Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Physics Program: B. Tech APE-UP, ADE, Chemical, ME, Mech, ECE, CE, E&Com, SE, ASE Course Code: PHYS 1002 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Use of scientific calculator is permitted.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Differentiate between soft and hard magnetic materials.	4	CO2	
Q 2	Draw the atomic planes described by the miller indices (123) and (112).	4	CO4	
Q 3	A signal of power $5\mu W$ exists just inside the entrance of 0.1 km long fibre. Calculate the attenuation coefficient of the fibre if the power inside the fibre be 1 μW .	4	CO1	
Q 4	State the characteristics of Laser. Also list their applications.	4	CO1	
Q 5	If the magnitude of \vec{H} in a plane wave is A/m, find the magnitude of \vec{E} for plane wave in free space.	4	CO2	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Show that plane and circularly polarized lights are the special cases of an elliptically polarized light.	10	CO1	
Q 7	An electron is trapped in a 1D infinitely deep potential well of width $L = 10^{-9}$ m. Calculate the wavelength of photon emitted from the transition $E_4 \rightarrow E_3$.	10	CO3	
Q 8	Derive the expression for Clausius Mossotti equation.	10	CO 2	
Q 9	Derive the mathematical expression for Ampere's circuital law incorporating Maxwells correction. OR If the earth receives 2 cal min ⁻¹ cm ⁻² solar energy, what would be the amplitudes of electric and magnetic fields of radiation	10	CO2	
SECTION-C				
(2Qx20M=40 Marks)				

Q 10	a. What is pair production? Explain why it cannot take place in an empty space. (10) b. Develop the time dependent Schrodinger wave equation for a quantum particle starting with simple wave equation. (10) OR a. What is the photoelectric effect? Explain it with the help of different graphs (10) b. A photon of energy <i>E</i> is scattered by an electron initially at rest (rest mass energy, E_0) (Compton scattering problem). Show that the maximum kinetic energy (<i>KE_{max}</i>) of the recoil electron can be calculated as	20	CO3
	$KE_{max} = \frac{\frac{2E}{E_0}}{1 + \frac{2E}{E_0}} $ (10)		
Q 11	a. Define Bravais lattice and describe their different types.(10)b. Define maximum power point, fill factor & efficiency of a solar cell.Calculate input power to obtain 0.1 watt output power from 10%efficient poly-Si solar cell.(10)	20	CO4

LIST OF IMPORTANT CONSTANTS

Planck's constant, $h = 6.6 \times 10^{-34}$ J.s Boltzmann's constant, $k = 1.38 \times 10^{-23}$ J/K Mass of electron, $me = 9.1 \times 10^{-31}$ Kg Mass of proton, $mp = 1.67 \times 10^{-27}$ Kg Velocity of light, $c = 3 \times 10^8$ m/s Rydberg Constant, $R = 1.097 \times 10^7$ m-1 Avogadro's number = 6.023×10^{23} Permeability of free space, $\mu o = 4\pi \times 10^{-7}$ Henry/m Permittivity of free space, $\epsilon o = 8.85 \times 10^{-12}$ F/m

Impedance of em wave in free space Z₀= 377 Ohm