4 (ܽ = 0.5) 
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Fig 4.6 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.5 (ܽ = 0.5) 

  

                      

Fig 4.7 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.6 (ܽ = 0.5) 
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Fig 4.8 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.7 (ܽ = 0.5) 

 

 

                     

Fig 4.9 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.8 (ܽ = 0.5) 
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Fig 4.10 Trajectory of a particle in the Kerr spacetime at a distance of 1000ܯ and 

eccentricity 0.9 (ܽ = 0.5) 

  

As seen from the above patterns, for the same amount of time in coordinate frame, 

the number of orbits increases with an increase in the eccentricity of the orbit. 

This can be explained as with the increase in eccentricity of the orbit, the 

corresponding energy associated with the orbit also increases and least being for 

the circular orbit for zero eccentricity. With the increase in energy associated with 

an orbit the corresponding velocity increases and the particle takes an increasing 

number of rotation about the black hole centre.  

 

 

 

  



74 
 

 

 

 

 

 

 

 

Chapter 5 

Polar Orbits in Kerr Spacetime 

 

The discovery of Carter’s constant of motion in Kerr spacetime led to the 

complete analytic solution of the case of a particle motion in rotating curved 

spacetimes. Polar orbits in Kerr spacetime would be the ones that cross the axis of 

rotation of the black hole and because of the rotation of spacetime such orbits 

experience an advancement of the ascending node [46]. The equations of motion 

for the polar orbits can be deduced for the orbital angle ߠ = 0. 

Let ݔఓ  be the Boyer Lindquist coordinates in which the Kerr metric is written as  

ଶݏ݀ =  −ቀ1 − ଶெ௥
ஊ
ቁ ଶݐ݀ − 2ቀଶெ௥

ஊ
ቁܽ sinଶ ߠ ߶݀ ݐ݀  + ቀஊ

୼
ቁ݀ݎଶ +  Σ݀ߠଶ +

ቀ஺
ஊ
ቁ sinଶ                                          ଶ                                                                                                    (5.1)߶݀ ߠ
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where  

                                                       Σ = ଶݎ +  ܽଶ cosଶ          (5.2)                                    ߠ

                                                 Δ = ଶݎ  + ܽଶ −  (5.3)                                   ݎܯ2

= ܣ                                                 ଶݎ) + ܽଶ)ଶ − Δܽଶ sinଶ  (5.4)                           ߠ

The equations of motion obtained by Carter using the Hamilton Jacobi formulism 

are given as follows, if ݔ௔(߬) is the coordinate image of the timelike geodesic 

௔ݑ  then the vector ,ߤ followed by a particle of rest mass (߬)ܥ = ଶݔ̇  =  ߬݀/௔ݔ݀  

will satisfy the quadrature equations : 

ݐ̇                                              = (ΔΣ)ିଵ(ܧܣ −                                            Φ)                                       (5.5)ݎܽܯ2

                                      Σଶ̇ݎଶ = ଶݎ)] +  ܽଶ)ܧ − ܽ߶]ଶ − Δ(ߤଶݎଶ +           (5.6)                (ܭ 

                                      Σଶ̇ߠଶ = ܭ − ଶܽଶߤ cosଶ ߠ − ቀܽߠ݊݅ݏܧ − ஍
௦௜௡ఏ

ቁ
ଶ

                (5.7)                                    

                                            ߶̇ = Δିଵ ቈቀଶெ௥
ஊ
ቁܽܧ +

ቀଵିమಾೝ
ಂ ቁ஍

ୱ୧୬మ ఏ
቉                                 (5.8)  

 

Where Φ,  are the projection of the angular momentum along the ܭ and ܧ

symmetric axis, energy at infinity of the particle, and the Carter’s constant 

respectively.  

For the orbit represented by the ܥ(߬) to be polar, it has to intersect the symmetric 

axis of the Kerr spacetime, since this axis consists of points for which ߠ݊݅ݏ = 0 , 

hence from the third equation above, Φ = 0 , is a necessary condition for an orbit 

to be polar in the Kerr spacetime. Or in other words, for a particle to follow a 

polar orbit, it is necessary that the particle in Kerr spacetime has a null angular 

momentum.  

The equations of motion for polar orbits are then expressed as  
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ݐ̇                                                        =  ΔΣ                                                         (5.9)/ܧܣ

                                              Σଶ̇ݎଶ = (ݎ)ܴ = ଶݎ) + ܽଶ)ଶ[ܧଶ − ܸଶ(ݎ)]               (5.10) 

                                                Σଶ̇ߠ = ܳ − ܽଶ(1 − (ଶܧ cosଶ  (5.11)                              ߠ

                                                 ߶̇ =  ΔΣ                                                    (5.12)/ݎܧܽܯ2

Where the effective potential V is given as 

                                                     ܸଶ = Δ(ܭ + ଶݎ)/(ଶݎ  + ܽଶ)ଶ                           (5.13) 

and  

                                                       ܳ = ܭ − ܽଶܧଶ                                                 (5.14) 

The effective potential ܸଶ(ݎ) is plotted with the radius for different values of K 

and it is seen that bound orbits can exist for ܭ values greater than 8. 
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Fig 5.1: Effective potential vs log r/M for Kerr spacetime, for four different 

values of Carter’s constant. 

15.1 Spherical Polar Orbits in Kerr spacetime 

The spherical polar orbits for which the radial vector remains constant throughout 

the orbit can be expressed by replacing the ݎ equation as ߲ݎ/߲߬ = 0. 

                               Σଶ̇ݎଶ = (ݎ)ܴ = ଶݎ) + ܽଶ)ଶ[ܧଶ − ܸଶ(ݎ)] = 0        (5.15) 

The above equations are solved numerically for the case ݎ =  when the ,ܯ10

energy of the test particle is ܧ = 0.956 and the Carter’s constant ܭ = 14.783 for 

a rotating blackhole with angular momentum ܽ =  .ܯ0.8
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Fig 5.2a : Temporal evolution of a spherical polar orbit in the x-y-z space. 

The results are plotted in the three dimensional space and the particle is observed 

to be following a polar orbit which rotates due to the frame dragging. Since the 

orbit lies on a sphere of fixed radius, such orbits are termed as spherical polar 

orbits in Kerr spacetime. 

The energy and the Carters constants for a spherical polar orbit are given as  

ଶܧ                                                  = Δ(ݎଶ + ଶܽ)/(ܭ   ଶ)ଶ                              (5.16)ݎ +

and             

ܭ        = ସݎܯ) − ܽଶݎଷ − ଶݎଶܽܯ3 + ܽସݎ)/(ݎଷ − ଶݎܯ3 +  ܽଶݎ +   ଶ)      (5.17)ܽܯ
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                     Fig 5.2b : Spherical polar orbits in the x-y plane. 

The spherical polar orbits have been plotted for different radii with their 

corresponding E and K values and have been verified to hold good upto large 

radii of 1000ܯ, which is the proposed range of orbits for spacecrafts in Kerr 

spacetime in this study.The variation of ߠ and ߶ coordinates with respect to the 

proper time gives the following linear increase for both the coordinates, fig 5.3. 

                     

Fig. 5.3: Variation of  ߠ,߶ coordinates with respect to ߬ for an orbit of radius 

 .ܯ10
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5.2 Frame Dragging of Polar Orbits 

The rotation of the spacetime inherent in the Kerr geometry will force the lines of 

nodes of bound orbits of the non-equatorial orbits to advance in the sense of the 

rotating black hole. Therefore the advancement of the nodal point (where the 

particle’s orbit intersects the equatorial plane) coincides with the rotation of the 

black hole. This effect is known as the Lense and Thirring effect [51].An 

experiment to measure this effect due to the rotation of the Earth has been 

proposed and is known as the Stanford Gyroscope Experiment [52] based on the 

method proposed by Schiff [53]. 

From the last two equations of motion in polar orbit, the rate of change of the 

coordinate ߶ with the coordinate ߠ can be written as 

                                                        ௗథ
ௗఏ

=  ଶெ௔ா௥
୼ ஀భ/మ 

                 

                                                                     = ଶெ௔ா௥
୼ ୕భ/మ(ଵି୩మ ୡ୭ୱమ ఏ)

       (5.18) 

where 

                                                                   ݇ଶ = ܽଶΓଶ/ܳ                                        (5.19)  

and 

                                                                      Γଶ = 1 −  ଶ                                       (5.20)ܧ

For the cases, ܧଶ < 1, ݇ is also less than 1, and the above equation can be 

integrated to give the solutions in the form, 

                                                                 ߶ = ߶଴ +  ଶெ௔ா௥
୼ ୕భ/మ ,ߠ)ܨ ݇)     (5.21) 

Where ߠ)ܨ, ݇) is the elliptical integral of the first kind and is defined as 

,ߠ)ܨ                                        ݇) =  ∫ (1 − ݇ଶ cosଶ ଵ/ଶఏ(ߠ
଴  (5.22)                        ߠ݀ 
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In the approximation, ݇ ≪ 1, the integral can be solved to give the final change of 

the coordinate ߶ per revolution as [49] 

߶ߜ                                                  =  ସగெ௔ா௥
୼ ୕భ/మ (1 + ௞మ

ସ
+  ଷ

ଶ଺
݇ସ + ܱ(݇଺))             (5.23)  

                                                                       

This is a typical result of the dragging effect associated with rotating bodies and 

the effect vanishes for the non rotating black holes as for such cases ܽ = 0 and 

hence ߜ߶ = 0.  

