Name:

Enrolment No:

Semester : VII

Max. Marks: 100

: 3 hr

Time

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Term Examination, December 2022

Programme Name: B.Tech APE Gas

Course Name : Enhanced Oil Recovery

Course Code : PEAU4010P

Nos. of page(s) : 4

Instructions: a) Answer the questions in sequence.

b) Draw the diagrams wherever necessary.

SECTION A (Attempt all questions)

S. No.								Marks	CO
Q1.	Explain the so	creening cri	teria of Po	lymer flooding	?			12M	CO1
Q2.	Using the data given below calculate the Dykstra-Parsons permeability variation.								
	Depth-ft	k md	Φ (%)	Depth-ft	k md	Φ (%)			CO2
	8700-8705	31.00	12.80	-8740	378.00	17.20	_	12M	
	-8710	12.30	11.10	-8745	401.00	14.70	_		
	-8715	13.30	8.90	-8750	0.82	2.12	_		
	-8720	10.11	11.60	-8755	0.05	9.60			
	-8725	23.20	11.70	-8760	0.04	21.40			
	-8730	97.70	14.40	-8765	0.05	19.10			
	-8735	2189.00	21.60	-8770	1080.00	21.40			
	The probability-log scale is provided in Fig.1 .in appendix.								
Q3.	For the linear reservoir system, calculate the following when the water saturation at								
	the producing well reaches 0.70. B _o =1.25 bbl/STB, B _w =1.02 bbl/STB, S _{wf} =30%, Pore								
	volume=875000 bbl.								
	a) Reservoir water cut in bbl/bbl								
	b) Surface water cut in STB/STB							12M	CO2
	c) Water to Oil Ratio at Reservoir conditions								
	d) Water to Oil Ratio at surface conditions								
	e) Average water saturation at swept area.								
	f) Cumulative pore volume of water injected								

	g) Cumulative water injected.		
	$\overline{S}_{wBT} = 0.707$		
	1.00 Average Sw _{st} behind front		
	at breakthrough = 0.707		
	0.50		
	0.80		
	Producing water cut at front $S_{nf} = 0.596$ $f_{nf} = 0.78$		
	0.70		
	0.60		
	ĕ → 0.50		
	Water cut.		
	0.40		
	0.30		
	$(df_{\nu}/dS_{\nu})_{Suf} = 1.973$		
	0.20		
	0.10		
	Connate water		
	0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Water saturation, S _w		
Q4.	A combustion test in a confined pattern was conducted on a depleted oil reservoir		
	with a current oil recovery of 10%. Estimate the final oil recovery expected after the		
	commercial development of the in-situ combustion method, given the following.		
	Confined area=1.30 acres		
	Net thickness=25 ft		
	Effective porosity=25%	12M	CO3
	Irreducible water saturation=30%		
	Initial oil formation volume factor=1.12		
	Current oil formation volume factor=1.05		
	Cumulative oil production of the central well P as the effect of combustion=12,470		
	STB.		
Q5.	Enumerate microbial enhanced oil recovery techniques.	12M	CO4

SECTION B (Attempt all questions)						
Q7.	Explain the methodologies using Polyacrylamide and Polysaccharide along with the chemical technologies used?	20M	CO4			

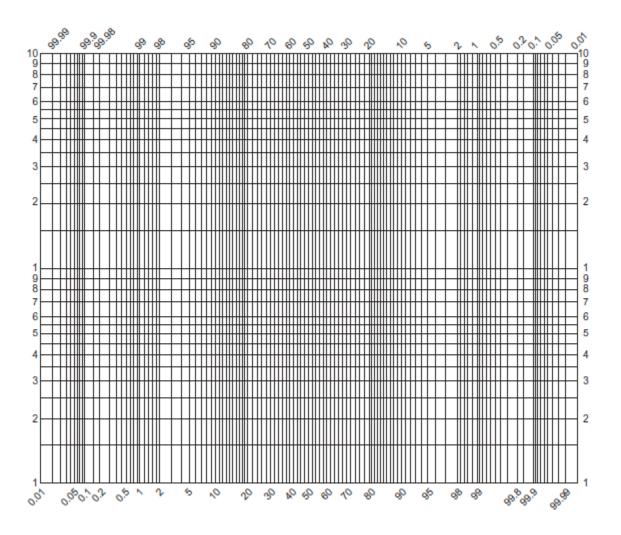


Fig.1. Probability-log scale.