Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Matrices

Program: B.Sc. (Hons.) (Physics/Geology/Chemistry) Course Code: MATH 1029 G Semester: I Time: 03 hrs. Max. Marks : 100

Instructions: Attempt all the questions. Q9 and Q11 have internal choice.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q1	Express the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrices.	4	CO1	
Q2	Define the Inverse of a square matrix and hence find the inverse of $A = \begin{bmatrix} 1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7 \end{bmatrix}.$	4	CO2	
Q3	Define Linear dependency and independency of vectors. Find the condition on "a" for which the set $S = \{\{0,1,a\}, (a,1,0), (1,a,1)\}$ is linearly independent.	4	CO3	
Q4	For the transformation $\xi = x \cos \alpha - y \sin \alpha$; $\eta = x \sin \alpha + y \cos \alpha$, prove that the coefficient matrix A is orthogonal. Hence write the inverse transformation.	4	CO4	
Q5	Find the characteristic polynomial of $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	4	CO5	
	SECTION B		1	
	(4Qx10M= 40 Marks)		1	
Q6	If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$, show that $A(adj A) = (adj A)A = A I$.	10	CO1	
Q7	Solve the system $x + y + z = 5$; $x + 2y + 2z = 6$; $x + 2y + 3z = 8$ using Crout's decomposition technique.	10	CO3	
Q8	Solve the system $x + 2y + 3z = 5$; $2x + 8y + 22z = 6$; and $3x + 22y + 82z$ using an appropriate LU decomposition technique.	10	CO3	

Q9	State the Cayley Hamilton Theorem. Verify the Caley Hamilton Theorem for $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and hence find A^{-1} . OR Define the minimal polynomial of a matrix. If $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$, find its minimal polynomial.	10	CO4		
SECTION-C (2Qx20M=40 Marks)					
Q10	(a) Solve the system $\begin{bmatrix} 2 & -7 & 4 \\ 1 & 9 & -6 \\ -3 & 8 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ 6 \end{bmatrix}$ using Gauss-Jordan technique. (b) Find the non-trivial solutions of the following system of equations using the concept of rank. 2x + y + 2z = 0 $x + y + 3z = 0$ $4x + 3y + 8z = 0$	20	CO2		
Q11	Diagonalize the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. OR Prove that the eigen vectors of $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ are not orthogonal.	20	CO4		