5.3 Non Spherical Polar Orbits 

The radial equation corresponding to the polar orbits in Kerr spacetime is given as 

ݎସ̇ߩ                                   = (ݎ)ܴ   = ଶݎ) +  ܽଶ)൫ܧଶ − ܸଶ(ݎ)൯                         (5.24)  

If  ݎ଴ is the radius of a spherical orbit and a double root of the function ܴ(ݎ), 

(ݎ)ܴ                                                       = ݎ) −  (5.25)                                     (ݎ)ܩ଴ )ଶݎ

where 

(ݎ)ܩ                                          = −Γଶݎଶ + ܯ)2  − Γଶݎ଴)ݎ − ܽଶܳ/ݎ଴ଶ               (5.26)  

If the energy of the particle now varies from ܧ to ܧ଴, then the radial equation can 

be written as 

(ݎ)ܴ = ଶݎ) +  ܽଶ)[ܧଶ ଴ଶܧ − + ଴ଶܧ   − ܸଶ(ݎ)] 

                                   = ଶݎ) +  ܽଶ)(ܧଶ (଴ଶܧ − + ݎ)  −  (5.27)     (ݎ)ܩ଴)ଶݎ

The turning points of the radial coordinate can be given by 

ଵݎ)                                     ଴)ଶݎ − = ଵଶݎ) + ܽଶ)(ܧଶ −   (5.28)     (ݎ)ܩ/(଴ଶܧ
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For small differences in the energy the points ݎଵ will lie close to ݎ଴ , and the radial 

function can be expressed as 

(ݎ)ܴ                                     ≈ ଵݎ)](଴ݎ)ܩ−  − ଴)ଶݎ ݎ) − −  ଴)ଶ]     (5.29)ݎ

such that 

                                                 ∫ ௗ௥
ඥோ(௥)

 ≈ ଵ/ଶି[(଴ݎ)ܩ−]  ୱ୧୬
షభ(௥ି௥బ)

|௥భି௥బ| 
                      (5.30) 

 The above equations yield the approximate solution for the radial motion of the 

particle as its orbit oscillates between the radial values ݎ଴ + Δݎ and ݎ଴ − Δݎ where 

(Δݎ = ଵݎ|  −  .଴|) [50]ݎ

Alternatively, when the double root of the equation ܴ(ݎ) = 0, is associated with 

the interval ݎଵ < ଴ݎ < (଴ݎ)ܩ ଶ , and the functionݎ > 0 

(ݎ)ܴ                                             = Γଶ(ݎ − ݎ)଴)ଶݎ − ᇱᇱݎ)(ᇱݎ −  (5.31)     (ݎ

substituting 

ݔ                                                                = ݎ) −  ଴)ିଵ       (5.32)ݎ

(ݎ)଴ܫ                         =  ∫ ௗ௥
ோభ/మ = ݎ)] ݎ݀∫ − ଵ/ଶି[ܩ଴)ଶݎ =  ଵ/ଶ          (5.33)ܺ/ݔ݀∫−

where 

(ݔ)ܺ                                                        = ߙ + ݔߚ +  ଶ      (5.34)ݔߛ

ߙ                                                               =  −Γଶ        (5.35) 

ߚ                                          = ܯ)2 − 2Γଶݎ଴) = Γଶ(ݎᇱ + ᇱᇱݎ  −  ଴)              (5.36)ݎ2

ߛ                                                = (଴ݎ)ܩ = Γଶ൫ݎ଴ – ᇱᇱݎ)ᇱ൯ݎ  ଴)       (5.37)ݎ −

and 

଴ܫ                          = ଵ/ଶ(ߛ/1)−  ln(ߚ + ݔߛ2 + (଴ݎ)ܩ ଶܺଵ/ଶ)  ifߛ > 0 
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           = ଵ/ଶ(ߛ/1−)  sinିଵ(2ݔߛ + ᇱᇱݎ)Γଶ/(ߚ − (଴ݎ)ܩ if  (′ݎ < 0                    (5.38) 

If  (ݎ)ܩ vanishes at ݎ଴ it would imply that ݎ଴  coincides with either one value of 

 ᇱᇱ,  which would giveݎ  ᇱorݎ

଴ܫ =  ± ଶ
|୻|(௥ᇲᇲି௥బ)

ቀ௥
ᇲᇲି௥
௥ି௥బ

ቁ
ଵ/ଶ

 if  ݎᇱᇱ =  , ଴ and similarlyݎ

଴ܫ =  ± ଶ
|୻|(௥ᇲି௥బ)

ቀ௥
ᇲି௥
௥ି௥బ

ቁ
ଵ/ଶ

 if ݎᇱᇱ =  ଴.                                                             (5.39)ݎ 

The above integrals give the analytic solutions for the near spherical polar orbits 

and can be evaluated to identify the non spherical polar orbits associated with a 

spherical polar orbit of radius ݎ଴. 

5.5 Precession of Gyroscope  

The calculations for the change in the spin of the gyroscope as it completes a 

rotation of the Kerr black hole has been possible using the equations of  parallel 

transport in Kerr geometry by J.-A. Marck [54]. A further study of parallel 

transport in polar orbits has been given by Tsoubelis et al. [54] For a gyroscope 

falling freely along the path ∁(߬), that of the polar orbit, the spin vector ܵ(߬) will 

be parallel transported along the geodesic. If an orthonormal tetrad is constructed, 

 which is parallelly transported along the geodesic then the spin  of the , {(௔)ߣ}

gyroscope in this reference frame would stay constant and ܵ(଴) = 0. 

Considering the base  {݁௔} such that, 

଴ࢋ                                                 = ቀ ஺
ஊ୼
ቁ
ଵ/ଶ

߲௧ + ቈ ଶெ௔௥
(஺ஊ୼)

భ
మ
቉ ߲థ                               (5.40)                   

ଵࢋ                                                 = ቀ୼
ஊ
ቁ
ଵ/ଶ

߲௥                                                       (5.41)            

ଶࢋ                                                  = ቀଵ
ஊ
ቁ
ଵ/ଶ

߲ఏ                                                       (5.42)  
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ଷࢋ                                                   = ቀ୼
௔
ቁ
భ
మ ቀ ଵ

ୱ୧୬ ఏ
ቁ ߲థ                                             (5.43)  

The Kerr metric in this base would now take the form 

ଶݏ݀                                                       = ௔ࢋ௔௕ߟ ௕ࢋ⊗                   (5.44) 

where ߟ௔௕ = diag(-1,+1,+1,+1)  and ࢋ௔  are the one-form dual to ࢋ௔ . Now 

according to the set of geodesic equations in Kerr spacetime for polar orbits, the 

vectors 

଴෡ࢋ                                                             = ଴ࢋܲ +  ଶ                                 (5.45a)ࢋܳ 

ଵ෡ࢋ                                                                    =   ଵ                                                (5.45b)ࢋ

ଶ෡ࢋ                                                             = ଴ࢋܳ +  ଶ                                (5.45c)ࢋܲ 

ଷ ෡ࢋ                                                             =      ଷ                                              (5.45d)ࢋ

 

would form a comoving frame along the geodesic  ∁(߬), where 

                                                      ܲ = ቀ ஺
ஊ୼
ቁ
ଵ/ଶ

   (5.46)                                            ܧ

and 

                                                             ܳ = Σଵ/ଶθ̇                                                    (5.47).  

This base is not defined well on the symmetry axis as sin ߠ = 0 and thus there is a 

coordinate singularity in the Boyer Lindquist coordinate system. This coordinate 

singularity can be avoided by choosing another coordinate system which is known 

as the Kerr-Schild coordinate system (ݔ଴, ,ݔ ,ݕ  which is well behaved on the (ݖ

symmetry axis. In this coordinate system the Kerr metric on the symmetric axis is 

given as 
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ଶݏ݀ =  − ቂ1 − ଶெ௭
௭మା௔మ

ቃ ଶ(଴ݔ)݀ +  ቂ1 − ଶெ௭
௭మା௔మ

ቃ
ିଵ
ଶݖ݀ + ଶݔ݀  +  ଶ               (5.48)ݕ݀ 

 

Therefore as sin ߠ → 0 

଴ࢋ                                             → [1 − ଶݖ)/ݖܯ2 +  ܽଶ)]ିଵ/ଶ߲௫బ    (5.49a) 

ଵࢋ                                             → [1 − ଶݖ)/ݖܯ2 +  ܽଶ)]ଵ/ଶ߲௭                           (5.49b) 

ଶࢋ                                               → cos߶ ߲௫ + sin߶ ߲௬      (5.49c) 

ଷࢋ                                              → −sin߶ ߲௫ + cos߶ ߲௬     (5.49d) 

Thus if the initial direction along which the orbit emerges from the z-axis is set, it 

is possible to join the orthonormal base {ࢋ௔} to a unique coordinate-tied tetrad 

there. Assuming that initially ߶ = 0, the gyroscope will return after one rotation 

to the starting point on the ݖ-axis along a direction which is given as 

                                   ߶ =  ସగெ௔ா௥
୼ ୕భ/మ (1 + ௞మ

ସ
+  ଷ

ଶ଺
݇ସ + ܱ(݇଺))      (5.50) 

which is derived earlier, equation (5.23)  . 

Making use of the Marck’s [47] construction of parallelly transported orthonormal 

tetrad along a geodesic in Kerr spacetime to express the set of vectors ൛ߣ(௔)ൟ in 

terms of the base {ࢋ௔ො}.   

