Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES END SEMESTER EXAM, DECEMBER 2022

Course: Theory of Elasticity & Plasticity Program: M. Tech (Structural Engineering) Max. Marks: 100 CIVL 7002 Time: 03 hrs. SEM - I

SECTION A			
S. No.		Marks	CO
Q.1	State & explain generalized Hook's law.	4	CO1
Q.2	Write the compatibility equation in terms of strain & displacement.	4	CO1
Q.3	Briefly explain 1) St. Venant's principle 2) Principle of superposition.	4	CO2
Q.4	Illustrate warping of torsion.	4	CO3
Q.5	What is meant by yield line? What are the assumptions in yield line theory?	4	CO4
	SECTION B		
Q.6	Rectangular stress components at a point in a 3D stress system are as follows:		
	$\sigma_x = 9 \text{ kPa}, \sigma_y = 5 \text{ kPa}, \sigma_z = 4 \text{ kPa}, \tau_{xy} = 6 \text{ kPa}, \tau_{yz} = 2 \text{ kPa}, \tau_{zx} = 3 \text{ kPa};$	10	CO1
	Determine Principal stresses at the given point.		
Q.7	Using Polynomials, calculate the bending of uniformly distributed simply supported	10	002
	beam.	10	CO2
Q.8	Calculate torsional rigidity for elliptical section using stress function approach.		
	OR	10	CO3
	Write short note on Airy's stress function. Explain stress and strain invariants.		
Q.9	Define different hardening rules for materials in case of plastic state.	10	CO4
	SECTION-C		
Q.10	When the stress tensor at a point with reference to axes (x,y,z) is given by the array:		
	$\begin{bmatrix} 4 & 1 & 2 \\ 1 & 6 & 0 \\ 2 & 0 & 8 \end{bmatrix} MPa$		
	$\begin{bmatrix} 1 & 6 & 0 \end{bmatrix} MPa$		
	$\begin{bmatrix} L2 & 0 & 8J \end{bmatrix}$ Show that the stresses invariants remain unchanged by transformation of the axes by		
	Show that the stresses invariants remain unchanged by transformation of the axes by 45° about the z-axis.		
	OR		
	The displacement field components at a point are given by		
	$u = -0.0001y^{2} + 0.0015xyz, v = 0.0002x^{2}y + 0.0003x^{2}z, w = 0.0015xyz + 0.0002x^{2}yz$	20	CO1
	i. Determine the strain tensor at a point $(2, -3, -1)$		CO2
	ii. Find the principal strains and their orientation		
	If $E=210$ GPa and $v=0.28$, find Lame's constants.		
0.11			
Q.11	Compare surface force and body force. Describe the stress-strain curve for a plastic		CO1
	and elastic material. Obtain yield criteria of metals graphically in case of plastic state.	20	CO1 CO4