Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Engineering Mathematics
Program: B.Tech. SoCS (All Batches)

Course Code: MATH 1052

Semester: I Time: 03 hrs.

Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

1) Mention Enrolment No. at the top of the question paper.

2) Attempt all the parts of a question at one place only.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Examine the following vectors for linear dependence and find the relation if it exists. $X_1 = (1,1,-1,1), X_2 = (1,-1,2,-1), X_3 = (3,1,0,1).$	4	CO1
Q 2	If $y = e^{ax} sinbx$, prove that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$.	4	CO2
Q 3	Solve $(D-1)^2 y = (e^{2x}x + \sin 2x)$.	4	CO3
Q 4	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10, use Poisson distribution to calculate its mean.	4	CO4
Q 5	Obtain $\sqrt{12}$, to five places of decimals by Newton Raphson method.	4	CO5

SECTION B (4Qx10M= 40 Marks)

Q 6	If $y = x^n \log x$, prove that $y_{n+1} = n!/\chi$.	10	CO2
Q 7	Solve, by the method of variation of parameters, $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$.	10	CO3
Q 8	In a certain distribution, the first four moments about a point are -1.5, 17,-30 and 108. Calculate β_1 , β_2 and state whether the distribution is leptokurtic or platykurtic.	10	CO4

	The values of x and y are given as below					
	x: 5	6	9	11		
	y: 12	13	14	16		
	Using Newton's forw					
Q9	OR				10	CO5
	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's 1/3 and 3/8 rule (choose $h = 1/6$).				= 1/6).	
	Hence obtain the app					
		(20	SECTION-C Qx20M=40 M:			
	a) Change the order	of integration ar	nd hence evalua	te $\int_0^a \int_v^a \frac{x dx dy}{x^2 + y^2}$		
	b) Evaluate $\iint_R x^2 dxdy$, where R is the region in the first quadrant bounded by the lines $x = y, y = 0, x = 8$ and the curve $xy = 16$.				ıadrant	
Q 10			OR		20	CO2
	c) Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dt$	$e^{-(x^2+y^2)}dxdy$ b	v changing to i	olar coordinates		
	c) Evaluate $\int_0^\infty \int_0^\infty d$ d) Evaluate $\int_0^1 \int_0^{\sqrt{1-t}}$	$\int_0^{\sqrt{1-x^2-y^2}} xy$	zz dx dy dz.			
	Use Runge – Kutta n	nethod of fourth	order to find th	e numerical solu	ition at	
Q 11	$x = 0.4$ for $\frac{dy}{dx} = \frac{y^2}{y^2}$	$\frac{-x^2}{+x^2}$, $y(0) = 1$. As	sume step size	h=0.2.	20	CO5