(଴)ࣅ                                                                        =  ଴෡     (5.51a)ࢋ

(ଵ)ࣅ                                             = cosΨ (ଵ)ࣅ(߬)
ᇱ − sinΨ(߬)ࣅ(ଷ)

ᇱ    (5.51b) 

(ଶ)ࣅ                                = ܲ ቀ ଵ
௄஺
ቁ
భ
మ ଶݎ) +  ܽଶ) ܽ cos ߠ – ଵ෡ࢋ ቀ

୼
௄஺
ቁ
ଵ/ଶ

ݎ ܽ sin ߠ ଶ෡ࢋ −

                                                             ܳ ቀ ଵ
௄஺
ቁ
భ
మ ଶݎ) +    ܽଶ)ࢋݎଷ෡      (5.51c) 
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(ଷ)ࣅ                                                    = sinΨ(߬)ࣅ(ଵ)
ᇱ + cosΨ(߬) (ଷ)ࣅ

ᇱ                 (5.51d) 

 

where the angle Ψ(߬) is given by the equation 

                         Ψ̇ = ܭ)ଵ/ଶܭܧ − ܽଶ)/(ݎଶ + ܭ)(ܭ  − ܽଶ cosଶ  (5.52)     (ߠ

and 

(ଵ)ࣅ                   
ᇱ = ܲߙ ቀ ଵ

௄஺
ቁ
భ
మ ଶݎ) +  ܽଶ)ࢋݎଵ෡ + ߚ  ቀ ୼

௄஺
ቁ
ଵ/ଶ

ܽଶ sin ߠ cosߠ ଶ෡ࢋ  +

ܳߚ                                    ቀ ଵ
௄஺
ቁ
భ
మ ଶݎ) + ܽଶ) ܽ cos  ଷ෡              (5.53)ࢋ ߠ

(ଷ)ࣅ               
ᇱ = ܳߚ ቂ ஊ

஺(௄ା௔మ)
ቃ
భ
మ ଶݎ) +  ܽଶ)ࢋଶ෡ − ߚ ቂ ஊ୼

஺(௄ା௥మ)
ቃ
ଵ/ଶ

ܽ sin ߠ  ଷ෡    (5.54)ࢋ 

where 

ଶߙ                               = ଶିߚ = ܭ) − ܽଶ cosଶ ܭ)/(ߠ +  ଶ)      (5.55)ݎ

If Ψ(0) = 0 and ܵ ప̂ (0) are the components of the gyroscope’s spin at the 

beginning, then when the gyroscope returns to the starting point after one 

complete latitude oscillation, the components of the spin vector in the comoving 

frame {ࢋప̂}will have changed to ܵ ప̂( ఛܶ) where 

                                                             ܵ ప̂( ఛܶ) =  ఫܴ̂
ప̂ܵఫ̂ (0)                                      (5.56) 

where the matrix  ఫܴ̂
ప̂ given as 

ఫܴ̂
ప̂ = ൭

1 + (cosΨ − 1) cosଶ ܼ −sinΨcos ܼ (cosΨ − 1) sin ܼ cos ܼ
sinΨcosܼ cosΨ sinΨsin ܼ

(cosΨ − 1) sin ܼ cos ܼ − sinΨ sin ܼ 1 + (cosΨ − 1) sinଶ ܼ
൱  (5.57)            

 

and 
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                                                  cotܼ = ቀ௔
௥
ቁ ܭ) + (ଶݎ

భ
మ/(ܭ − ܽଶ)ଵ/ଶ                   (5.58)  

The interpretation as given in [55] is that in each revolution of the gyroscope 

about the gravitating center its spin rotates by an angle Ψ around an axis which is 

inclined by an angle ܼ relative to ࢋଵ෡  and lies in the ࢋଵ෡ −  ଷ෡  plane of theࢋ

comoving frame {ࢋప̂}. During the same interval the frame {ࢋప̂} itself rotates with 

respect to the ݔ − ݕ −  axis which-ݖ coordinate system by an angle ߶ about the ݖ

coincides with the vector  ࢋଵ෡ at the beginning and end of the cycle. 

The precession of the gyroscope in the polar orbit can be a measure of the 

properties of the black hole if a satellite is made to revolve in such geodesics. This 

effect can be directly measured with respect to the asymptotic Lorentz frame and 

can provide a useful technique for the navigation of spacecrafts in the Kerr 

spacetime. 

5.6 Numerical Simulation of Spherical Polar Orbits 

Orbits of different radii ranging from (5 −  are shown in figure 5.4 , ⊙ܯ(2000

(a)-(f), for a black hole of 1 ܯ⊙. and ܽ =  The first graph of the set plots.⊙ܯ0.8

 and the second 3D plot traces the trajectory of the particle in,߬ ݏݒ ߶ and ߬ ݏݒ ߠ

the spherical polar orbit. With the increase in radius of the spherical polar orbit, 

the trajectory spans lesser spherical surface but gets confined to a ring of 

decreasing width. 
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(i)            (ii)    

 

Fig:5.4a :   The above plots show (i) variation of  ߠ  and  ߶ coordinates of the 

Boyer Lindquist coordinates system for a spherical polar orbit at ݎ =  the ,⊙ܯ5

top line represents ߠ(߬) and the second line represents ߶(߬), the graph indicates 

that the variations are significant for both the cases of ߠ(߬) and ߶(߬) in lower 

orbits in Kerr spacetime.(ii) Trajectory of a particle in Kerr orbit at ݎ =                            .⊙ܯ5

                                           

(i)      (ii)    
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Fig: 5.4b   The above plots show (i) variation of  ߠ  and  ߶ coordinates of the 

Boyer Lindquist coordinates system for a spherical polar orbit at ݎ =  the ,⊙ܯ10

top line represents ߠ(߬) and the second line represents ߶(߬), the graph indicates 

that the variations are significant for the cases of ߠ(߬) and lesser variation for 

߶(߬) on increasing the size of orbit from ݎ =  in Kerr spacetime.(ii) ⊙ܯ10-⊙ܯ5

Trajectory of a particle in Kerr orbit at ݎ =  The orbit are suggested to .⊙ܯ10

rotate greater in lower spherical polar orbit. 

                                                                        

(i)           (ii)       

Fig: 5.4c  The above plots show (i) variation of  ߠ  and  ߶ coordinates of the 

Boyer Lindquist coordinates system for a spherical polar orbit at ݎ =  the ,⊙ܯ50

top line represents ߠ(߬) and the second line represents ߶(߬), the graph indicates 

that the variation is significant for the case of ߠ(߬) and further less variation in 

߶(߬) on increasing the size of orbit from ݎ =  in Kerr spacetime.(ii) ⊙ܯ50-⊙ܯ10

Trajectory of a particle in Kerr orbit at ݎ =  The orbits are very less rotated .⊙ܯ50

in the ߶ direction, implying decrease in the Lense Thirring effect. 
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(i)    (ii)    

Fig 5.4d:  The above plots show (i) variation of  ߠ  and  ߶ coordinates of the 

Boyer Lindquist coordinates system for a spherical polar orbit at ݎ =  the ,⊙ܯ100

top line represents ߠ(߬) and the second line represents ߶(߬), the graph indicates 

that the variation is significant for the cases of ߠ(߬) and further less variation in 

߶(߬) on increasing the size of orbit from ݎ =  in Kerr ⊙ܯ100-⊙ܯ50

spacetime.(ii) Trajectory of a particle in Kerr orbit at ݎ =  The orbits are .⊙ܯ100

very less rotated in the ߶ direction. 

 (i)     (ii)  

 

Fig 5.4e : The above plots show (i) variation of  ߠ  and  ߶ coordinates of the 

Boyer Lindquist coordinates system for a spherical polar orbit at ݎ =  the ,⊙ܯ500
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top line represents ߠ(߬) and the second line represents ߶(߬), the graph indicates 

that the variation is significant for the cases of ߠ(߬) and further less in ߶(߬) on 

increasing the size of orbit from ݎ =  in Kerr spacetime.(ii) ⊙ܯ500-⊙ܯ100

Trajectory of a particle in Kerr orbit at ݎ =  The orbits are less rotated in .⊙ܯ500

the ߶ direction.                           

(i)      (ii)  

 

Fig 5.4f :  The above plots show (i) variation of  ߠ  and  ߶ coordinates of the 

Boyer Lindquist coordinates system for a spherical polar orbit at ݎ =  ,⊙ܯ1000

the top line represents ߠ(߬) and the second line represents ߶(߬), the graph 

indicates that the variation is significant for the cases of ߠ(߬) and further less 

variation in ߶(߬) on increasing the size of orbit from ݎ =  in ⊙ܯ1000-⊙ܯ500

Kerr spacetime.(ii) Trajectory of a particle in Kerr orbit at ݎ =  The .⊙ܯ1000

orbits are very less rotated in the ߶ direction. 

The above simulations are run for greater time steps with increasing radii. The 

energy and Carter’s constants and corresponding time periods is shown in table 

6.1. The polar orbits at large radii in Kerr spacetime approach the Keplerian polar 

orbits in the field of a non rotating gravitational source. 
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Chapter 6 

Relativistic Effects on the Spacecraft in Kerr 

Spacetime: Tidal Tensor and Time Dilation  

 

The motion of a spacecraft in the Kerr spacetime would be accompanied by the 

tidal forces present due to the strong curvature of spacetime. The amount of tidal 

forces felt by the spacecraft will be dependent on the finite size and mass of the 

spacecraft as well as on the velocity of the spacecraft. A necessary quantity to be 

evaluated would be the tidal tensor ܥ௜௝   related with the curvature tensor ܴ௔௕௖ௗ   of 

the spacetime of the black hole. The curvature tensor for the Kerr spacetime can 

be once calculated if one has a set of parallel propagated vectors along the desired 

trajectory ∁(߬). This can be achieved by making use of the Marck’s construction 

[47] as described in the previous chapter for the motion of the gyroscope in Kerr 

spacetime.  

6.1 Parallel Transport in Kerr Geometry  

It was first shown by Marck [54]  that the equations of parallel transport applied 

to an orthonormal tetrad along a given geodesic in Kerr spacetime can be 

analytically solved using the geodesic equations set by Carter [41].  

