Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Process Optimization Program: B. Tech Chemical Engineering (RP) Course Code: CHCE3020P Semester : V Time : 03 hrs. Max. Marks: 100

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. The notations used here have the usual meanings. Section – A (30 Marks)

S. No.		Marks	СО
Q 1	Discuss the concepts of relative and global optima.	10	CO1
Q 2	Prove that 'the feasible region of a linear programming problem is convex'.	10	C01
Q 3	Analyze the difference between a bound point and a free point in the design space.	10	C01
	Section – B (30 Marks)	I	1
Q 4	Construct the augmented Lagrangian function for a constrained optimization problem.	15	CO1
Q 5	Find the solution of the following LP problem graphically:		
	Minimize and Maximize $f = 3x + 9y$		
	Subject to $x + 3y \le 60$	15	CO2
	$x + y \ge 10$		
	$\begin{array}{c} x \leq y \\ x \geq 0, y \geq 0 \end{array}$		
	$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$ Section – C (40 Marks)		
Q 6	Use the method of least squares to fit the best equation of the type $Nu = aPr^n$ to the data given in Table 1.		
		20	CO2
	Table 1: Experimental data on Nu and Pr Nu 24.8 60.3 84.5 150 165 193 245 315 380		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Q 7	Explain the algorithm of Steepest Descent method to minimize the function. OR		
	Determine whether the following vectors serve as conjugate directions for minimizing the function $f = 2x_1^2 + 16x_2^2 - 2x_1x_2 - x_1 - 6x_2 - 5$	20	CO2
	a) $S_1 = {15 \\ -1}, S_2 = {1 \\ 1}$		
	b) $S_1 = \{ {}^{-1}_{15} \}, S_2 = \{ {}^{1}_{1} \}$		