Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2022

Course: Complex Analysis

Program: B. Sc. (Hons.) Mathematics + Int. BSc-MSc Mathematics

Course Code: MATH 2049

Semester: III

Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. There is an internal choice in Q9 and Q11 only.

IIIsti uc	tions: All questions are compulsory. There is an internal choice in Q9 and C	ZII Ulliy.			
	SECTION A (5Qx4M=20Marks)				
S. No.	(3QA4W1—20W1a1 K5)	Marks	CO		
Q1	Find the largest subset of the set of complex numbers \mathbb{C} on which the function $f(x+iy)=x^2+iy$ is analytic.	of complex numbers C on which the function 4 CO1			
Q2	Does there exist a harmonic conjugate of the function $u(x,y) = x^2 + y^2$? Justify your answer.				
Q3	For what choices of $z_1, z_2 \in \mathbb{C}$ the equality $Ln(z_1z_2) = Ln(z_1) + Ln(z_2)$ fails to hold?	4	CO2		
Q4	Prove that $\left \oint_C \frac{\sin z}{z} dz \right \le 2\pi e$ where <i>C</i> is the unit circle $ z = 1$.	4	CO2		
Q5	Prove that there does not exist an entire onto function $f(z) = u + iv$ such that $u > 0$ for all $z \in \mathbb{C}$.	4	CO3		
	SECTION B	<u>'</u>			
	(4Qx10M=40 Marks)				
Q 6	Discuss the existence of $\lim_{z\to 0} e^{\left(1+\frac{1}{z^4}\right)}$ using suitable paths passing through the point $z=0$.	10	CO1		
Q7	Evaluate $\oint_C 1+z ^2 dz$ where C is the unit circle $ z =1$ oriented counterclockwise.	10	CO2		
Q8	Use Laurent series expansion by defining a suitable annular open connected set $r < z - 1 < R$ to comment correctly on the nature of singularity for $f(z) = \frac{z}{z^2 - 1}$ at the point $z = 1$.	10	CO3		
Q9	Determine the value of $k \in \mathbb{Z}_{>0}$ so that $\frac{1}{2\pi i} \oint_C \frac{z^2 - z - k}{z - k} dz = 0$ where C is an arbitrary closed simple curve enclosing the point $z = k$ on complex plane.	10	CO4		

	OR		
	Evaluate $\oint_C \frac{\sin z \cos^2 z + z^{2022}}{e^z} dz$ where C is an arbitrary closed simple curve on		
	complex plane.		
_	CECTION C		
	SECTION-C (2Qx20M=40 Marks)		
Q10	Consider $f(z) = \frac{e^{\frac{1}{z}}}{1-\cos z}$. (i) Determine all the singularities of $f(z)$. (ii) Discuss the nature of $f(z)$ at $z=0$. (iii) Find the value of $\oint_C z^2 f(z) dz$ where C is $ z =1$ counterclockwise. (iv) Find the order of poles at $z=2\pi k, k\in \mathbb{Z}\setminus\{0\}$.	20	CO3
Q11	Evaluate the real integral $\int_0^\infty \frac{\sin mx}{x} \ dx \ , (m>0)$ by clearly showing how the value of the integral $\int \frac{e^{imz}}{z} dz \to 0$ along the semicircular arc in upper half complex plane. OR Find the principal value of the real integral $\int_{-\infty}^\infty \frac{\sin x}{x(x^2-x+2)} \ dx \ ,$ by clearly showing how the value of the integral $\int \frac{e^{iz}}{z(z^2-z+2)} \ dz \to 0$ along the semicircular arc in upper half complex plane.	20	CO4