The Kerr metric in Boyer Lindquist coordinates is expressed as  

ଶݏ݀ =  − ൬1 −
ݎܯ2
Σ ൰݀ݐଶ − 2൬

ݎܯ2
Σ ൰ܽ sinଶ ߠ ߶݀ ݐ݀  + ൬

Σ
Δ൰݀ݎ

ଶ +  Σ݀ߠଶ 

                                + ቀ஺
ஊ
ቁ sinଶ                                                                                                                             ଶ                                                                (6.1)߶݀ ߠ

where  
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                                                     Σ = ଶݎ +  ܽଶ cosଶ  (6.2)        ߠ

                                                  Δ = ଶݎ  + ܽଶ −  (6.3)                        ݎܯ2

= ܣ                                                 ଶݎ) + ܽଶ)ଶ − Δܽଶ sinଶ  (6.4)       ߠ

The equations of geodesics as given by Carter [54] are  

ݐ̇                                               = (ΔΣ)ିଵ(ܧܣ −                                           Φ)                                   (6.5a)ݎܽܯ2

                                      Σଶ̇ݎଶ = ଶݎ)] +  ܽଶ)ܧ − ܽ߶]ଶ − Δ(ߤଶݎଶ +       (6.5b)             (ܭ 

                                 Σଶ̇ߠଶ = ܭ − ଶܽଶߤ cosଶ ߠ − ቀܽߠ݊݅ݏܧ − ஍
௦௜௡ఏ

ቁ
ଶ

                  (6.5c)                                        

                                           ߶̇ = Δିଵ ቈቀଶெ௥
ஊ
ቁܽܧ +

ቀଵିమಾೝ
ಂ ቁ஍

ୱ୧୬మ ఏ
቉                                (6.6d)      

where Φ,  being the projection of the angular momentum along the ܭ and ܧ

symmetric axis, energy at infinity of the particle, and the Carter’s constant 

respectively. 

The canonical symmetric orthonormal tetrad introduced by Carter is given by  

                                     ࢝(଴) = (Δ/Σ)ଵ/ଶ(݀ݐ − ܽ sinଶ ߠ ݀߶)                              (6.7a) 

                                             ࢝(ଵ) = (Σ/Δ)(ଵ/ଶ)݀ݎ     (6.7b) 

                                                  ࢝(ଶ) = Σ
భ
మ ݀ߠ                                       (6.7c) 

                                     ࢝(ଷ) = ൬௦௜௡ఏ
ஊ
భ
మ
൰ ݐ݀ ܽ) − ଶݎ) +  ܽଶ)݀߶ )   (6.7d) 

 

 In such a basis the Kerr metric takes on the form  

ଶݏ݀                                                =  (6.8)     (௕)࢝(௔)࢝(௕)(௔)ߟ
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where  ߟ = diag (-1,+1,+1,+1) is the Minkowsky flat spacetime metric. 

The Riemann tensor (Weyl Tensor) for the Kerr metric can be expressed as [56, 

p97] 

                                  Ω      (ଶ)
(ଵ) = ଵ࢝(ଵ)ܫ−  ∧ ࢝(ଶ) + ଶ࢝(଴)ܫ  ∧ ࢝(ଷ)    

Ω      (ଷ)
(଴) = ଵ࢝(଴)ܫ−  ∧ ࢝(ଷ) + ଶ࢝(ଵ)ܫ  ∧ ࢝(ଶ) 

Ω      (ଵ)
(଴) = ଵ࢝(ଵ)ܫ2−  ∧ ࢝(଴) + ଶ࢝(ଶ)ܫ 2 ∧ ࢝(ଷ) 

Ω      (ଶ)
(ଷ) = ଵ࢝(ଶ)ܫ2−  ∧ ࢝(ଷ) − ଶ࢝(ଵ)ܫ 2 ∧ ࢝(଴) 

Ω      (ଶ)
(଴) = ଵ࢝(ଶ)ܫ  ∧ ࢝(଴) + ଶ࢝(ଵ)ܫ  ∧ ࢝(ଷ) 

                                    Ω      (ଵ)
(ଷ) = ଵ࢝(ଵ)ܫ  ∧ ࢝(ଷ) ଶ࢝(ଶ)ܫ − ∧ ࢝(଴)     (6.9) 

 

where Ω      (௕)
(௔) = ቀଵ

ଶ
ቁ ℂ     (௕)(௖)(ௗ) 

(௔) ࢝(௖) ∧ ࢝(ௗ) is the curvature 2-form and the 

functions ܫଵ and ܫଶ are defined as 

 

ଵܫ                                                  = ቀெ௥
ஊయ
ቁ ଶݎ) − 3ܽଶ cosଶ  (6.10)     (ߠ

and 

ଶܫ                                           = ቀெ௔ ୡ୭ୱఏ
ஊయ

ቁ ଶݎ3) − ܽଶ cosଶ  (6.11)                             (ߠ

 

In order to construct an orthonormal tetrad ࣅ = ,଴ߣ) ,ଵߣ ,ଶߣ  ସ)  which can beߣ

parallel transported along the geodesic one can chose ߣ଴ to be the unit vector 

tangent to the geodesic and its components can be written as  
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଴ߣ                                              
(଴) = (1/ΣΔ)ଵ/ଶ (ݎ)ܧଶ +  ܽଶ) − ܽΦ)   (6.12a) 

଴ߣ                                               
(ଵ) = (Σ/Δ)ଵ/ଶ̇ݎ      (6.12b) 

଴ߣ                                               
(ଶ) = Σଵ/ଶ θ̇      (6.12c) 

଴ߣ                                               
(ଷ) = (1/Σ)ଵ/ଶ(ܽ  sin ߠ − Φ/ sin  (6.12d)              ( ߠ

 

The second vector is constructed using the Killing-Yano tensor that exists for the 

Kerr spacetime and which satisfies the equation  

                                                    ∇ఘ ఓ݂ఔ +  ∇ఔ ఓ݂ఔ = 0      (6.13) 

The above equation implies that [57], the vector ࡸ defined by  

ఓܮ                                                         =  ݂     ఔ
ఓ  ଴   ఔ     (6.14)ߣ 

will be parallel propagated along the geodesic and also orthogonal to ߣ଴.  

Since ܮ(௔)ܮ(௔) = the second unit vector can be chosen as ቀଵ ,ܭ
௄
ቁ
భ
మ  and its ,ࡸ

components as given by Marck will be  

ଶߣ                                               
(଴) = (Σ/ܭΔ)ଵ/ଶܽ cosߠ  (6.15a)    ݎ̇

ଶߣ                                
(ଵ) = ܽ ଵ/ଶ(ΣΔܭ/1) cos ߠ ଶݎ)ܧ) +  ܽଶ) − ܽΦ)   (6.15b) 

ଶߣ                                 
(ଶ) = ܧ ܽ) ݎ ଵ/ଶ(Δܭ/1)−  sin ߠ −  Φ/ sin  (6.15c)      (ߠ

ଶߣ                                                   
(ଷ) = (Σ/ܭ)ଵ/ଶߠ̇ݎ     (6.15d) 

From the above two vectors it is possible to generate another set of vectors ࣅ෨ଵ and 

 ෨ଶ such that they form a complete orthonormal basis when taken in conjugationࣅ

with ࣅ଴ and ࣅଶ,  
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෨ଵࣅ                                                          
(଴) =  (6.16a)         ݎ̇ ݎ ଵ/ଶ(Δܭ/Σ) ߙ

෨ଵࣅ                                           
(ଵ) = ଶݎ)ܧ) ݎ ଵ/ଶ(ΣΔܭ/1)ߙ +  ܽଶ) − ܽΦ)  (6.16b) 

 ෩ଵࣅ                              
(ଶ) = ܽ ଵ/ଶ(Σܭ/1) ߚ cos ܧܽ) ߠ sin ߠ − Φ/ sin  (6.16c)  (ߠ

෨ଵࣅ                                           
(ଷ) = (ܭ/Σ)ߚ− 

భ
మܽ cosߠ  (6.16d)     ߠ̇

and   

෨ଷࣅ                                      
(଴) = ଶݎ)ܧ)ଵ/ଶ(ΣΔ/1)ߙ + ܽଶ) − ܽΦ)    (6.17a) 

෨ଷࣅ                                                 
(ଵ) =  (6.17b)    ݎଵ/ଶ̇(Σ/Δ)ߙ

෨ଷࣅ                                                 
(ଶ) =  (6.17c)      ߠ̇ Σଵ/ଶߚ

෨ଷࣅ                                           
(ଷ) = ܧܽ)ଵ/ଶ(Σ/1)ߚ sin ߠ − Φ/ sin  (6.17d)   (ߠ

where   

ଶߙ                            = ଵ
ఉమ

= ܭ) − ܽଶ cosଶ ଶݎ)/(ߠ +  (6.18)      (ܭ 

The new vectors here obtained are not parallel propagated and can be related by a 

single time-dependent rotation angle Ψ to the new orthonormal unit vectors ࣅଵ 

and ࣅଶ chosen in the same plane in such a way that the acceleration is null or 

଴ߣ                                                        
   ఓ∇ఓߣ௞   ఔ = 0       (6.19) 

 is satisfied for ݇ ∀ 0,1,2,3. 

thus  

ଵࣅ                                                  = ෨ଵࣅ  cosΨ − ෨ଷࣅ sinΨ     (6.20a) 

ଷࣅ                                                  = ෨ଵࣅ  sinΨ + ෨ଷࣅ cosΨ     (6.20b) 
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and the rotation angle Ψ can be expressed in the following manner 

                                          Ψ̇ = ௄
భ
మ

ஊ
 ቄா൫௥

మା௔మ൯ି௔஍
௥మା ௄

+ ܽ ൫஍ିୟ ୉ ୱ୧୬మఏ൯
௄ି௔మ ୡ୭ୱమ ఏ

ቅ     (6.21) 

 The set of vectors ࣅ forms thus an orthonormal set of parallel propagated vectors 

and it becomes possible to express the Riemann tensor and hence the tidal tensor 

associated with the given geodesic in Kerr spacetime. 

6.2 Tidal Tensor  

The tidal tensor is a measure of the relative acceleration of two test particles 

moving in the neighborhood of a timelike geodesic, it is a necessary quantity to be 

evaluated to estimate the tidal forces imposed on a body following a geodesic in 

Kerr spacetime. The tidal tensor requires a set of parallel propagated orthogonal 

vectors along the given geodesic, in terms of these vectors it is possible to express 

the tidal tensor in Kerr geometry [58].  

