Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Mathematics III (Probability and Statistics)

Program: B.Tech EE

Course Code: MATH 2046

Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

SECTION A	
(5Qx4M=20Mark	s)

S. No.		Marks	СО
Q 1	A bag contains 3 red and 4 white balls. Two draws are made without replacement. What is the probability that both the balls drawn are red.	4	CO1
Q2	If 10% of screws produced by a machine are defective, find the probability that out of 5 screws chosen at random none is defective.	4	CO3
Q3	The probability that a contractor will get a plumbing contract is $\frac{2}{3}$ and probability that he will get electric contract is $\frac{5}{9}$. If the probability of getting any one contract is $\frac{4}{5}$, what is the probability that he will get both the contract.	4	CO1
Q4	The equations of two regression lines, obtained in a correlation analysis of 60 observations are: $5x = 6y + 24$ and $1000y = 768x - 3608$. What is the correlation coefficient?	4	CO4
Q5	Find the relation between coefficient of correlation and coefficients of regression.	4	CO4
	SECTION B (4Qx10M= 40 Marks)		
Q 6	If the random variable has the probability density function $f(x)$ as $f(x) = \begin{cases} 2e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$ Find the probabilities that it will take on values $\mathbf{i.} \text{Between 1 and 3} \mathbf{ii.} \text{Greater than 0.5}$	`10	CO3
Q7	In a partially destroyed laboratory record of an analysis of a correlation data, the following results only are eligible: Variance of $x = 9$ Regression equations: $8x - 10y + 66 = 0$, $40x - 18y = 214$. What were (a) the mean values of x and y	10	CO4

Q8	By the	motho	od of least	callare	find th	10 CUIT	79.37 -	- ax -	∟ hv²	that best		
Qσ			ving data:	squares	5, 1111 u u	ic cui v	<i>y</i>	- ux -	Γ DX	mai oesi		
	x	1	2		3	4		5			10	CO4
	у	1.	8 5.	l	8.9	14.1	1 :	19.8				
Q9			first four tribution	momen	nts, skev	vness a	and ku	rtosis (of the			
	x	0	1 2	3	4	5	6	7	8			
	f	1	8 28	56	70	56	28	8	1		10	CO2
			moments first four					2 are 1,	2.5, 5	.5 and		
						SECT x20M=						
Q 10	a.		roublesho m variabl	e X who	(2Q) apacity ose distr	x20M= of an I ribution	=40 M [C chip n func	arks) o in a c tion is				
Q 10	a.		m variabl	e X who	(2Q) apacity	x20M= of an I ribution	=40 M [C chip n func	arks) o in a c tion is				
Q 10		where the IC	m variabl	$(x) = \begin{cases} x & \text{who} \\ x & \text{who} \end{cases}$ s the nuwork property of the state of the stat	apacity ose district 0 $1 - \frac{9}{x^2}$ amber or roperly	of an I ribution	=40 M IC chip in func $x \le 3$ x > 3 x > 3	arks) o in a c tion is	given	by		
Q 10		Where the IC	m variable x denote this will see than 8 years is the join	$e X \text{ who}$ $(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	apacity ose distriction of $1 - \frac{9}{x^2}$ amber on roperly i. Beyon	of an I ribution	=40 M IC chir n func $x \le 3$ x > 3 s. Find ears	arks) o in a c tion is	given	by	20	CO2
2 10		Where the IC	m variabl F e x denote chip will ss than 8 y	$e X \text{ who}$ $(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	apacity ose distriction of $1 - \frac{9}{x^2}$ amber of roperly i. Beyon ibution of the state of th	of an I ribution	=40 M IC chir n func $x \le 3$ x > 3 s. Find ears	arks) o in a c tion is	given	by	20	CO2
Q 10	b.	where the IC i. Les	m variable x denote the chip will see than 8 years is the join x	$(x) = \begin{cases} x & \text{who} \\ x & \text{who} \end{cases}$ s the number of the string interpretation of the string interpreta	apacity ose distriction of $1 - \frac{9}{x^2}$ amber or roperly i. Beyonibution of	of an I ribution	=40 M IC chir n func $x \le 3$ x > 3 s. Find ears	arks) o in a c tion is	given	by	20	CO2
Q 10	b.	Where the IC i. Les	m variable x denote the chip will see than 8 years is the join $\frac{X}{1}$	$(x) = \begin{cases} x & \text{who} \\ x & \text{if } \\ x & \text{otherwise} \end{cases}$ s the number of the string interest	apacity ose distriction of $1 - \frac{9}{x^2}$ amber or roperly i. Beyonibution of	of an I ribution	=40 M IC chir n func $x \le 3$ x > 3 s. Find ears	arks) o in a c tion is	given	by	20	CO2

1	Records taken of having four child				and ic	illaic oi	muis iii (000 1a	111111168			
	Number of male births	0	1		2		3		4	_		
	Number of female births	4	3		2		1	(0	_		
	Number of families	32	17	78	290		236		94	-		
	Test whether the Binomial law hol female birth, name Value of χ^2 at 5%	data and ds and pely p	re condithe condithe q	hance of = 1/2	f male b	oirth is e	equal to	the		20		CO4
	Test whether the Binomial law hol female birth, name	data and ds and pely p	re condithe condithe q	hance of the second sec	f male b ce for 4	oirth is e	equal to	the		20	ı	CO4
	Test whether the Binomial law hol female birth, name	data and data and allow allow and allow and allow and allow and allow and allow and allow allow and allow allow and allow allow and allow and allow allow allow and allow allo	re condition d the d	chance of the second se	f male b ce for 4	oirth is e	equal to	the chat of	f	20		CO4
	Test whether the Binomial law hol female birth, name Value of χ^2 at 5%.	data and data and allow allow and allow and allow and allow and allow and allow and allow allow and allow allow and allow allow and allow and allow allow allow and allow allo	re condition d the d	chance of the second se	f male because for 4 R ntage of	is 9.49.	equal to	the chat of	f	20		CO4