The components of tidal tensor are given as  

௜௝ܥ                                       =  ℂ(௔)(௕)(௖)(ௗ)ߣ଴
  (௔)ߣ௜

  (௕)ߣ଴
  (௖)ߣ௝

  (ௗ)     (6.22) 

Using the expressions for Weyl Tensor given in the last section one can calculate 

the components of the tidal tensor in the Kerr geometry. For any orthonormal set 

of tetrad ࣅ, for ݅ ≠ ݆- 

௜௝ܥ =

଴ߣ)}3 
(଴)ߣ௜

(ଵ) − ଴ߣ
(ଵ)ߣ௜

(଴))(ߣ଴
(ଵ)ߣ௝

(଴) − ଴ߣ
(଴)ߣ௝

(ଵ)) + ଴ߣ)
(ଶ)ߣ௜

(ଷ) − ଴ߣ
(ଷ)ߣ௜

(ଶ))(ߣ଴
(ଶ)ߣ௝

(ଷ) −

଴ߣ
(ଷ)ߣ௝

(ଶ))}ܫଵ − ଴ߣ)}3
(଴)ߣ௜

(ଵ) − ଴ߣ
(ଵ)ߣ௜

(଴))(ߣ଴
(ଶ)ߣ௝

(ଷ) − ଴ߣ
(ଷ)ߣ௝

(ଶ)) + ଴ߣ)
(଴)ߣ௜

(ଵ) −

଴ߣ
(ଵ)ߣ௜

(଴))(ߣ଴
(ଶ)ߣ௝

(ଷ) − ଴ߣ
(ଷ)ߣ௝

(ଶ))}ܫଶ                                        (6.23) 

And for ݅ = ݆ 
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௜௜ܥ = ൤1 − 3 ൜ቀߣ଴
(଴)ߣ௜

(ଵ) ଴ߣ −
(ଵ)ߣ௜

(଴)ቁ
ଶ
− ቀߣ଴

(ଶ)ߣ௜
(ଷ) ଴ߣ −

(ଷ)ߣ௜
(ଶ)ቁ

ଶ
ൠ൨ ଵܫ − ଴ߣ)6

(଴)ߣ௜
(ଵ) −

଴ߣ                
(ଵ)ߣ௜

(଴))(ߣ଴
(ଶ)ߣ௜

(ଷ) − ଴ߣ
(ଷ)ߣ௜

(ଶ))ܫଶ         (6.24) 

In the particular case of the tetrad defined earlier the components of the tidal 

tensor are evaluated and are given as  

ଵଵܥ         = ቄ1 − 3 ௌ்൫௥మା௔మ ୡ୭ୱమ ఏ൯
௄ஊమ

cosଶΨቅ ଵܫ + ݎ6ܽ cos ߠ ௌ்
௄ஊమ

cosଶΨ  ଶ     (6.25a)ܫ

ଵଶܥ          = ݎܽ−} cosߠ (ܵ + ଵܫ(ܶ +  (ܽଶ cosଶ ߠ ܵ − ଶ}3ܫ(ܶ ଶݎ (ௌ்)
భ
మ

௄ஊమ
cosΨ   (6.25b) 

ଵଷܥ          = {(ܽଶ cosଶ ߠ − ଵܫ(ଶݎ + ݎ2ܽ  cos ଶ}3ܫ ߠ ௌ்
௄ஊమ

cosΨ sinΨ             (6.25c) 

ଶଶܥ          = ቀ1 + 3 ௥మ்మି௔మ ୡ୭ୱమ ఏ ௌమ

௄ఀమ
ቁ Iଵ − ݎ6ܽ cosθ ௌ்

௄ఀమ
 ଶ    (6.26d)ܫ 

ଶଷܥ           = ݎܽ−} cosߠ (ܵ + ଵܫ(ܶ + (ܽଶ cosଶ ߠ ܵ − ଶ}3ܫ(ଶܶݎ (ௌ்)
భ
మ 

௄ஊమ
sinΨ    (6.26e) 

ଷଷܥ            = ቄ1 − 3 ௌ்൫௥మି௔మ ୡ୭ୱమ ఏ൯ ୱ୧୬మஏ
௄ஊమ

ቅ ଵܫ + ߠcos ݎ6ܽ ௌ்
௄ஊమ

sinଶΨ ܫଶ           

(6.26f) 

where ܵ = ଶݎ + ܶ and  ܭ = ܭ − cosଶ  .ߠ

The above equations for the tidal tensor hold good for any general geodesic in 

Kerr spacetime. 

Along the equatorial plane the tidal tensor takes on the form,  

ଵଵܥ                                        = {1 − 3 ൫௥మା ௄൯
௥మ

cosଶΨ} ெ
௥య

    (6.27a) 

ଶଶܥ                                        = ቀ1 + 3 ௄
௥మ
ቁ ெ
௥య

      (6.27b) 

ଷଷܥ                                      = ቄ1 − 3 ൫௥మା௄൯
௥మ

sinଶΨቅ ெ
௥య

     (6.27c) 
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ଵଷܥ                                   =  −3 (௥మା௄)
௥ఱ

 cosΨsinΨ     (6.27d)ܯ

and the angle Ψ for the equatorial orbit is given by  

                                                        Ψ̇ = ா௄
భ
మି௔௄

భ
మ 

(௥మା௄)(௔ாି஍)
     (6.28) 

 The tidal tensor for the particular cases of motion along the symmetry axis and 

along the polar orbit is calculated in the following sections.  

6.3 Tidal Tensor on the Symmetry Axis  

The Kerr metric in Boyer Lindquist coordinates is not well defined at the 

symmetric axis (ߠ = 0), to avoid this coordinate singularity another coordinate 

system is utilized to express the Kerr metric, this coordinate system is known as 

the Kerr- Schild coordinate system (ܶ, ,ݔ ,ݕ   and the Kerr metric is written as (ݖ

ଶݏ݀ =  −݀ܶଶ + ଶݔ݀  + ଶݕ݀  + ଶݖ݀ +  ଶெ௥య

௥రା ௔మ௭మ
 × ቄ−݀ܶ +  ଵ

௥మା௔మ
ݔ݀ݔ)ݎ] +

(ݕ݀ݕ                    + ݕ݀ݔ)ܽ − [(ݔ݀ݕ ௭
௥

+ ቅݖ݀
ଶ
                                                    (6.29)    

where the function ݔ)ݎ, ,ݕ   is given by (ݖ

                                                      ௫
మା௬మ

௥మା௔మ
+ ௭మ

௥మ
= 1       (6.30) 

The relation between the two coordinate systems is given as  

                                                  ݀ܶ = ݐ݀ −  (6.31a)     ݎ݀(Δ/ݎܯ2)

                                                 ݀߰ = ݀߶ − ଶெ௔௥
(௥మା௔మ)୼

 (6.31b)                       ݎ݀

ݔ                                                 = ଶݎ) +  ܽଶ)
భ
మ sin ߠ cos߰    (6.31c) 

ݕ                                                 = ଶݎ) + ܽଶ)
భ
మ sin ߠ cos߰    (6.31d) 
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ݖ                                                                   = ݎ cosߠ      (6.31e) 

In the Kerr Schild coordinates the symmetry axis of the Kerr spacetime is thus 

defined by the conditions 

ݔ                                                         = ݕ = 0, |ݖ| =  (6.32)     ݎ

On the axis the metric takes the form  

ଶݏ݀                =  −݀ܶଶ + ଶݔ݀  + ଶݕ݀  + ଶݖ݀ + ଶெ௥
(௭మା௔మ)

(−݀ܶ +                    ଶ            (6.33)(ݖ݀

The  motion on the axis can be analysed using the method of null vectors in Kerr 

geometry first proposed in [59],from equation (6.18) the vector ݈௖ given as  

                                             ݈௖ ∶= ቀ−1, ௥௫ି௔௬
௥మା௔మ

, ௥௬ା௔௫
௥మା௔మ

, ௭
௥
ቁ     (6.34) 

is a null vector with respect to the Minkowski metric, such that  

௔௕݈௔݈௕ߟ                                                                = 0     (6.35) 

and the Kerr metric ݃௔௕ can be expressed as  

                                               ݃௔௕ = ௔௕ߟ +  ଶ݈௔݈௕     (6.36)ܮܯ2 

where  

ଶܮ                                                   ∶= ସݎ)/ଷݎ  +  ܽଶݖଶ)     (6.37) 

Considering a particle confined on the symmetric axis with a fixed ݖ, the tetrad 

given as  

                                                          ݁଴෡
  ௔ = ቂ௭

మା ௔మ

୼
ቃ
ଵ/ଶ

 ଴௔    (6.38a)ߜ

                                                          ݁ଵ෡
  ௔ =  ଵ  ௔       (6.38b)ߜ

                                                          ݁ଶ෡
  ௔ =  ଶ  ௔        (6.38c)ߜ
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                                                 ݁ଷ෡
  ௔ = ቂ ୼

௭మା ௔మ
ቃ
ଵ/ଶ

ଷ  ௔ߜ] − ቀଶெ௭
୼
ቁ  ଴௔]   (6.38d)ߜ

would form an orthonormal tetrad which is non rotating with respect to the 

asymptotic Lorentz frame. 

The four acceleration of the above frame can be calculated using the results [59]  

                                          ܽ௔ = ݁଴෡
   ௔

;௕݁଴෡
  ௕ = ெ௭൫௭మି௔మ൯ு

௥(௭మା௔మ)
݁ଷ෡

  ௔    (6.39a) 

                                         ݁ଵ෡
 ௔

;௕݁଴෡
  ௕ = − ଶெ௔௥ு

(௭మା ௔మ)మ
݁ଶ෡

  ௔     (6.39b) 

                                         ݁ଶ෡
  ௔  ;௕݁଴෡

  ௕ = ଶெ௔௥ு
(௭మା ௔మ)మ

݁ଵ෡
  ௔      (6.39c) 

                                        ݁ଷ෡
  ௔

;௕݁଴෡
  ௕ = ெ௭൫௭మି௔మ൯ு

௥(௭మା௔మ)
݁଴෡

  ௔      (6.39d) 

where  

ܪ                                                      = ቂ௭
మା௔మ

୼
ቃ
ଵ/ଶ

         (6.40) 

This shows that the static frame above described is rotating with an angular 

velocity, 

                                                       Ωௌ  ௔ = − ଶெ௔௥ு
(௭మା ௔మ)మ

 ݁ଷ෡
  ௔    (6.41) 

relative to a frame of reference of inertial guidance gyroscopes carried along the 

symmetry of axis. Eliminating the factor ܪ which represents the ratio (݀ݐ/݀߬௦) of 

the asymptotic to the static frame proper time, one gets the angular velocity of the 

gyroscopes rotating with respect to the asymptotic Lorentz frame,  

                                                            Ωீ  ௔ =  ଶெ௔௥
(௭మା௔మ)మ

݁ଷ෡
  ௔    (6.42) 

Therefore for a spacecraft moving on the axis of symmetry of the Kerr black hole, 

the gyroscope tied to the center of mass of the spacecraft will rotate with an 
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angular velocity Ωீ  ௔ with respect to the fixed stars. This measure of the rotation 

of the gyroscope will provide a measure of the distance from the black hole if the 

black hole parameters are known in advance.  

 The components of the tidal tensor on the symmetry axis are obtained by 

calculating the Christoffel symbols and thus the Riemann tensor using the null 

vector in Kerr Schild coordinates given in [48,59] 

(௝)(௜)ܥ                                              = diag(ܫଵ, ,ଵܫ  ଶ)      (6.43)ܫ2−

where  

ଵܫ                                            =  ெ௔௭(௭మିଷ௔మ)
(௭మା௔మ)య

      (6.44a) 

and   

ଶܫ                                                  =  ெ௔௭൫௔
మିଷ௭మ൯

௥(௭మା ௔మ)య
      (6.44b) 

Of the few key features of the motion along the symmetry axis one of the 

important is that if ܽଶ > |ݖ| ଶ/4 then beyond theܯ3 < 3ଵ/ଶܽ the direction of the 

tidal forcres are reversed and for a spacecraft in this region it is an advantageous 

region as the spacecraft can possibly maneuver over the black hole without 

getting swallowed by the blackhole [48]. 

6.4 Tidal Tensor along the Spherical Polar Orbit 

The tidal tensor can be calculated on a geodesic if one can obtain a parallel 

propagated tetrad along the given geodesic. To obtain the tidal tensor components 

on the spherical polar orbits as described in the previous chapter which are the 

geodesics of interest for the spacecraft point of view, it becomes possible to 

estimate the tidal forces felt by the spacecraft as it moves along the polar orbit.  

To obtain the parallel propagated tetrad along the spherical polar orbit, one can 

use the formulism used as in [47], the necessary condition for the spacecraft to 
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obtain a spherical polar orbit is that Φ = 0 together with the spherical  polar orbit 

conditions ߠ = 0, and  ̇ݎ , under these values the parallel propagated tetrad can be 

expressed as, 

଴ߣ                                           
(଴) = ቀ ଵ

୼ஊ
ቁ
ଵ/ଶ

ଶݎ)ܧ + ܽଶ)                 (6.45a) 

଴ߣ                                                      
(ଵ) = 0                                                           (6.45b) 

଴ߣ                                                   
(ଶ) = Σଵ/ଶθ̇                  (6.45c) 

଴ߣ                                                      
(ଷ) = 0                                                           (6.45d) 

second vector given by  

ଶߣ                                                        
(଴) = 0                 (6.46a) 

ଶߣ                                             
(ଵ) = ቀ ଵ

௄ஊ୼
ቁ
ଵ/ଶ

ଶݎ)ܧ ܽ + ܽଶ)               (6.46b) 

ଶߣ                                                         
(ଶ) = 0       (6.46c) 

ଶߣ                                                
(ଷ) = ቀஊ

௄
ቁ
ଵ/ଶ

 (6.46d)      ߠ̇ݎ

The rest of the two vectors are given using the function Ψ and the vectors ࣅ෨ଵ and 

 ෨ଷ whereࣅ

ሚଵߣ                                                                     
(଴) = 0     (6.47a) 

ሚଵߣ                                               
(ଵ) = ߙ ቀ ଵ

௄ஊ୼
ቁ
ଵ/ଶ

ଶݎ)ܧ ݎ + ܽଶ)    (6.47b) 

ሚଵߣ                                                                     
(ଶ) = 0     (6.47c) 

ሚଵߣ                                                    
(ଷ) = ߚ− ቀஊ

௄
ቁ
ଵ/ଶ

 (6.47d)     ߠ̇ ܽ
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and  

ሚଷߣ                                           
(଴) = ߙ ቀ ଵ

ஊ୼
ቁ
భ
మ ଶݎ)ܧ + ܽଶ)      (6.48a) 

ሚଷߣ                                                               
(ଵ) = 0      (6.48b) 

ሚଷߣ                                                         
(ଶ) =  Σଵ/ଶθ̇     (6.48c)ߚ

ሚଷߣ                                                               
(ଷ) = 0      (6.48d) 

where ߙ,   ,are as given in equation (6.11e) ߚ

The vectors  ࣅଵ and ࣅଷ can now be expressed in terms of the function Ψ as  

ଵࣅ                                                  = ෨ଵࣅ  cosΨ − ෨ଷࣅ sinΨ      (6.49a) 

  

ଷࣅ                                                  = ෨ଵࣅ  sinΨ + ෨ଷࣅ cosΨ   (6.49b) 

where the function Ψ for the spherical polar orbit will be given by 

Ψ̇ =  
ଵ/ଶܭ

Σ
ଶݎ)ܧ + ܽଶ)

ଶݎ) + (ܭ  

                                                    =  ௄
భ/మ୼భ/మ

ஊ
ଶݎ) +  ଵ/ଶ    (6.50)(ܭ

since for spherical polar orbits,  

ଶܧ                                                  = Δ(ݎଶ + ଶܽ)/(ܭ  ଶ)ଶ    (6.51)ݎ +

and also,  

ܭ     = ସݎܯ) − ܽଶݎଷ − ଶݎଶܽܯ3 + ܽସݎ)/(ݎଷ − ଶݎܯ3 + ܽଶݎ +  ଶ)        (6.52)ܽܯ
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The Tidal tensor ܥ௜௝   can now be evaluated using equation (6.16), the results 

obtained are, 

ଵଵܥ = ቂ1 − 3 ቄߙଶ ቀ ଵ
ஊమ୼మ௄

ቁ ଶݎ)ସܧଶݎ + ܽଶ)ସ cosଶΨ− ቀଵ
௄
ቁߚଶΣଶθ̇ସܽଶ cosଶΨቅቃ ଵܫ +

             6 ൬ா
మ൫௥మା௔మ൯మ௥௔ఏ̇ ୡ୭ୱమஏ

୼௄
൰  ଶ                   (6.53a)ܫ

ଶଶܥ = ቂ1 − 3 ቄ ଵ
୼మஊమ௄

ܽଶܧଶ(ݎଶ + ܽଶ)ଶ − ஊమ

௄
ଶቅቃߠଶ̇ݎ ଵܫ − 6൬ ஊ

௄୼
భ
మ
ଶݎ)ݎܧܽ +

                  ܽଶ)̇ߠଶ൰  ଶ         (6.53b)ܫ

ଷଷܥ =

ቈ1 − 3 ቊ൬ఈா
మ൫௥మା௔మ൯మ௥ ௦௜௡ஏ

୼ஊ௄
భ
మ

൰
ଶ

− ൬ஊఉ
௄
భ
మ
ܽߠ̇ sinΨ൰

ଶ
ቋ቉ ଵܫ + 6൬ா

మ൫௥మା௔మ൯మ௥௔ ఏ̇మ ୱ୧୬మஏ
୼௄

൰                             ଶܫ

ଵଶܥ =  −3 ቄఈ௥ா
మ൫௥మା௔మ൯ ୱ୧୬ஏ
୼మஊమ௄

+ ஊమ௔௥ఏ̇రఉ   ୡ୭ୱ ஏ   
௄

ቅ ଵܫ − 3 ൜ா
మ൫௥మା௔మ൯ఈ௥మ ୡ୭ୱஏ

୼௄
−

                   ఉ௔
మாమ൫௥మା௔మ൯మఏ̇మ ୡ୭ୱஏ

୼௄
ൠ  ଶ                 (6.53d)ܫ

ଶଵܥ   =

             −3 ൜ఈ௥ா
ర൫௥మା௔మ൯ర ୡ୭ୱஏ

୼మஊమ௄
+  ఉஊ

మ௔௥ ఏ̇ర ୡ୭ୱஏ
௄

ൠ ଵܫ −

               3 ൜ఈ௥ா
మ൫௥మା௔మ൯ఏ̇మ ୱ୧୬ஏ

୼௄ 
– ఉ௔మாమ൫௥మା௔మ൯మఏ̇మ ୡ୭ୱஏ

୼௄
ൠ  ଶ                       (6.53e)ܫ

 

ଵଷܥ =                  3 ൜− ఈమ௥మாర  ൫௥మା ௔మ൯ర ୱ୧୬మஏ

୼మஊమ௄
భ
మ

+  ఉ
మஊమఏ̇ర௔మ ୱ୧୬ஏ ୡ୭ୱஏ

௄
 ൠ ଵܫ +

                6 ൜ா
మ൫௥మା ௔మ൯௔௥ఏ̇ ୱ୧୬ஏ ୡ୭ୱஏ

୼௄
భ
మ

ൠ ܫଶ        (6.53f) 

 

= ଷଵܥ 3 ൜ఈ
మ௥మாర൫௥మା ௔మ൯ర ୱ୧୬ஏ ୡ୭ୱஏ

୼మஊమ௄
+ ஊమఉమ௔మఏ̇ర ୱ୧୬ஏ ୡ୭ୱஏ

௄
ൠ  ଵ     (6.53g)ܫ
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ଶଷܥ = −3 ൜ఈா
ర൫௥మା௔మ൯ర௥ ୱ୧୬ஏ

୼మஊమ௄
+ ஊమఉ௔௥ ఏ̇ర ୱ୧୬ஏ

௄
ൠ ܫଵ +  6 ൜ா

మ൫௥మା௔మ൯మ௔మఉ ୱ୧୬ஏ
୼௄

ൠ    ଶܫ

ଷଶܥ =

              3 ൜ఈா
ర൫௥మା௔మ൯ర௔௥ ୱ୧୬ஏ

୼మஊమ௄
+  ஊ

మఏ̇రఉ ௔௥ ୱ୧୬ஏ
௄

ൠ ଵܫ −

            3 ൜ா
మ൫௥మା௔మ൯మఈ௥మఏ̇మ

୼௄
   ாమ൫௥మା ௔మ൯మఈ௥ ୱ୧୬ஏ

୼ஊ௄
భ
మ

ൠ  ଶ     (6.53i)ܫ 

6.5 Time Dilation in Spherical Polar Orbits 

The time period in B-L coordinate time for spherical polar orbits is given as [60] 

௧ܶ = 

ଷݎ]Δܳଵ/ଶ൧/ݎൣܧ4 + ܽଶ(2ܯ + (݇)ܭ[(ݎ + ܳܧ4
భ
మ(1 − (݇)ܭ]ଶ)ିଵܧ −      (6.54)   [(݇)ܧ

And the proper time period in the satellite frame is, 

 

ఛܶ = 

                        4൫ݎଶ/ܳଵ/ଶ൯ܭ(݇) + 4ܳ
భ
మ(1 − (݇)ܭ]ଶ)ିଵܧ −  (6.55)                [(݇)ܧ

 The Energy associated with the spherical orbit, Carter’s constant, dragging effect, 

Time period in distant Lorentz frame, and the Time period in satellite frame,are 

numerically evaluated for orbits of different radii for a given angular parameter 

 .(⊙ܯ0.8) ܽ
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௧ܶ ߶ߜ ܭ ܧ ݎ  (s) ఛܶ(s) Ψ( ఛܶ) 

5 0.858737 11.096 22.1835 1795.11 62.6137 15.4549 

10 0.907527 13.9856 10.3287 6505.01 206.874 18.0825 

50 0.98017 53.1529 3.96097 309533 2257.48 17.4193 

100 0.985147 103.074 2.76519 1.72836×106 6335.95 17.254 

500 0.996408 503.015 1.22491 9.56962×107 70369 17.115 

1000 0.998501 1003.01 0.865146 5.40717×108 198863 17.0973 

2000 0.99925 2003 0.611401 3.05701×109 562228 17.0884 

 

Table 6.1 : Energy, Carter’s constant, ߜ߶ and Time Periods ௧ܶ, ఛܶ  for spherical 

orbits of different radii for a Kerr black hole with ܽ =  ⊙ܯ0.8

It is observed that an increase in the radius of the spherical orbit is followed by a  

decrease in ߜ߶. The finite difference between the two time periods suggests that 

the spacecraft in Kerr region will be subjected to a considerable amount of time 

dilation effect for each orbit around the black hole,compared to the time in the the 

asymptotic Lorentz frame. It has been observed numerically that the stable 

spherical orbit corresponding to a given angular parameter ܽ for a  black hole of 

fixed mass, there exist a critical radius ݎ௖ below which the equations of spherical 

polar orbits do not have solutions. This critical radius is 2.6707 ܯ⊙ for a black 

hole of mass 10ܯ⊙ with angular parameter ܽ =   .⊙ܯ0.8

However there is found to be a region with ݎ >  ௖ such that the coordinate time onݎ

the spacecraft is nearly zero and even negative compared to the finite time period 
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in the Asymptotic Lorentz frame. Just above these last stable spherical orbits it is 

possible to obtain a trajectory which is nearly a closed time circuit (CTC), even 

though the region is outside the event horizon in physically accessible space.   
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Chapter 7  

Stellar Polar Orbits in Super Massive Kerr Black 

Hole At Galactic Centre: Case Study  

The stellar orbits around the central black hole in the Milky-way provide a testing 

ground for the theory of the Kerr black hole. It is assumed that the Milky way has 

a rotating supermassive black hole at its center in the Sgr A* direction and the 

stars near the Milky way centre  rotate in the direction of the rotation of the 

central black hole. The stellar orbits in close vicinity of the central supermassive 

black hole are the objectives of study of the GRAVITY experiment [61].  

 

7.1 Stellar Orbits in the central arc second of the Milky 

way 

Observation of stellar orbits in the central arcsecond of Milky way has provided 

the evidence of the existence of a supermassive black hole at its center [62,63,64]. 

The location and properties of the central black hole can be estimated with the 

observed stellar orbits near the central region. The  stars nearest the black hole are 

seen to be young B-Main Sequence stars and the radial velocities and orbital 

parameters of these central stars are given in [65,Table 1,2].  

Stellar orbits in a Supermassive black hole spacetime can be analyzed by 

assuming that the mass of the star is negligible compared to the mass of the 

SMBH. In such a scenario the star orbiting the black hole can be considered as a 

free particle, and the equations of time-like geodesic motion in Kerr spacetime 

can be extended to such systems. This analogy brings the  between the two cases 
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of spacecraft motion in Stellar black hole region and stellar orbits in SMBH to be 

described by the same governing equations.  

Analysis of stellar orbits in rotating Kerr SMBH can provide an insight in the 

general case of a particle motion in Kerr spacetime. The central arcsecond of the 

galactic center thus provides one with a method to study the dynamics of a 

particle in compact strong gravitational regions. 

The Supermassive black hole at the center of the galaxy has been identified with 

the help of the stellar orbits near the central region. Orbits of various inclinations 

and eccentricities have been discovered in this region and monitoring such stars 

over a period of two decades has helped in estimating the parameters of the 

SMBH at the galactic center. 

The types of stars present in the central region raise a number of questions on the 

origin and formation of stars in such extreme gravitational conditions. The tidal 

forces are expected to be high as to disrupt the stellar formation in these regions 

and thus the presence of stellar objects in these regions contradicts the standard 

models of stellar formation. 

Though the strong evidences of a black hole at the center of the galaxy is 

provided by analyzing the orbits of such stars, the fine details of the exact 

orientation and the Kerr parameter ܽ of the central black hole are to be provided 

by further carefully analyzing these orbits in time. The stellar polar orbits would 

rotate in the sense of the black hole due to the Lense Thirring effect. 

Figure 7.1 shows the expected orbits of the central stars as they are observed 

between the years 1995-2005. The orbits of these stars reveal the presence of an 

in---visible source in the form of a SMBH.  
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Fig 7.1  Stellar orbits in the central arc second of the Milky way. (Courtesy              

Keck/UCLA Galactic Center Group.) 

The orbital period of the S stars in this region are given in the following table[65] 

and the minimum time period is  that of star S02 estimated to b 15.24 years.   

Star S1 S02 S8 S12 S13 S14 

Orbital 

Period (y) 

94.1 15.24 67.2 54.4 36 38 

       Table 7.1 Orbital Periods of S stars in the galactic central arc second.  
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Fig 7.2. Image of stars in the Sgr A* region. (Courtesy Keck/UCLA Galactic 

Center Group.) 

The stellar orbits in Sgr A* region is an active region of research and with the 

advancement of time the observations will provide more details on these strong 

gravitational field orbits and would directly verify the results of the General 

Theory of Relativity. A major observation re 

garding these orbits would be the measure of the gravitomagnetic effects of the 

Kerr spacetime on these orbits.  

7.2 Dragging Effect in Stellar Spherical Polar Orbits  

The effect of the rotation of black hole can be directly measured in the form of the 

dragging effect on the orbit of the stars in the concerned region. The dragging 

effect to be measured over subsequent orbits of a star could be a precise measure 

of the Kerr parameter a  and the mass of the central black hole once the orbital 

parameters are identified for various orbits in the Sgr A* region. 
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The dragging effect is estimated for spherical orbits of different radii for three 

different sets of Kerr parameter ܽ  in the tables given below considering the mass 

of the Black hole to be  4.06 × 10଺ܯ⊙. 

         Radius  (⊙ܯ)ݎ             Energy  ܧ    Predicted dragging      

 (݊݋݅ݐݑ݈݋ݒ݁ݎ/°)

                   10            0.914094               8.96682 

                   50            0.980425              0.738849 

                  100            0.990103             0.257866 

                  200            0.995025             0.0905654 

Table 7.2 Energy associated and the corresponding frame dragging effect for 

different radii for a SMBH of mass 4.06 × 10଺ܯ⊙ and Kerr parameter ܽ =

 .⊙ܯ0.52

        Radius  (⊙ܯ)ݎ           Energy  ܧ Predicted dragging      

 (݊݋݅ݐݑ݈݋ݒ݁ݎ/°)

                  10             0.913852            14.0191 

                  50             0.980425             1.08546 

                 100             0.990103             0.375389 

                 200             0.995025             0.131232 

Table 7.3 Energy associated and the corresponding frame dragging effect for 

different radii for a SMBH of mass 4.06 × 10଺ܯ⊙ and Kerr parameter ܽ =

 .⊙ܯ0.75
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        Radius  (⊙ܯ)ݎ             Energy  ܧ Predicted dragging      

 (݊݋݅ݐݑ݈݋ݒ݁ݎ/°)

                 10              0.913527            19.9481 

                50             0.980425             1.40598 

               100             0.990103             0.480763 

               200             0.995025             0.16714 

Table 7.4 Energy associated and the corresponding frame dragging effect for 

different radii for a SMBH of mass 4.06 × 10଺ܯ⊙ and Kerr parameter ܽ =

 .⊙ܯ0.95

The Kerr parameter substantially governs the dragging effect which increases 

with increase in ܽ. The recent X-ray Flares from the galactic center reveal the 

Kerr parameter to be  ܽ = 0.9939 [66]. The high angular momentum of the 

rotating black hole at the centre of the galaxy could render the dragging effect in a 

measurable regime in the near future.   
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                         CONCLUSION 

The geodesic equations in Kerr spacetime have been analytically derived and 

numerically solved to show various possible orbits in Kerr spacetime. The 

spherical polar orbits are taken as a case study and are suggested to be the suitable 

orbits for a spacecraft mission in Kerr spacetime. The Kerr Metric can be 

approximated for orbits in strong gravitating regions of compact objects such as 

the neutron stars and white dwarf stars. The effect of rotation of the spacetime is 

studied under the heading of frame dragging. The effect of frame dragging is 

studied for a gyroscope moving along a polar orbit and on the axis of symmetry. 

The tidal tensor for the spherical polar orbit is calculated for the Kerr spacetime. 

The relativistic effects of tidal forces and time dilation along a spherical polar 

orbit are analyzed. The case of stellar orbits in SMBH at the centre of Milky Way 

is studied and an analogy has been predicted to exist in between the two scenarios 

in Kerr spacetime. The Kerr spacetime is numerically analyzed for describing the 

timelike trajectories for spacecrafts in regions outside (ݎ >  ஻ு)  a stellarܯ10

black hole and for the motion of stars and compact objects in close vicinity of the 

galactic central supermassive black hole.  
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Appendix A  

Mathematica Code for Spherical Polar Orbits and 

Lense Thirring Effect 

M=1; 
 
r=10*M; 
 
a= 0.8* M; 
 
=(r^2 + a^2 )-2*M*r ; 
 
=r^2 + (a^2 )*Cos[[]]^2; 
 
A = (r^2 + a^2 )^2 -  *(a^2 )*Sin[[]]^2; 
 
K=(M*r^4  +(a^2)*r^3 - 3*M*(a^2)*r^2 -a^4*r)/(r^3- 
 
3*M*(r^2)+(a^2)*r +M*a^2) 
 
E=*(K + r^2)/(r^2 +a^2 )^2 
 
=0.0; 
 
k=(a/r^2)*(r^4-M*r^3 + 2*(a^2)+a^4)/(r^4+2*(a^2)*r^2 -   
 
4*M*(a^2)*r +a^4); 
 
h=(a^2)/K; 
 
=1; 
 
min=0.01; 
 
max=500; 
 
Q=K -(a^2)*E^2 
 
deltaphi=(2*M*a*E*r*(Pi/2)*(1+(k^2)/4)*(360)/(2*Pi**(
Q^0.5))) 
 
Tt=4*E*(r/*Q^(0.5))*(r^3 +(a^2)*(2*M  



122 
 

 
+r))*EllipticK[k]+4*E*Q^(0.5)*(1-E^2)^(- 
 
1)*(EllipticK[k] -EllipticE[k]) 
 
Ttau=4*(r^2/Q^(0.5)) EllipticK[k] +4*Q^(0.5)*(1- 
 
E^2)^(-1) (EllipticK[k]-EllipticE[k]) 
 
EllipticK[k]; 
 
EllipticE[k]; 
 
 = 4*E*r^2*((K- 
 
a^2)/((K*Q)^(0.5)*(K+r^2)))*EllipticK[k]-4*E*((K- 
 
a^2)/(K*Q)^(0.5))*(EllipticK[k] - EllipticPi[h,k]) 
 
s=NDSolve[ 
          { 
   t'[]==(*)^(-1)*(A*E-2 M*a*r*), 
    
*   ('[])^2 �(K -(^2)*a^2*Cos[[]]^2 -(a*E  
 
Sin[[]]-/Sin[[]])^2)/(^2), 
    
   '[]==^(-1) ((2 M*r/))*a*E +(1- 
 
2*M*r/)*/Sin[[]]^2, 
 
   [0]==0, 
 
   t[0]�0, 
 
   [0]==0 
 
    }, 
 
          {t,,}, 
 
          {,min,max}] 
 
gos =Plot[{[],[]}/.s[[1]], {,min,max},FrameTrue] 
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ParametricPlot3D[{r*Sin[[]] Cos[[]], 
 
                    r*Sin[[]] Sin[[]], 
 
                    r*Cos[[]]}/.s[[1]],  
 
{,min,max},ColorFunction"DarkRainbow",PlotStyleThi
c 
 
k,MeshStyleDirective[Red],PlotLabel"1",LabelStyle{
B 
 
old,FontFamily- 
 
>"Helvetica",FontSize14},AxesLabel{Style[x,24],Styl
e 
 
[y,24],Style[z,24]}] 
 
ParametricPlot[{r*Cos[[]]*Sin[[]], 
 
                    r*Sin[[]]*Sin[[]]}/.s[[1]], 
 
{,min,max},PlotStyle{Red,Thick},MeshStyleDirective
[ 
 
Red],PlotLabel"2",LabelStyle{Bold,FontFamily- 
 
>"Helvetica",FontSize14},AxesLabel{Style[x,24],Styl
e 
 
[y,24]}] 
 
gos=ParametricPlot[{r*Cos[[]]*Sin[[]], 
 
                     r*Sin[[]]*Sin[[]]}/.s[[1]],  
 
{,min,max},PlotStyle{Red,Thick},MeshStyleDirective
[ 
 
Red],PlotLabel"2",LabelStyle{Bold,FontFamily- 
 
>"Helvetica",FontSize14},AxesLabel{Style[x,24],Styl
e 
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[y,24]}] 
 
gos= ParametricPlot3D[{r*Sin[[]] Cos[[]], 
 
                     r*Sin[[]] Sin[[]], 
 
                     r*Cos[[]]}/.s[[1]],  
 
{,min,max},ColorFunction"DarkRainbow",PlotStyleThi
c 
 
k,MeshStyleDirective[Red],PlotLabel"1",LabelStyle{
B 
 
old,FontFamily- 
 
>"Helvetica",FontSize14},AxesLabel{Style[x,24],Styl
e 
 
[y,24],Style[z,24]}] 

 

Appendix B 

Fortran code for plot of Effective Potential in Kerr 

Metric  

      implicit none 

       integer i, N 

       parameter (N=50000) 

       real r(N),V,t(N),tau(N),E,K,M,a,h,D,S,Ap,theta(N) 

       real phi(N) 

       M=1.0 
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      a=0.8*M 

      E=0.976 

      K=24.0 

      r(1) = 1.51*M 

      theta(1)=0.0 

      phi(1)=0.0 

      h =0.1 

       

      do i =1,N-1 

 

      S= r(i)**2.0 + a**2.0*Cos(theta(i))**2.0 

      D = r(i)**2.0-2.0*M*r(i)+a**2.0 

      Ap= (r(i)**2.0 + a**2.0)**2.0 - a**2.0*D*Sin(theta(i))**2.0 

       V = D*(K + r(i)**2.0)/(r(i)**2.0 + a**2.0)**2.0 

 

c      K= (M*r(i)**4.0-a**2.0*r(i)**3.0 - 3.0*M*a**2.0*r(i)**2.0 +  

c     & a**4.0*r(i))/(r(i)**3.0-3.0*M*r(i)**2.0 + a**2.0*r(i) + M*a**2.0) 

    

c       E = D*(r(i)*2.0 + K)/(a**2.0 + r(i)**2.0) 
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      tau(i+1) = tau(i) + h  

 

       r(i+1)= r(i) + h*((r(i)**2.0  +a**2.0)**2.0 

     &     *(E**2.0 - V)/S**2.0)**(0.5) 

 

        theta(i+1) = theta(i) + h*((K-(a**2.0)*E**2.0 -  

     & a**2.0*(1-E**2.0)*cos(theta(i))**2.0)/S**2.0)**(0.5) 

 

       phi(i+1) = phi(i) + h*(2*M*a*E*r(i)/(D*S)) 

 

 

       write(6,*) r(i), E,V,K 

       write(1,*) r(i),E 

       write(2,*) r(i),K 

       write(3,*) log(r(i)/M), V 

        

         enddo 
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         end 

 

Appendix C 

Fortran code for spherical polar orbit using Euler 

Method for differential equations 

           implicit none 

            integer i, N 

            parameter (N= 3000) 

            real r, t(N), tau(N), theta(N), phi(N),M,E,K,a,S,Ap,D,h  

            open(unit = 1, file= 'sphericalpolarorbit.dat' ) 

 

           M= 1 

           a =0.8*M  

           r =10*M 

           E = D*(K + r**2.0)/(r**2.0 + a**2.0)**2.0 

           K = (M*r**4.0 + a*r**2.0 - 3.0*M*a**2.0*r**2.0  

    &     +a**4.0)/(r**3.0 - 3.0*M*r(i)**2 + a**2.0*r+ M*a**2.0) 

           tau(1)=0.0 

           theta(1)=0.0 
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           phi(1)= 0.0  

           h= 0.1 

 

          do i = 1,N 

           

           S= r**2.0 + (a**2.0)*cos(theta(i))**2.0 

           D= r**2.0 + a**2.0 - 2*M*r 

           Ap = (r**2.0 + a**2.0)**2.0 - D*(a**2.0)*sin(theta(i))**2.0 

          

          tau(i+1)= tau(i) + h 

 

         t(i+1)=t(i)+ h*(A*E/(D*S))  

 

         theta(i+1) = theta(i) + h*((K-(a**2.0)*E**2.0 -  

     & a**2.0*(1-E**2.0)*cos(theta(i))**2.0)/S**2.0)**(0.5) 

 

         phi(i+1) = phi(i) + h*(2*M*a*E*r/(D*S)) 
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         write(6,*) tau(i),t(i),theta(i),phi(i) 

         write(1,*) r*sin(theta(i))*cos(phi(i)), 

     & r*sin(theta(i))*sin(phi(i)),r*cos(theta(i)) 

 

          enddo 

          end 


